File: misc.py

package info (click to toggle)
python-mne 0.13.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 92,032 kB
  • ctags: 8,249
  • sloc: python: 84,750; makefile: 205; sh: 15
file content (627 lines) | stat: -rw-r--r-- 22,015 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
"""Functions to make simple plots with M/EEG data
"""
from __future__ import print_function

# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#          Eric Larson <larson.eric.d@gmail.com>
#          Cathy Nangini <cnangini@gmail.com>
#          Mainak Jas <mainak@neuro.hut.fi>
#
# License: Simplified BSD

import copy
from glob import glob
from itertools import cycle
import os.path as op

import numpy as np
from scipy import linalg

from ..surface import read_surface
from ..externals.six import string_types
from ..io.proj import make_projector
from ..source_space import read_source_spaces, SourceSpaces
from ..utils import logger, verbose, get_subjects_dir, warn
from ..io.pick import pick_types
from .utils import tight_layout, COLORS, _prepare_trellis, plt_show


@verbose
def plot_cov(cov, info, exclude=[], colorbar=True, proj=False, show_svd=True,
             show=True, verbose=None):
    """Plot Covariance data

    Parameters
    ----------
    cov : instance of Covariance
        The covariance matrix.
    info: dict
        Measurement info.
    exclude : list of string | str
        List of channels to exclude. If empty do not exclude any channel.
        If 'bads', exclude info['bads'].
    colorbar : bool
        Show colorbar or not.
    proj : bool
        Apply projections or not.
    show_svd : bool
        Plot also singular values of the noise covariance for each sensor
        type. We show square roots ie. standard deviations.
    show : bool
        Show figure if True.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    fig_cov : instance of matplotlib.pyplot.Figure
        The covariance plot.
    fig_svd : instance of matplotlib.pyplot.Figure | None
        The SVD spectra plot of the covariance.
    """
    if exclude == 'bads':
        exclude = info['bads']
    ch_names = [n for n in cov.ch_names if n not in exclude]
    ch_idx = [cov.ch_names.index(n) for n in ch_names]
    info_ch_names = info['ch_names']
    sel_eeg = pick_types(info, meg=False, eeg=True, ref_meg=False,
                         exclude=exclude)
    sel_mag = pick_types(info, meg='mag', eeg=False, ref_meg=False,
                         exclude=exclude)
    sel_grad = pick_types(info, meg='grad', eeg=False, ref_meg=False,
                          exclude=exclude)
    idx_eeg = [ch_names.index(info_ch_names[c])
               for c in sel_eeg if info_ch_names[c] in ch_names]
    idx_mag = [ch_names.index(info_ch_names[c])
               for c in sel_mag if info_ch_names[c] in ch_names]
    idx_grad = [ch_names.index(info_ch_names[c])
                for c in sel_grad if info_ch_names[c] in ch_names]

    idx_names = [(idx_eeg, 'EEG covariance', 'uV', 1e6),
                 (idx_grad, 'Gradiometers', 'fT/cm', 1e13),
                 (idx_mag, 'Magnetometers', 'fT', 1e15)]
    idx_names = [(idx, name, unit, scaling)
                 for idx, name, unit, scaling in idx_names if len(idx) > 0]

    C = cov.data[ch_idx][:, ch_idx]

    if proj:
        projs = copy.deepcopy(info['projs'])

        #   Activate the projection items
        for p in projs:
            p['active'] = True

        P, ncomp, _ = make_projector(projs, ch_names)
        if ncomp > 0:
            logger.info('    Created an SSP operator (subspace dimension'
                        ' = %d)' % ncomp)
            C = np.dot(P, np.dot(C, P.T))
        else:
            logger.info('    The projection vectors do not apply to these '
                        'channels.')

    import matplotlib.pyplot as plt

    fig_cov = plt.figure(figsize=(2.5 * len(idx_names), 2.7))
    for k, (idx, name, _, _) in enumerate(idx_names):
        plt.subplot(1, len(idx_names), k + 1)
        plt.imshow(C[idx][:, idx], interpolation="nearest", cmap='RdBu_r')
        plt.title(name)
    plt.subplots_adjust(0.04, 0.0, 0.98, 0.94, 0.2, 0.26)
    tight_layout(fig=fig_cov)

    fig_svd = None
    if show_svd:
        fig_svd = plt.figure()
        for k, (idx, name, unit, scaling) in enumerate(idx_names):
            s = linalg.svd(C[idx][:, idx], compute_uv=False)
            plt.subplot(1, len(idx_names), k + 1)
            plt.ylabel('Noise std (%s)' % unit)
            plt.xlabel('Eigenvalue index')
            plt.semilogy(np.sqrt(s) * scaling)
            plt.title(name)
            tight_layout(fig=fig_svd)

    plt_show(show)
    return fig_cov, fig_svd


def plot_source_spectrogram(stcs, freq_bins, tmin=None, tmax=None,
                            source_index=None, colorbar=False, show=True):
    """Plot source power in time-freqency grid.

    Parameters
    ----------
    stcs : list of SourceEstimate
        Source power for consecutive time windows, one SourceEstimate object
        should be provided for each frequency bin.
    freq_bins : list of tuples of float
        Start and end points of frequency bins of interest.
    tmin : float
        Minimum time instant to show.
    tmax : float
        Maximum time instant to show.
    source_index : int | None
        Index of source for which the spectrogram will be plotted. If None,
        the source with the largest activation will be selected.
    colorbar : bool
        If true, a colorbar will be added to the plot.
    show : bool
        Show figure if True.
    """
    import matplotlib.pyplot as plt

    # Input checks
    if len(stcs) == 0:
        raise ValueError('cannot plot spectrogram if len(stcs) == 0')

    stc = stcs[0]
    if tmin is not None and tmin < stc.times[0]:
        raise ValueError('tmin cannot be smaller than the first time point '
                         'provided in stcs')
    if tmax is not None and tmax > stc.times[-1] + stc.tstep:
        raise ValueError('tmax cannot be larger than the sum of the last time '
                         'point and the time step, which are provided in stcs')

    # Preparing time-frequency cell boundaries for plotting
    if tmin is None:
        tmin = stc.times[0]
    if tmax is None:
        tmax = stc.times[-1] + stc.tstep
    time_bounds = np.arange(tmin, tmax + stc.tstep, stc.tstep)
    freq_bounds = sorted(set(np.ravel(freq_bins)))
    freq_ticks = copy.deepcopy(freq_bounds)

    # Reject time points that will not be plotted and gather results
    source_power = []
    for stc in stcs:
        stc = stc.copy()  # copy since crop modifies inplace
        stc.crop(tmin, tmax - stc.tstep)
        source_power.append(stc.data)
    source_power = np.array(source_power)

    # Finding the source with maximum source power
    if source_index is None:
        source_index = np.unravel_index(source_power.argmax(),
                                        source_power.shape)[1]

    # If there is a gap in the frequency bins record its locations so that it
    # can be covered with a gray horizontal bar
    gap_bounds = []
    for i in range(len(freq_bins) - 1):
        lower_bound = freq_bins[i][1]
        upper_bound = freq_bins[i + 1][0]
        if lower_bound != upper_bound:
            freq_bounds.remove(lower_bound)
            gap_bounds.append((lower_bound, upper_bound))

    # Preparing time-frequency grid for plotting
    time_grid, freq_grid = np.meshgrid(time_bounds, freq_bounds)

    # Plotting the results
    fig = plt.figure(figsize=(9, 6))
    plt.pcolor(time_grid, freq_grid, source_power[:, source_index, :],
               cmap='Reds')
    ax = plt.gca()

    plt.title('Time-frequency source power')
    plt.xlabel('Time (s)')
    plt.ylabel('Frequency (Hz)')

    time_tick_labels = [str(np.round(t, 2)) for t in time_bounds]
    n_skip = 1 + len(time_bounds) // 10
    for i in range(len(time_bounds)):
        if i % n_skip != 0:
            time_tick_labels[i] = ''

    ax.set_xticks(time_bounds)
    ax.set_xticklabels(time_tick_labels)
    plt.xlim(time_bounds[0], time_bounds[-1])
    plt.yscale('log')
    ax.set_yticks(freq_ticks)
    ax.set_yticklabels([np.round(freq, 2) for freq in freq_ticks])
    plt.ylim(freq_bounds[0], freq_bounds[-1])

    plt.grid(True, ls='-')
    if colorbar:
        plt.colorbar()
    tight_layout(fig=fig)

    # Covering frequency gaps with horizontal bars
    for lower_bound, upper_bound in gap_bounds:
        plt.barh(lower_bound, time_bounds[-1] - time_bounds[0], upper_bound -
                 lower_bound, time_bounds[0], color='#666666')

    plt_show(show)
    return fig


def _plot_mri_contours(mri_fname, surfaces, src, orientation='coronal',
                       slices=None, show=True):
    """Plot BEM contours on anatomical slices.

    Parameters
    ----------
    mri_fname : str
        The name of the file containing anatomical data.
    surfaces : list of (str, str) tuples
        A list containing the BEM surfaces to plot as (filename, color) tuples.
        Colors should be matplotlib-compatible.
    src : None | SourceSpaces
        SourceSpaces object for plotting individual sources.
    orientation : str
        'coronal' or 'axial' or 'sagittal'
    slices : list of int
        Slice indices.
    show : bool
        Show figure if True.

    Returns
    -------
    fig : Instance of matplotlib.figure.Figure
        The figure.
    """
    import matplotlib.pyplot as plt
    import nibabel as nib

    # plot axes (x, y, z) as data axes (0, 1, 2)
    if orientation == 'coronal':
        x, y, z = 0, 1, 2
    elif orientation == 'axial':
        x, y, z = 2, 0, 1
    elif orientation == 'sagittal':
        x, y, z = 2, 1, 0
    else:
        raise ValueError("Orientation must be 'coronal', 'axial' or "
                         "'sagittal'. Got %s." % orientation)

    # Load the T1 data
    nim = nib.load(mri_fname)
    data = nim.get_data()
    try:
        affine = nim.affine
    except AttributeError:  # older nibabel
        affine = nim.get_affine()

    n_sag, n_axi, n_cor = data.shape
    orientation_name2axis = dict(sagittal=0, axial=1, coronal=2)
    orientation_axis = orientation_name2axis[orientation]

    if slices is None:
        n_slices = data.shape[orientation_axis]
        slices = np.linspace(0, n_slices, 12, endpoint=False).astype(np.int)

    # create of list of surfaces
    surfs = list()

    trans = linalg.inv(affine)
    # XXX : next line is a hack don't ask why
    trans[:3, -1] = [n_sag // 2, n_axi // 2, n_cor // 2]

    for file_name, color in surfaces:
        surf = dict()
        surf['rr'], surf['tris'] = read_surface(file_name)
        # move back surface to MRI coordinate system
        surf['rr'] = nib.affines.apply_affine(trans, surf['rr'])
        surfs.append((surf, color))

    src_points = list()
    if isinstance(src, SourceSpaces):
        for src_ in src:
            points = src_['rr'][src_['inuse'].astype(bool)] * 1e3
            src_points.append(nib.affines.apply_affine(trans, points))
    elif src is not None:
        raise TypeError("src needs to be None or SourceSpaces instance, not "
                        "%s" % repr(src))

    fig, axs = _prepare_trellis(len(slices), 4)

    for ax, sl in zip(axs, slices):

        # adjust the orientations for good view
        if orientation == 'coronal':
            dat = data[:, :, sl].transpose()
        elif orientation == 'axial':
            dat = data[:, sl, :]
        elif orientation == 'sagittal':
            dat = data[sl, :, :]

        # First plot the anatomical data
        ax.imshow(dat, cmap=plt.cm.gray)
        ax.set_autoscale_on(False)
        ax.axis('off')

        # and then plot the contours on top
        for surf, color in surfs:
            ax.tricontour(surf['rr'][:, x], surf['rr'][:, y],
                          surf['tris'], surf['rr'][:, z],
                          levels=[sl], colors=color, linewidths=2.0,
                          zorder=1)

        for sources in src_points:
            in_slice = np.logical_and(sources[:, z] > sl - 0.5,
                                      sources[:, z] < sl + 0.5)
            ax.scatter(sources[in_slice, x], sources[in_slice, y], marker='.',
                       color='#FF00FF', s=1, zorder=2)

    plt.subplots_adjust(left=0., bottom=0., right=1., top=1., wspace=0.,
                        hspace=0.)
    plt_show(show)
    return fig


def plot_bem(subject=None, subjects_dir=None, orientation='coronal',
             slices=None, brain_surfaces=None, src=None, show=True):
    """Plot BEM contours on anatomical slices.

    Parameters
    ----------
    subject : str
        Subject name.
    subjects_dir : str | None
        Path to the SUBJECTS_DIR. If None, the path is obtained by using
        the environment variable SUBJECTS_DIR.
    orientation : str
        'coronal' or 'axial' or 'sagittal'.
    slices : list of int
        Slice indices.
    brain_surfaces : None | str | list of str
        One or more brain surface to plot (optional). Entries should correspond
        to files in the subject's ``surf`` directory (e.g. ``"white"``).
    src : None | SourceSpaces | str
        SourceSpaces instance or path to a source space to plot individual
        sources as scatter-plot. Only sources lying in the shown slices will be
        visible, sources that lie between visible slices are not shown. Path
        can be absolute or relative to the subject's ``bem`` folder.
    show : bool
        Show figure if True.

    Returns
    -------
    fig : Instance of matplotlib.figure.Figure
        The figure.
    """
    subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)

    # Get the MRI filename
    mri_fname = op.join(subjects_dir, subject, 'mri', 'T1.mgz')
    if not op.isfile(mri_fname):
        raise IOError('MRI file "%s" does not exist' % mri_fname)

    # Get the BEM surface filenames
    bem_path = op.join(subjects_dir, subject, 'bem')

    if not op.isdir(bem_path):
        raise IOError('Subject bem directory "%s" does not exist' % bem_path)

    surfaces = []
    for surf_name, color in (('*inner_skull', '#FF0000'),
                             ('*outer_skull', '#FFFF00'),
                             ('*outer_skin', '#FFAA80')):
        surf_fname = glob(op.join(bem_path, surf_name + '.surf'))
        if len(surf_fname) > 0:
            surf_fname = surf_fname[0]
            logger.info("Using surface: %s" % surf_fname)
            surfaces.append((surf_fname, color))

    if brain_surfaces is not None:
        if isinstance(brain_surfaces, string_types):
            brain_surfaces = (brain_surfaces,)
        for surf_name in brain_surfaces:
            for hemi in ('lh', 'rh'):
                surf_fname = op.join(subjects_dir, subject, 'surf',
                                     hemi + '.' + surf_name)
                if op.exists(surf_fname):
                    surfaces.append((surf_fname, '#00DD00'))
                else:
                    raise IOError("Surface %s does not exist." % surf_fname)

    if isinstance(src, string_types):
        if not op.exists(src):
            src_ = op.join(subjects_dir, subject, 'bem', src)
            if op.exists(src_):
                src = src_
            else:
                raise IOError("%s does not exist" % src)
        src = read_source_spaces(src)
    elif src is not None and not isinstance(src, SourceSpaces):
        raise TypeError("src needs to be None, str or SourceSpaces instance, "
                        "not %s" % repr(src))

    if len(surfaces) == 0:
        raise IOError('No surface files found. Surface files must end with '
                      'inner_skull.surf, outer_skull.surf or outer_skin.surf')

    # Plot the contours
    return _plot_mri_contours(mri_fname, surfaces, src, orientation, slices,
                              show)


def plot_events(events, sfreq=None, first_samp=0, color=None, event_id=None,
                axes=None, equal_spacing=True, show=True):
    """Plot events to get a visual display of the paradigm

    Parameters
    ----------
    events : array, shape (n_events, 3)
        The events.
    sfreq : float | None
        The sample frequency. If None, data will be displayed in samples (not
        seconds).
    first_samp : int
        The index of the first sample. Typically the raw.first_samp
        attribute. It is needed for recordings on a Neuromag
        system as the events are defined relative to the system
        start and not to the beginning of the recording.
    color : dict | None
        Dictionary of event_id value and its associated color. If None,
        colors are automatically drawn from a default list (cycled through if
        number of events longer than list of default colors).
    event_id : dict | None
        Dictionary of event label (e.g. 'aud_l') and its associated
        event_id value. Label used to plot a legend. If None, no legend is
        drawn.
    axes : instance of matplotlib.axes.AxesSubplot
       The subplot handle.
    equal_spacing : bool
        Use equal spacing between events in y-axis.
    show : bool
        Show figure if True.

    Returns
    -------
    fig : matplotlib.figure.Figure
        The figure object containing the plot.

    Notes
    -----
    .. versionadded:: 0.9.0
    """

    if sfreq is None:
        sfreq = 1.0
        xlabel = 'samples'
    else:
        xlabel = 'Time (s)'

    events = np.asarray(events)
    unique_events = np.unique(events[:, 2])

    if event_id is not None:
        # get labels and unique event ids from event_id dict,
        # sorted by value
        event_id_rev = dict((v, k) for k, v in event_id.items())
        conditions, unique_events_id = zip(*sorted(event_id.items(),
                                                   key=lambda x: x[1]))

        for this_event in unique_events_id:
            if this_event not in unique_events:
                raise ValueError('%s from event_id is not present in events.'
                                 % this_event)

        for this_event in unique_events:
            if this_event not in unique_events_id:
                warn('event %s missing from event_id will be ignored'
                     % this_event)
    else:
        unique_events_id = unique_events

    if color is None:
        if len(unique_events) > len(COLORS):
            warn('More events than colors available. You should pass a list '
                 'of unique colors.')
        colors = cycle(COLORS)
        color = dict()
        for this_event, this_color in zip(unique_events_id, colors):
            color[this_event] = this_color
    else:
        for this_event in color:
            if this_event not in unique_events_id:
                raise ValueError('%s from color is not present in events '
                                 'or event_id.' % this_event)

        for this_event in unique_events_id:
            if this_event not in color:
                warn('Color is not available for event %d. Default colors '
                     'will be used.' % this_event)

    import matplotlib.pyplot as plt

    fig = None
    if axes is None:
        fig = plt.figure()
    ax = axes if axes else plt.gca()

    unique_events_id = np.array(unique_events_id)
    min_event = np.min(unique_events_id)
    max_event = np.max(unique_events_id)

    for idx, ev in enumerate(unique_events_id):
        ev_mask = events[:, 2] == ev
        kwargs = {}
        if event_id is not None:
            event_label = '{0} ({1})'.format(event_id_rev[ev],
                                             np.sum(ev_mask))
            kwargs['label'] = event_label
        if ev in color:
            kwargs['color'] = color[ev]
        if equal_spacing:
            ax.plot((events[ev_mask, 0] - first_samp) / sfreq,
                    (idx + 1) * np.ones(ev_mask.sum()), '.', **kwargs)
        else:
            ax.plot((events[ev_mask, 0] - first_samp) / sfreq,
                    events[ev_mask, 2], '.', **kwargs)

    if equal_spacing:
        ax.set_ylim(0, unique_events_id.size + 1)
        ax.set_yticks(1 + np.arange(unique_events_id.size))
        ax.set_yticklabels(unique_events_id)
    else:
        ax.set_ylim([min_event - 1, max_event + 1])

    ax.set_xlabel(xlabel)
    ax.set_ylabel('Events id')

    ax.grid('on')

    fig = fig if fig is not None else plt.gcf()
    if event_id is not None:
        box = ax.get_position()
        ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
        ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
        fig.canvas.draw()
    plt_show(show)
    return fig


def _get_presser(fig):
    """Helper to get our press callback"""
    callbacks = fig.canvas.callbacks.callbacks['button_press_event']
    func = None
    for key, val in callbacks.items():
        if val.func.__class__.__name__ == 'partial':
            func = val.func
            break
    assert func is not None
    return func


def plot_dipole_amplitudes(dipoles, colors=None, show=True):
    """Plot the amplitude traces of a set of dipoles

    Parameters
    ----------
    dipoles : list of instance of Dipoles
        The dipoles whose amplitudes should be shown.
    colors: list of colors | None
        Color to plot with each dipole. If None default colors are used.
    show : bool
        Show figure if True.

    Returns
    -------
    fig : matplotlib.figure.Figure
        The figure object containing the plot.

    Notes
    -----
    .. versionadded:: 0.9.0
    """
    import matplotlib.pyplot as plt
    if colors is None:
        colors = cycle(COLORS)
    fig, ax = plt.subplots(1, 1)
    xlim = [np.inf, -np.inf]
    for dip, color in zip(dipoles, colors):
        ax.plot(dip.times, dip.amplitude, color=color, linewidth=1.5)
        xlim[0] = min(xlim[0], dip.times[0])
        xlim[1] = max(xlim[1], dip.times[-1])
    ax.set_xlim(xlim)
    ax.set_xlabel('Time (sec)')
    ax.set_ylabel('Amplitude (nAm)')
    if show:
        fig.show(warn=False)
    return fig