1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
|
"""
========================================================
Compute real-time evoked responses using moving averages
========================================================
This example demonstrates how to connect to an MNE Real-time server
using the RtClient and use it together with RtEpochs to compute
evoked responses using moving averages.
Note: The MNE Real-time server (mne_rt_server), which is part of mne-cpp,
has to be running on the same computer.
"""
# Authors: Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Mainak Jas <mainak@neuro.hut.fi>
#
# License: BSD (3-clause)
import matplotlib.pyplot as plt
import mne
from mne.datasets import sample
from mne.realtime import RtEpochs, MockRtClient
print(__doc__)
# Fiff file to simulate the realtime client
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
raw = mne.io.read_raw_fif(raw_fname, preload=True)
# select gradiometers
picks = mne.pick_types(raw.info, meg='grad', eeg=False, eog=True,
stim=True, exclude=raw.info['bads'])
# select the left-auditory condition
event_id, tmin, tmax = 1, -0.2, 0.5
# create the mock-client object
rt_client = MockRtClient(raw)
# create the real-time epochs object
rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks,
decim=1, reject=dict(grad=4000e-13, eog=150e-6))
# start the acquisition
rt_epochs.start()
# send raw buffers
rt_client.send_data(rt_epochs, picks, tmin=0, tmax=150, buffer_size=1000)
for ii, ev in enumerate(rt_epochs.iter_evoked()):
print("Just got epoch %d" % (ii + 1))
ev.pick_types(meg=True, eog=False) # leave out the eog channel
if ii == 0:
evoked = ev
else:
evoked = mne.combine_evoked([evoked, ev], weights='nave')
plt.clf() # clear canvas
evoked.plot(axes=plt.gca(), time_unit='s') # plot on current figure
plt.pause(0.05)
|