File: plot_decoding_csp_eeg.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (146 lines) | stat: -rw-r--r-- 5,516 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
"""
===========================================================================
Motor imagery decoding from EEG data using the Common Spatial Pattern (CSP)
===========================================================================

Decoding of motor imagery applied to EEG data decomposed using CSP.
Here the classifier is applied to features extracted on CSP filtered signals.

See http://en.wikipedia.org/wiki/Common_spatial_pattern and [1]_. The EEGBCI
dataset is documented in [2]_. The data set is available at PhysioNet [3]_.

References
----------

.. [1] Zoltan J. Koles. The quantitative extraction and topographic mapping
       of the abnormal components in the clinical EEG. Electroencephalography
       and Clinical Neurophysiology, 79(6):440--447, December 1991.
.. [2] Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N.,
       Wolpaw, J.R. (2004) BCI2000: A General-Purpose Brain-Computer Interface
       (BCI) System. IEEE TBME 51(6):1034-1043.
.. [3] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG,
       Mietus JE, Moody GB, Peng C-K, Stanley HE. (2000) PhysioBank,
       PhysioToolkit, and PhysioNet: Components of a New Research Resource for
       Complex Physiologic Signals. Circulation 101(23):e215-e220.
"""
# Authors: Martin Billinger <martin.billinger@tugraz.at>
#
# License: BSD (3-clause)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.pipeline import Pipeline
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.model_selection import ShuffleSplit, cross_val_score

from mne import Epochs, pick_types, find_events
from mne.channels import read_layout
from mne.io import concatenate_raws, read_raw_edf
from mne.datasets import eegbci
from mne.decoding import CSP

print(__doc__)

# #############################################################################
# # Set parameters and read data

# avoid classification of evoked responses by using epochs that start 1s after
# cue onset.
tmin, tmax = -1., 4.
event_id = dict(hands=2, feet=3)
subject = 1
runs = [6, 10, 14]  # motor imagery: hands vs feet

raw_fnames = eegbci.load_data(subject, runs)
raw_files = [read_raw_edf(f, preload=True, stim_channel='auto') for f in
             raw_fnames]
raw = concatenate_raws(raw_files)

# strip channel names of "." characters
raw.rename_channels(lambda x: x.strip('.'))

# Apply band-pass filter
raw.filter(7., 30., fir_design='firwin', skip_by_annotation='edge')

events = find_events(raw, shortest_event=0, stim_channel='STI 014')

picks = pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False,
                   exclude='bads')

# Read epochs (train will be done only between 1 and 2s)
# Testing will be done with a running classifier
epochs = Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks,
                baseline=None, preload=True)
epochs_train = epochs.copy().crop(tmin=1., tmax=2.)
labels = epochs.events[:, -1] - 2

###############################################################################
# Classification with linear discrimant analysis

# Define a monte-carlo cross-validation generator (reduce variance):
scores = []
epochs_data = epochs.get_data()
epochs_data_train = epochs_train.get_data()
cv = ShuffleSplit(10, test_size=0.2, random_state=42)
cv_split = cv.split(epochs_data_train)

# Assemble a classifier
lda = LinearDiscriminantAnalysis()
csp = CSP(n_components=4, reg=None, log=True, norm_trace=False)

# Use scikit-learn Pipeline with cross_val_score function
clf = Pipeline([('CSP', csp), ('LDA', lda)])
scores = cross_val_score(clf, epochs_data_train, labels, cv=cv, n_jobs=1)

# Printing the results
class_balance = np.mean(labels == labels[0])
class_balance = max(class_balance, 1. - class_balance)
print("Classification accuracy: %f / Chance level: %f" % (np.mean(scores),
                                                          class_balance))

# plot CSP patterns estimated on full data for visualization
csp.fit_transform(epochs_data, labels)

layout = read_layout('EEG1005')
csp.plot_patterns(epochs.info, layout=layout, ch_type='eeg',
                  units='Patterns (AU)', size=1.5)

###############################################################################
# Look at performance over time

sfreq = raw.info['sfreq']
w_length = int(sfreq * 0.5)   # running classifier: window length
w_step = int(sfreq * 0.1)  # running classifier: window step size
w_start = np.arange(0, epochs_data.shape[2] - w_length, w_step)

scores_windows = []

for train_idx, test_idx in cv_split:
    y_train, y_test = labels[train_idx], labels[test_idx]

    X_train = csp.fit_transform(epochs_data_train[train_idx], y_train)
    X_test = csp.transform(epochs_data_train[test_idx])

    # fit classifier
    lda.fit(X_train, y_train)

    # running classifier: test classifier on sliding window
    score_this_window = []
    for n in w_start:
        X_test = csp.transform(epochs_data[test_idx][:, :, n:(n + w_length)])
        score_this_window.append(lda.score(X_test, y_test))
    scores_windows.append(score_this_window)

# Plot scores over time
w_times = (w_start + w_length / 2.) / sfreq + epochs.tmin

plt.figure()
plt.plot(w_times, np.mean(scores_windows, 0), label='Score')
plt.axvline(0, linestyle='--', color='k', label='Onset')
plt.axhline(0.5, linestyle='-', color='k', label='Chance')
plt.xlabel('time (s)')
plt.ylabel('classification accuracy')
plt.title('Classification score over time')
plt.legend(loc='lower right')
plt.show()