1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
#!/usr/bin/env python
"""Parse google scholar -> rst for MNE citations.
Example usage::
$ ./cited_mne.py --backend selenium --clear
This requires joblib, BeautifulSoup, and selenium.
selenium in turn requires geckodriver:
https://github.com/mozilla/geckodriver/releases
The process will involve window popups to satisfy
CAPTCHA checks.
"""
# Author: Mainak Jas <mainak.jas@telecom-paristech.fr>
# License : BSD 3-clause
# Parts of this code were copied from google_scholar_parser
# (https://github.com/carlosp420/google_scholar_parser)
import os
import os.path as op
import re
import time
import random
import requests
import numpy as np
from joblib import Memory
from BeautifulSoup import BeautifulSoup
from mne.externals.tempita import Template
from mne.commands.utils import get_optparser
# cache to avoid making too many calls to Google Scholar
cachedir = 'cachedir'
if not os.path.exists(cachedir):
os.mkdir(cachedir)
mem = Memory(cachedir=cachedir, verbose=2)
UA = ('Mozilla/5.0 (X11; U; FreeBSD i386; en-US; rv:1.9.2.9) '
'Gecko/20100913 Firefox/3.6.9')
# ##### Templates for citations #####
html = (u""":orphan:
.. _cited:
Publications by users
=====================
Papers citing MNE (%d) as extracted from Google Scholar (on %s).
""")
cite_template = Template(u"""
{{for ii, publication in enumerate(publications)}}
{{ii + 1}}. {{publication}}.
{{endfor}}
""")
def parse_soup_page(soup):
"""Parse the page using BeautifulSoup.
Parameters
----------
soup : instance of BeautifulSoup
The page to be parsed.
Returns
-------
titles : list
The article titles.
authors : list
The name of the authors.
links : list
Hyperlinks to the articles.
"""
titles, authors, links = list(), list(), list()
for div in soup.findAll('div'):
if div.name == "div" and div.get('class') == "gs_ri":
links.append(div.a['href'])
div_pub = div.findAll('div')
for d in div_pub:
if d.name == 'div' and d.get('class') == 'gs_a':
authors.append(d.text)
titles.append(div.a.text)
return titles, authors, links
def get_total_citations(soup):
"""Get total citations."""
results = soup.find('div', attrs={'id': 'gs_ab_md'}).contents[0]
matches = re.search(r"About\s(\d+)\s", results)
if matches:
hits = matches.groups()[0]
return hits
def _get_soup(url, backend='selenium'):
"""Get BeautifulSoup object from url.
Parameters
----------
url : str
The url to fetch.
backend : 'selenium' | 'requests'
Use selenium by default because google can ask for captcha. For
'selenium' backend Firefox must be installed.
Returns
-------
soup : instance of BeautifulSoup
The soup page from the url.
"""
if backend == 'requests':
req = requests.get(url, headers={'User-Agent': UA})
html_doc = req.text
soup = BeautifulSoup(html_doc)
if soup.find('div', attrs={'id': 'gs_ab_md'}) is None:
print('Falling back on to selenium backend due to captcha.')
backend = 'selenium'
if backend == 'selenium':
from selenium import webdriver
import selenium.webdriver.support.ui as ui
driver = webdriver.Firefox()
# give enough time to solve captcha.
wait = ui.WebDriverWait(driver, 200)
driver.get(url)
wait.until(lambda driver: driver.find_elements_by_id('gs_ab_md'))
html_doc = driver.page_source
soup = BeautifulSoup(html_doc)
driver.close()
return soup
@mem.cache
def get_citing_articles(cites_url, backend):
"""Get the citing articles.
Parameters
----------
cites_url: str
A citation url from Google Scholar.
backend : 'selenium' | 'requests'
Use selenium by default because google can ask for captcha. For
'selenium' backend Firefox must be installed.
Returns
-------
titles : list
The article titles.
authors : list
The name of the authors.
links : list
Hyperlinks to the articles.
"""
n = random.random() * 5
time.sleep(n)
print("\nSleeping: {0} seconds".format(n))
# GS seems to allow only 20 hits per page!
cites_url += "&num=20"
soup = _get_soup(cites_url, backend=backend)
hits = get_total_citations(soup)
print("Got a total of {0} citations".format(hits))
hits = int(hits)
index = 0
titles, authors, links = list(), list(), list()
while hits > 1:
n = random.random() * 2
time.sleep(n)
if index > 0:
url = cites_url + "&start=" + str(index)
else:
url = cites_url
index += 20
hits -= 20
print("{0} more citations to process".format(hits))
soup = soup = _get_soup(url, backend=backend)
title, author, link = parse_soup_page(soup)
for this_title, this_author, this_link in zip(title, author, link):
titles.append(this_title)
authors.append(this_author)
links.append(this_link)
return titles, authors, links
if __name__ == '__main__':
parser = get_optparser(__file__)
parser.add_option("-c", "--clear", dest="clear", action='store_true',
help="if True, clear the cache.", default=False)
parser.add_option("-b", "--backend", dest="backend",
help="backend for parsing (selenium | requests)",
default='requests')
options, args = parser.parse_args()
backend, clear = options.backend, options.clear
if clear:
mem.clear()
random.seed()
gen_date = time.strftime("%B %d, %Y")
url_tails = ['1521584321377182930', '12188330066413208874']
papers = ['MEG and EEG data analysis with MNE-Python',
'MNE software for processing MEG and EEG data']
publications = list()
for url_tail, paper in zip(url_tails, papers):
titles, authors, links = get_citing_articles(
'https://scholar.google.co.in/scholar?cites=%s'
% url_tail, backend=backend)
this_publication = list()
for ii in range(len(titles)):
pub = '`%s. <%s>`_. %s' % (titles[ii], links[ii], authors[ii])
this_publication.append(pub)
this_publication = [p.encode('utf8') for p in this_publication]
publications.append(this_publication)
# get a union of the citations for the two papers, sorted in
# alphabetic order
publications = np.union1d(publications[1], publications[0]).tolist()
html = html % (len(publications), gen_date)
# sort by year of publication
years = list()
for pub in publications:
m = re.search(r'\d{4} -', pub)
if m is None:
years.append(-1)
else:
years.append(int(m.group(0)[:-2]))
order = np.argsort(years)[::-1]
publications = [publications[idx] for idx in order]
# filter out publications not containing (http://, https://, ftp://)
publications = [p for p in publications if
any(sub in p for sub in ('http://', 'https://', 'ftp://'))]
# create rst & cleanup
this_html = cite_template.substitute(publications=publications)
this_html = this_html.replace('…', '...')
html += this_html
# output an rst file
with open(op.join('..', 'cited.rst'), 'w') as f:
f.write(html.encode('utf8'))
|