1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
"""
=========================================
Receptive Field Estimation and Prediction
=========================================
This example reproduces figures from Lalor et al's mTRF toolbox in
matlab [1]_. We will show how the :class:`mne.decoding.ReceptiveField` class
can perform a similar function along with scikit-learn. We will first fit a
linear encoding model using the continuously-varying speech envelope to predict
activity of a 128 channel EEG system. Then, we will take the reverse approach
and try to predict the speech envelope from the EEG (known in the litterature
as a decoding model, or simply stimulus reconstruction).
References
----------
.. [1] Crosse, M. J., Di Liberto, G. M., Bednar, A. & Lalor, E. C. (2016).
The Multivariate Temporal Response Function (mTRF) Toolbox:
A MATLAB Toolbox for Relating Neural Signals to Continuous Stimuli.
Frontiers in Human Neuroscience 10, 604. doi:10.3389/fnhum.2016.00604
.. [2] Haufe, S., Meinecke, F., Goergen, K., Daehne, S., Haynes, J.-D.,
Blankertz, B., & Biessmann, F. (2014). On the interpretation of weight
vectors of linear models in multivariate neuroimaging. NeuroImage, 87,
96-110. doi:10.1016/j.neuroimage.2013.10.067
.. _figure 1: http://journal.frontiersin.org/article/10.3389/fnhum.2016.00604/full#F1
.. _figure 2: http://journal.frontiersin.org/article/10.3389/fnhum.2016.00604/full#F2
.. _figure 5: http://journal.frontiersin.org/article/10.3389/fnhum.2016.00604/full#F5
""" # noqa: E501
# Authors: Chris Holdgraf <choldgraf@gmail.com>
# Eric Larson <larson.eric.d@gmail.com>
# Nicolas Barascud <nicolas.barascud@ens.fr>
#
# License: BSD (3-clause)
# sphinx_gallery_thumbnail_number = 3
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import loadmat
from os.path import join
import mne
from mne.decoding import ReceptiveField
from sklearn.model_selection import KFold
from sklearn.preprocessing import scale
###############################################################################
# Load the data from the publication
# ----------------------------------
#
# First we will load the data collected in [1]_. In this experiment subjects
# listened to natural speech. Raw EEG and the speech stimulus are provided.
# We will load these below, downsampling the data in order to speed up
# computation since we know that our features are primarily low-frequency in
# nature. Then we'll visualize both the EEG and speech envelope.
path = mne.datasets.mtrf.data_path()
decim = 2
data = loadmat(join(path, 'speech_data.mat'))
raw = data['EEG'].T
speech = data['envelope'].T
sfreq = float(data['Fs'])
sfreq /= decim
speech = mne.filter.resample(speech, down=decim, npad='auto')
raw = mne.filter.resample(raw, down=decim, npad='auto')
# Read in channel positions and create our MNE objects from the raw data
montage = mne.channels.read_montage('biosemi128')
montage.selection = montage.selection[:128]
info = mne.create_info(montage.ch_names[:128], sfreq, 'eeg', montage=montage)
raw = mne.io.RawArray(raw, info)
n_channels = len(raw.ch_names)
# Plot a sample of brain and stimulus activity
fig, ax = plt.subplots()
lns = ax.plot(scale(raw[:, :800][0].T), color='k', alpha=.1)
ln1 = ax.plot(scale(speech[0, :800]), color='r', lw=2)
ax.legend([lns[0], ln1[0]], ['EEG', 'Speech Envelope'], frameon=False)
ax.set(title="Sample activity", xlabel="Time (s)")
mne.viz.tight_layout()
###############################################################################
# Create and fit a receptive field model
# --------------------------------------
#
# We will construct an encoding model to find the linear relationship between
# a time-delayed version of the speech envelope and the EEG signal. This allows
# us to make predictions about the response to new stimuli.
# Define the delays that we will use in the receptive field
tmin, tmax = -.2, .4
# Initialize the model
rf = ReceptiveField(tmin, tmax, sfreq, feature_names=['envelope'],
estimator=1., scoring='corrcoef')
# We'll have (tmax - tmin) * sfreq delays
# and an extra 2 delays since we are inclusive on the beginning / end index
n_delays = int((tmax - tmin) * sfreq) + 2
n_splits = 3
cv = KFold(n_splits)
# Prepare model data (make time the first dimension)
speech = speech.T
Y, _ = raw[:] # Outputs for the model
Y = Y.T
# Iterate through splits, fit the model, and predict/test on held-out data
coefs = np.zeros((n_splits, n_channels, n_delays))
scores = np.zeros((n_splits, n_channels))
for ii, (train, test) in enumerate(cv.split(speech)):
print('split %s / %s' % (ii + 1, n_splits))
rf.fit(speech[train], Y[train])
scores[ii] = rf.score(speech[test], Y[test])
# coef_ is shape (n_outputs, n_features, n_delays). we only have 1 feature
coefs[ii] = rf.coef_[:, 0, :]
times = rf.delays_ / float(rf.sfreq)
# Average scores and coefficients across CV splits
mean_coefs = coefs.mean(axis=0)
mean_scores = scores.mean(axis=0)
# Plot mean prediction scores across all channels
fig, ax = plt.subplots()
ix_chs = np.arange(n_channels)
ax.plot(ix_chs, mean_scores)
ax.axhline(0, ls='--', color='r')
ax.set(title="Mean prediction score", xlabel="Channel", ylabel="Score ($r$)")
mne.viz.tight_layout()
###############################################################################
# Investigate model coefficients
# ==============================
# Finally, we will look at how the linear coefficients (sometimes
# referred to as beta values) are distributed across time delays as well as
# across the scalp. We will recreate `figure 1`_ and `figure 2`_ from [1]_.
# Print mean coefficients across all time delays / channels (see Fig 1 in [1])
time_plot = 0.180 # For highlighting a specific time.
fig, ax = plt.subplots(figsize=(4, 8))
max_coef = mean_coefs.max()
ax.pcolormesh(times, ix_chs, mean_coefs, cmap='RdBu_r',
vmin=-max_coef, vmax=max_coef, shading='gouraud')
ax.axvline(time_plot, ls='--', color='k', lw=2)
ax.set(xlabel='Delay (s)', ylabel='Channel', title="Mean Model\nCoefficients",
xlim=times[[0, -1]], ylim=[len(ix_chs) - 1, 0],
xticks=np.arange(tmin, tmax + .2, .2))
plt.setp(ax.get_xticklabels(), rotation=45)
mne.viz.tight_layout()
# Make a topographic map of coefficients for a given delay (see Fig 2C in [1])
ix_plot = np.argmin(np.abs(time_plot - times))
fig, ax = plt.subplots()
mne.viz.plot_topomap(mean_coefs[:, ix_plot], pos=info, axes=ax, show=False,
vmin=-max_coef, vmax=max_coef)
ax.set(title="Topomap of model coefficients\nfor delay %s" % time_plot)
mne.viz.tight_layout()
###############################################################################
# Create and fit a stimulus reconstruction model
# ----------------------------------------------
#
# We will now demonstrate another use case for the for the
# :class:`mne.decoding.ReceptiveField` class as we try to predict the stimulus
# activity from the EEG data. This is known in the literature as a decoding, or
# stimulus reconstruction model [1]_. A decoding model aims to find the
# relationship between the speech signal and a time-delayed version of the EEG.
# This can be useful as we exploit all of the available neural data in a
# multivariate context, compared to the encoding case which treats each M/EEG
# channel as an independent feature. Therefore, decoding models might provide a
# better quality of fit (at the expense of not controlling for stimulus
# covariance), especially for low SNR stimuli such as speech.
# We use the same lags as in [1]. Negative lags now index the relationship
# between the neural response and the speech envelope earlier in time, whereas
# positive lags would index how a unit change in the amplitude of the EEG would
# affect later stimulus activity (obviously this should have an amplitude of
# zero).
tmin, tmax = -.2, 0.
# Initialize the model. Here the features are the EEG data. We also specify
# ``patterns=True`` to compute inverse-transformed coefficients during model
# fitting (cf. next section). We'll use a ridge regression estimator with an
# alpha value similar to [1].
sr = ReceptiveField(tmin, tmax, sfreq, feature_names=raw.ch_names,
estimator=1e4, scoring='corrcoef', patterns=True)
# We'll have (tmax - tmin) * sfreq delays
# and an extra 2 delays since we are inclusive on the beginning / end index
n_delays = int((tmax - tmin) * sfreq) + 2
n_splits = 3
cv = KFold(n_splits)
# Iterate through splits, fit the model, and predict/test on held-out data
coefs = np.zeros((n_splits, n_channels, n_delays))
patterns = coefs.copy()
scores = np.zeros((n_splits,))
for ii, (train, test) in enumerate(cv.split(speech)):
print('split %s / %s' % (ii + 1, n_splits))
sr.fit(Y[train], speech[train])
scores[ii] = sr.score(Y[test], speech[test])[0]
# coef_ is shape (n_outputs, n_features, n_delays). We have 128 features
coefs[ii] = sr.coef_[0, :, :]
patterns[ii] = sr.patterns_[0, :, :]
times = sr.delays_ / float(sr.sfreq)
# Average scores and coefficients across CV splits
mean_coefs = coefs.mean(axis=0)
mean_patterns = patterns.mean(axis=0)
mean_scores = scores.mean(axis=0)
max_coef = np.abs(mean_coefs).max()
max_patterns = np.abs(mean_patterns).max()
###############################################################################
# Visualize stimulus reconstruction
# =================================
#
# To get a sense of our model performance, we can plot the actual and predicted
# stimulus envelopes side by side.
y_pred = sr.predict(Y[test])
time = np.linspace(0, 2., 5 * int(sfreq))
fig, ax = plt.subplots(figsize=(8, 4))
ax.plot(time, speech[test][sr.valid_samples_][:int(5 * sfreq)],
color='grey', lw=2, ls='--')
ax.plot(time, y_pred[sr.valid_samples_][:int(5 * sfreq)], color='r', lw=2)
ax.legend([lns[0], ln1[0]], ['Envelope', 'Reconstruction'], frameon=False)
ax.set(title="Stimulus reconstruction")
ax.set_xlabel('Time (s)')
mne.viz.tight_layout()
###############################################################################
# Investigate model coefficients
# ==============================
#
# Finally, we will look at how the decoding model coefficients are distributed
# across the scalp. We will attempt to recreate `figure 5`_ from [1]_. The
# decoding model weights reflect the channels that contribute most toward
# reconstructing the stimulus signal, but are not directly interpretable in a
# neurophysiological sense. Here we also look at the coefficients obtained
# via an inversion procedure [2]_, which have a more straightforward
# interpretation as their value (and sign) directly relates to the stimulus
# signal's strength (and effect direction).
time_plot = (-.140, -.125) # To average between two timepoints.
ix_plot = np.arange(np.argmin(np.abs(time_plot[0] - times)),
np.argmin(np.abs(time_plot[1] - times)))
fig, ax = plt.subplots(1, 2)
mne.viz.plot_topomap(np.mean(mean_coefs[:, ix_plot], axis=1),
pos=info, axes=ax[0], show=False,
vmin=-max_coef, vmax=max_coef)
ax[0].set(title="Model coefficients\nbetween delays %s and %s"
% (time_plot[0], time_plot[1]))
mne.viz.plot_topomap(np.mean(mean_patterns[:, ix_plot], axis=1),
pos=info, axes=ax[1],
show=False, vmin=-max_patterns, vmax=max_patterns)
ax[1].set(title="Inverse-transformed coefficients\nbetween delays %s and %s"
% (time_plot[0], time_plot[1]))
mne.viz.tight_layout()
plt.show()
|