File: plot_otp.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (84 lines) | stat: -rw-r--r-- 3,406 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
"""
===========================================================
Plot sensor denoising using oversampled temporal projection
===========================================================

This demonstrates denoising using the OTP algorithm [1]_ on data with
with sensor artifacts (flux jumps) and random noise.
"""
# Author: Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD (3-clause)

import os.path as op
import mne
import numpy as np

from mne import find_events, fit_dipole
from mne.datasets.brainstorm import bst_phantom_elekta
from mne.io import read_raw_fif

print(__doc__)

###############################################################################
# Plot the phantom data, lowpassed to get rid of high-frequency artifacts.
# We also crop to a single 10-second segment for speed.
# Notice that there are two large flux jumps on channel 1522 that could
# spread to other channels when performing subsequent spatial operations
# (e.g., Maxwell filtering, SSP, or ICA).

dipole_number = 1
data_path = bst_phantom_elekta.data_path()
raw = read_raw_fif(
    op.join(data_path, 'kojak_all_200nAm_pp_no_chpi_no_ms_raw.fif'))
raw.crop(40., 50.).load_data()
order = list(range(160, 170))
raw.copy().filter(0., 40.).plot(order=order, n_channels=10)

###############################################################################
# Now we can clean the data with OTP, lowpass, and plot. The flux jumps have
# been suppressed alongside the random sensor noise.

raw_clean = mne.preprocessing.oversampled_temporal_projection(raw)
raw_clean.filter(0., 40.)
raw_clean.plot(order=order, n_channels=10)


###############################################################################
# We can also look at the effect on single-trial phantom localization.
# See the :ref:`sphx_glr_auto_tutorials_plot_brainstorm_phantom_elekta.py`
# for more information. Here we use a version that does single-trial
# localization across the 17 trials are in our 10-second window:

def compute_bias(raw):
    events = find_events(raw, 'STI201', verbose=False)
    events = events[1:]  # first one has an artifact
    tmin, tmax = -0.2, 0.1
    epochs = mne.Epochs(raw, events, dipole_number, tmin, tmax,
                        baseline=(None, -0.01), preload=True, verbose=False)
    sphere = mne.make_sphere_model(r0=(0., 0., 0.), head_radius=None,
                                   verbose=False)
    cov = mne.compute_covariance(epochs, tmax=0, method='oas',
                                 rank=None, verbose=False)
    idx = epochs.time_as_index(0.036)[0]
    data = epochs.get_data()[:, :, idx].T
    evoked = mne.EvokedArray(data, epochs.info, tmin=0.)
    dip = fit_dipole(evoked, cov, sphere, n_jobs=1, verbose=False)[0]
    actual_pos = mne.dipole.get_phantom_dipoles()[0][dipole_number - 1]
    misses = 1000 * np.linalg.norm(dip.pos - actual_pos, axis=-1)
    return misses


bias = compute_bias(raw)
print('Raw bias: %0.1fmm (worst: %0.1fmm)'
      % (np.mean(bias), np.max(bias)))
bias_clean = compute_bias(raw_clean)
print('OTP bias: %0.1fmm (worst: %0.1fmm)'
      % (np.mean(bias_clean), np.max(bias_clean),))

###############################################################################
# References
# ----------
# .. [1] Larson E, Taulu S (2017). Reducing Sensor Noise in MEG and EEG
#        Recordings Using Oversampled Temporal Projection.
#        IEEE Transactions on Biomedical Engineering.