1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
|
"""Functions shared between different beamformer types."""
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Roman Goj <roman.goj@gmail.com>
# Britta Westner <britta.wstnr@gmail.com>
#
# License: BSD (3-clause)
from copy import deepcopy
import operator
import numpy as np
from scipy import linalg
from ..cov import Covariance
from ..io.constants import FIFF
from ..io.proj import make_projector, Projection
from ..io.pick import (pick_channels_forward, pick_info)
from ..minimum_norm.inverse import _get_vertno
from ..source_space import label_src_vertno_sel
from ..utils import logger, warn, verbose, check_fname, _reg_pinv
from ..channels.channels import _contains_ch_type
from ..time_frequency.csd import CrossSpectralDensity
from ..externals.h5io import read_hdf5, write_hdf5
from ..externals.six import string_types
def _check_rank(rank):
"""Check rank parameter and deal with deprecation."""
if isinstance(rank, string_types):
# XXX we can use rank='' to deprecate to get to None eventually:
# if rank == '':
# warn('The rank parameter default in 0.18 of "full" will change '
# 'to None in 0.19, set it explicitly to avoid this warning',
# DeprecationWarning)
# rank = 'full'
if rank != 'full':
raise ValueError('rank, if str, must be "full", got %s' % (rank,))
elif rank is not None and not isinstance(rank, dict):
try:
rank = int(operator.index(rank))
except TypeError:
raise TypeError('rank must be None, dict, "full", or int-like, '
'got %s (type %s)' % (rank, type(rank)))
return rank
def _setup_picks(info, forward, data_cov=None, noise_cov=None):
"""Return good channels common to forward model and covariance matrices."""
# get a list of all channel names:
fwd_ch_names = forward['info']['ch_names']
# handle channels from forward model and info:
ch_names = _compare_ch_names(info['ch_names'], fwd_ch_names, info['bads'])
# inform about excluding channels:
if (data_cov is not None and set(info['bads']) != set(data_cov['bads']) and
(len(set(ch_names).intersection(data_cov['bads'])) > 0)):
logger.info('info["bads"] and data_cov["bads"] do not match, '
'excluding bad channels from both.')
if (noise_cov is not None and
set(info['bads']) != set(noise_cov['bads']) and
(len(set(ch_names).intersection(noise_cov['bads'])) > 0)):
logger.info('info["bads"] and noise_cov["bads"] do not match, '
'excluding bad channels from both.')
# handle channels from data cov if data cov is not None
# Note: data cov is supposed to be None in tf_lcmv
if data_cov is not None:
ch_names = _compare_ch_names(ch_names, data_cov.ch_names,
data_cov['bads'])
# handle channels from noise cov if noise cov available:
if noise_cov is not None:
ch_names = _compare_ch_names(ch_names, noise_cov.ch_names,
noise_cov['bads'])
picks = [info['ch_names'].index(k) for k in ch_names if k in
info['ch_names']]
return picks
def _compare_ch_names(names1, names2, bads):
"""Return channel names of common and good channels."""
ch_names = [ch for ch in names1 if ch not in bads and ch in names2]
return ch_names
def _check_one_ch_type(info, picks, noise_cov, method):
"""Check number of sensor types and presence of noise covariance matrix."""
info_pick = pick_info(info, sel=picks)
ch_types =\
[_contains_ch_type(info_pick, tt) for tt in ('mag', 'grad', 'eeg')]
if method == 'lcmv' and sum(ch_types) > 1 and noise_cov is None:
raise ValueError('Source reconstruction with several sensor types '
'requires a noise covariance matrix to be '
'able to apply whitening.')
elif method == 'dics' and sum(ch_types) > 1:
warn('The use of several sensor types with the DICS beamformer is '
'not heavily tested yet.')
def _pick_channels_spatial_filter(ch_names, filters):
"""Return data channel indices to be used with spatial filter.
Unlike ``pick_channels``, this respects the order of ch_names.
"""
sel = []
# first check for channel discrepancies between filter and data:
for ch_name in filters['ch_names']:
if ch_name not in ch_names:
raise ValueError('The spatial filter was computed with channel %s '
'which is not present in the data. You should '
'compute a new spatial filter restricted to the '
'good data channels.' % ch_name)
# then compare list of channels and get selection based on data:
sel = [ii for ii, ch_name in enumerate(ch_names)
if ch_name in filters['ch_names']]
return sel
def _check_proj_match(info, filters):
"""Check whether SSP projections in data and spatial filter match."""
proj_data, _, _ = make_projector(info['projs'],
filters['ch_names'])
if not np.array_equal(proj_data, filters['proj']):
raise ValueError('The SSP projections present in the data '
'do not match the projections used when '
'calculating the spatial filter.')
def _check_src_type(filters):
"""Check whether src_type is in filters and set custom warning."""
if 'src_type' not in filters:
filters['src_type'] = None
warn_text = ('The spatial filter does not contain src_type and a robust '
'guess of src_type is not possible without src. Consider '
'recomputing the filter.')
return filters, warn_text
def _prepare_beamformer_input(info, forward, label, picks, pick_ori,
fwd_norm=None):
"""Input preparation common for all beamformer functions.
Check input values, prepare channel list and gain matrix. For documentation
of parameters, please refer to _apply_lcmv.
"""
is_free_ori = forward['source_ori'] == FIFF.FIFFV_MNE_FREE_ORI
if pick_ori in ['normal', 'max-power', 'vector']:
if not is_free_ori:
raise ValueError(
'Normal or max-power orientation can only be picked '
'when a forward operator with free orientation is used.')
elif pick_ori is not None:
raise ValueError('pick_ori must be one of "normal", "max-power", '
'"vector", or None, got %s' % (pick_ori,))
if pick_ori == 'normal' and not forward['surf_ori']:
# XXX eventually this could just call convert_forward_solution
raise ValueError('Normal orientation can only be picked when a '
'forward operator oriented in surface coordinates is '
'used.')
if pick_ori == 'normal' and not forward['src'][0]['type'] == 'surf':
raise ValueError('Normal orientation can only be picked when a '
'forward operator with a surface-based source space '
'is used.')
# Restrict forward solution to selected channels
info_ch_names = [ch['ch_name'] for ch in info['chs']]
ch_names = [info_ch_names[k] for k in picks]
fwd_ch_names = forward['sol']['row_names']
# Keep channels in forward present in info:
fwd_ch_names = [ch for ch in fwd_ch_names if ch in info_ch_names]
forward = pick_channels_forward(forward, fwd_ch_names)
picks_forward = [fwd_ch_names.index(ch) for ch in ch_names]
# Get gain matrix (forward operator)
nn = forward['source_nn']
if is_free_ori: # take Z coordinate
nn = nn[2::3]
nn = nn.copy()
if forward['surf_ori']:
nn[...] = [0, 0, 1] # align to local +Z coordinate
if label is not None:
vertno, src_sel = label_src_vertno_sel(label, forward['src'])
nn = nn[src_sel]
if is_free_ori:
src_sel = 3 * src_sel
src_sel = np.c_[src_sel, src_sel + 1, src_sel + 2]
src_sel = src_sel.ravel()
G = forward['sol']['data'][:, src_sel]
else:
vertno = _get_vertno(forward['src'])
G = forward['sol']['data']
# Apply SSPs
proj, ncomp, _ = make_projector(info['projs'], fwd_ch_names)
if info['projs']:
G = np.dot(proj, G)
# Pick after applying the projections. This makes a copy of G, so further
# operations can be safely done in-place.
G = G[picks_forward]
proj = proj[np.ix_(picks_forward, picks_forward)]
# Normalize the leadfield if requested
if fwd_norm == 'dipole': # each orientation separately
G /= np.linalg.norm(G, axis=0)
elif fwd_norm == 'vertex': # all three orientations per loc jointly
depth_prior = np.sum(G ** 2, axis=0)
if is_free_ori:
depth_prior = depth_prior.reshape(-1, 3).sum(axis=1)
# Spherical leadfield can be zero at the center
depth_prior[depth_prior == 0.] = np.min(
depth_prior[depth_prior != 0.])
if is_free_ori:
depth_prior = np.repeat(depth_prior, 3)
source_weighting = np.sqrt(1. / depth_prior)
G *= source_weighting[np.newaxis, :]
elif fwd_norm is not None:
raise ValueError('Got invalid value for "fwd_norm". Valid '
'values are: "dipole", "vertex" or None.')
return is_free_ori, ch_names, proj, vertno, G, nn
def _normalized_weights(Wk, Gk, Cm_inv_sq, reduce_rank, nn):
"""Compute the normalized weights in max-power orientation.
Uses Eq. 4.47 from [1]_.
Parameters
----------
Wk : ndarray, shape (3, n_channels)
The set of un-normalized filters at a single source point.
Gk : ndarray, shape (n_channels, 3)
The leadfield at a single source point.
Cm_inv_sq : nsarray, snape (n_channels, n_channels)
The squared inverse covariance matrix.
reduce_rank : bool
Whether to reduce the rank of the filter by one.
nn : ndarray, shape (3,)
The source normal.
Returns
-------
Wk : ndarray, shape (n_dipoles, n_channels)
The normalized beamformer filters at the source point in the direction
of max power.
References
----------
.. [1] Sekihara & Nagarajan. Adaptive spatial filters for electromagnetic
brain imaging (2008) Springer Science & Business Media
"""
norm_inv = np.dot(Gk.T, np.dot(Cm_inv_sq, Gk))
if reduce_rank:
# Use pseudo inverse computation setting smallest
# component to zero if the leadfield is not full rank
norm = _reg_pinv(norm_inv, rank=norm_inv.shape[0] - 1)[0]
else:
# Use straight inverse with full rank leadfield
try:
norm = linalg.inv(norm_inv)
except np.linalg.linalg.LinAlgError:
raise ValueError(
'Singular matrix detected when estimating spatial filters. '
'Consider reducing the rank of the forward operator by using '
'reduce_rank=True.'
)
assert Wk.shape[0] == Gk.shape[1] == 3
power = np.dot(norm, np.dot(Wk, Gk))
# Determine orientation of max power
eig_vals, eig_vecs = linalg.eig(power)
if not np.iscomplex(power).any() and np.iscomplex(eig_vecs).any():
raise ValueError('The eigenspectrum of the leadfield at this voxel is '
'complex. Consider reducing the rank of the '
'leadfield by using reduce_rank=True.')
idx_max = eig_vals.argmax()
max_power_ori = eig_vecs[:, idx_max]
# set the (otherwise arbitrary) sign to match the normal
sign = np.sign(np.dot(max_power_ori, nn))
sign = 1 if sign == 0 else sign
max_power_ori *= sign
# Compute the filter in the orientation of max power
Wk[:] = np.dot(max_power_ori, Wk)
Gk = np.dot(Gk, max_power_ori)
denom = np.dot(Gk.T, np.dot(Cm_inv_sq, Gk))
denom = np.sqrt(denom)
Wk /= denom
return Wk
def _compute_beamformer(G, Cm, reg, n_orient, weight_norm, pick_ori,
reduce_rank, rank, inversion, nn):
"""Compute a spatial beamformer filter (LCMV or DICS).
For more detailed information on the parameters, see the docstrings of
`make_lcmv` and `make_dics`.
Parameters
----------
G : ndarray, shape (n_dipoles, n_channels)
The leadfield.
Cm : ndarray, shape (n_channels, n_channels)
The data covariance matrix.
reg : float
Regularization parameter.
n_orient : int
Number of dipole orientations defined at each source point
weight_norm : None | 'unit-noise-gain' | 'nai'
The weight normalization scheme to use.
pick_ori : None | 'normal' | 'max-power'
The source orientation to compute the beamformer in.
reduce_rank : bool
Whether to reduce the rank by one during computation of the filter.
rank : int | None | 'full'
This controls the effective rank of the covariance matrix when
computing the inverse. The rank can be set explicitly by specifying an
integer value. If ``None``, the rank will be automatically estimated.
Since applying regularization will always make the covariance matrix
full rank, the rank is estimated before regularization in this case. If
'full', the rank will be estimated after regularization and hence
will mean using the full rank, unless ``reg=0`` is used.
inversion : 'matrix' | 'single'
The inversion scheme to compute the weights.
nn : ndarray, shape (n_dipoles, 3)
The source normals.
Returns
-------
W : ndarray, shape (n_dipoles, n_channels)
The beamformer filter weights.
"""
# Tikhonov regularization using reg parameter to control for
# trade-off between spatial resolution and noise sensitivity
# eq. 25 in Gross and Ioannides, 1999 Phys. Med. Biol. 44 2081
Cm_inv, loading_factor, rank = _reg_pinv(Cm, reg, rank)
if (inversion == 'matrix' and pick_ori == 'max-power' and
weight_norm in ['unit-noise-gain', 'nai']):
Cm_inv_sq = Cm_inv.dot(Cm_inv)
# Compute spatial filters
W = np.dot(G.T, Cm_inv)
n_sources = G.shape[1] // n_orient
assert nn.shape == (n_sources, 3)
for k in range(n_sources):
Wk = W[n_orient * k: n_orient * k + n_orient]
Gk = G[:, n_orient * k: n_orient * k + n_orient]
# Compute power at the source
Ck = np.dot(Wk, Gk)
if (inversion == 'matrix' and pick_ori == 'max-power' and
weight_norm in ['unit-noise-gain', 'nai']):
# In this case, take a shortcut to compute the filter
Wk[:] = _normalized_weights(Wk, Gk, Cm_inv_sq, reduce_rank, nn[k])
else:
# Normalize the spatial filters
if Wk.ndim == 2 and len(Wk) > 1:
# Free source orientation
if inversion == 'single':
# Invert for each dipole separately using plain division
Wk /= np.diag(Ck)[:, np.newaxis]
elif inversion == 'matrix':
# Invert for all dipoles simultaneously using matrix
# inversion.
Wk[:] = np.dot(linalg.pinv(Ck, 0.1), Wk)
else:
# Fixed source orientation
if not np.all(Ck == 0.):
Wk /= Ck
if pick_ori == 'max-power':
# Compute the power
if inversion == 'single' and weight_norm == 'unit-noise-gain':
# First make the filters unit gain, then apply them to the
# cov matrix to compute power.
Wk_norm = Wk / np.sqrt(np.sum(Wk ** 2, axis=1,
keepdims=True))
power = Wk_norm.dot(Cm).dot(Wk_norm.T)
elif weight_norm is None:
# Compute power by applying the spatial filters to
# the cov matrix.
power = Wk.dot(Cm).dot(Wk.T)
# Compute the direction of max power
u, s, _ = np.linalg.svd(power.real)
max_power_ori = u[:, 0]
# set the (otherwise arbitrary) sign to match the normal
sign = np.sign(np.dot(nn[k], max_power_ori))
sign = 1 if sign == 0 else sign # corner case
max_power_ori *= sign
# Re-compute the filter in the direction of max power
Wk[:] = max_power_ori.dot(Wk)
if pick_ori == 'normal':
W = W[2::3]
elif pick_ori == 'max-power':
W = W[0::3]
# Re-scale the filter weights according to the selected weight
# normalization scheme
if weight_norm in ['unit-noise-gain', 'nai']:
if pick_ori in [None, 'vector'] and n_orient > 1:
# Rescale each set of 3 filters
W = W.reshape(-1, 3, W.shape[1])
noise_norm = np.sqrt(np.sum(W ** 2, axis=(1, 2), keepdims=True))
else:
# Rescale each filter separately
noise_norm = np.sqrt(np.sum(W ** 2, axis=1, keepdims=True))
if weight_norm == 'nai':
# Estimate noise level based on covariance matrix, taking the
# first eigenvalue that falls outside the signal subspace or the
# loading factor used during regularization, whichever is largest.
if rank >= len(Cm):
# Covariance matrix is full rank, no noise subspace!
# Use the loading factor as noise ceiling.
if loading_factor == 0:
raise RuntimeError(
'Cannot compute noise subspace with a full-rank '
'covariance matrix and no regularization. Try '
'manually specifying the rank of the covariance '
'matrix or using regularization.')
noise = loading_factor
else:
noise, _ = linalg.eigh(Cm)
noise = noise[-rank]
noise = max(noise, loading_factor)
noise_norm *= np.sqrt(noise)
# Apply the normalization
if np.all(noise_norm == 0.):
noise_norm_inv = 0. # avoid division by 0
else:
noise_norm_inv = 1 / noise_norm
W *= noise_norm_inv
W = W.reshape(-1, W.shape[-1])
return W
class Beamformer(dict):
"""A computed beamformer.
Notes
-----
.. versionadded:: 0.17
"""
def copy(self):
"""Copy the beamformer.
Returns
-------
beamformer : instance of Beamformer
A deep copy of the beamformer.
"""
return deepcopy(self)
def __repr__(self): # noqa: D105
n_verts = sum(len(v) for v in self['vertices'])
n_channels = len(self['ch_names'])
if self['subject'] is None:
subject = 'unknown'
else:
subject = '"%s"' % (self['subject'],)
out = ('<Beamformer | %s, subject %s, %s vert, %s ch'
% (self['kind'], subject, n_verts, n_channels))
if self['pick_ori'] is not None:
out += ', %s ori' % (self['pick_ori'],)
if self['weight_norm'] is not None:
out += ', %s norm' % (self['weight_norm'],)
if self.get('inversion') is not None:
out += ', %s inversion' % (self['inversion'],)
if 'rank' in self:
out += ', rank %s' % (self['rank'],)
out += '>'
return out
@verbose
def save(self, fname, overwrite=False, verbose=None):
"""Save the beamformer filter.
Parameters
----------
fname : str
The filename to use to write the HDF5 data.
Should end in ``'-lcmv.h5'`` or ``'-dics.h5'``.
overwrite : bool
If True, overwrite the file (if it exists).
verbose : bool, str, int, or None
If not None, override default verbose level (see
:func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
for more).
"""
ending = '-%s.h5' % (self['kind'].lower(),)
check_fname(fname, self['kind'], (ending,))
csd_orig = None
try:
if 'csd' in self:
csd_orig = self['csd']
self['csd'] = self['csd'].__getstate__()
write_hdf5(fname, self, overwrite=overwrite, title='mnepython')
finally:
if csd_orig is not None:
self['csd'] = csd_orig
def read_beamformer(fname):
"""Read a beamformer filter.
Parameters
----------
fname : str
The filename of the HDF5 file.
Returns
-------
filter : instance of Beamformer
The beamformer filter.
"""
beamformer = read_hdf5(fname, title='mnepython')
if 'csd' in beamformer:
beamformer['csd'] = CrossSpectralDensity(**beamformer['csd'])
# h5io seems to cast `bool` to `int` on round-trip, probably a bug
# we should fix at some point (if possible -- could be HDF5 limitation)
for key in ('normalize_fwd', 'is_free_ori', 'is_ssp'):
if key in beamformer:
beamformer[key] = bool(beamformer[key])
for key in ('data_cov', 'noise_cov'):
if beamformer.get(key) is not None:
for pi, p in enumerate(beamformer[key]['projs']):
p = Projection(**p)
p['active'] = bool(p['active'])
beamformer[key]['projs'][pi] = p
beamformer[key] = Covariance(
*[beamformer[key].get(arg)
for arg in ('data', 'names', 'bads', 'projs', 'nfree', 'eig',
'eigvec', 'method', 'loglik')])
return Beamformer(beamformer)
|