1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
|
"""Compute Linearly constrained minimum variance (LCMV) beamformer."""
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Roman Goj <roman.goj@gmail.com>
# Britta Westner <britta.wstnr@gmail.com>
#
# License: BSD (3-clause)
import numpy as np
from scipy import linalg
from ..io.pick import (pick_types, pick_channels_cov, pick_info)
from ..forward import _subject_from_forward
from ..minimum_norm.inverse import combine_xyz, _check_reference
from ..cov import compute_whitener, compute_covariance
from ..source_estimate import _make_stc, SourceEstimate, _get_src_type
from ..utils import logger, verbose, warn, _validate_type, _reg_pinv
from .. import Epochs
from ..externals import six
from ._compute_beamformer import (
_setup_picks, _pick_channels_spatial_filter,
_check_proj_match, _prepare_beamformer_input, _check_one_ch_type,
_compute_beamformer, _check_src_type, Beamformer, _check_rank)
@verbose
def make_lcmv(info, forward, data_cov, reg=0.05, noise_cov=None, label=None,
pick_ori=None, rank='full', weight_norm='unit-noise-gain',
reduce_rank=False, verbose=None):
"""Compute LCMV spatial filter.
Parameters
----------
info : dict
The measurement info to specify the channels to include.
Bad channels in info['bads'] are not used.
forward : dict
Forward operator.
data_cov : Covariance
The data covariance.
reg : float
The regularization for the whitened data covariance.
noise_cov : Covariance
The noise covariance. If provided, whitening will be done. Providing a
noise covariance is mandatory if you mix sensor types, e.g.
gradiometers with magnetometers or EEG with MEG.
label : Label
Restricts the LCMV solution to a given label.
pick_ori : None | 'normal' | 'max-power' | 'vector'
For forward solutions with fixed orientation, None (default) must be
used and a scalar beamformer is computed. For free-orientation forward
solutions, a vector beamformer is computed and:
None
Pools the orientations by taking the norm.
'normal'
Keeps only the radial component.
'max-power'
Selects orientations that maximize output source power at
each location.
'vector'
Keeps the currents for each direction separate
rank : int | None | 'full'
This controls the effective rank of the covariance matrix when
computing the inverse. The rank can be set explicitly by specifying an
integer value. If ``None``, the rank will be automatically estimated.
Since applying regularization will always make the covariance matrix
full rank, the rank is estimated before regularization in this case. If
'full', the rank will be estimated after regularization and hence
will mean using the full rank, unless ``reg=0`` is used.
The default in ``'full'``.
weight_norm : 'unit-noise-gain' | 'nai' | None
If 'unit-noise-gain', the unit-noise gain minimum variance beamformer
will be computed (Borgiotti-Kaplan beamformer) [2]_,
if 'nai', the Neural Activity Index [1]_ will be computed,
if None, the unit-gain LCMV beamformer [2]_ will be computed.
reduce_rank : bool
If True, the rank of the leadfield will be reduced by 1 for each
spatial location. Setting reduce_rank to True is typically necessary
if you use a single sphere model for MEG.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
filters : instance of Beamformer
Dictionary containing filter weights from LCMV beamformer.
Contains the following keys:
'weights' : array
The filter weights of the beamformer.
'data_cov' : instance of Covariance
The data covariance matrix used to compute the beamformer.
'noise_cov' : instance of Covariance | None
The noise covariance matrix used to compute the beamformer.
'whitener' : None | array
Whitening matrix, provided if whitening was applied to the
covariance matrix and leadfield during computation of the
beamformer weights.
'weight_norm' : 'unit-noise-gain'| 'nai' | None
Type of weight normalization used to compute the filter
weights.
'pick_ori' : None | 'normal'
Orientation selection used in filter computation.
'ch_names' : list
Channels used to compute the beamformer.
'proj' : array
Projections used to compute the beamformer.
'is_ssp' : bool
If True, projections were applied prior to filter computation.
'vertices' : list
Vertices for which the filter weights were computed.
'is_free_ori' : bool
If True, the filter was computed with free source orientation.
'src_type' : str
Type of source space.
Notes
-----
The original reference is [1]_.
References
----------
.. [1] Van Veen et al. Localization of brain electrical activity via
linearly constrained minimum variance spatial filtering.
Biomedical Engineering (1997) vol. 44 (9) pp. 867--880
.. [2] Sekihara & Nagarajan. Adaptive spatial filters for electromagnetic
brain imaging (2008) Springer Science & Business Media
"""
picks = _setup_picks(info, forward, data_cov, noise_cov)
rank = _check_rank(rank)
is_free_ori, ch_names, proj, vertno, G, nn = \
_prepare_beamformer_input(info, forward, label, picks, pick_ori)
data_cov = pick_channels_cov(data_cov, include=ch_names)
Cm = data_cov['data']
if 'estimator' in data_cov:
del data_cov['estimator']
# check number of sensor types present in the data
_check_one_ch_type(info, picks, noise_cov, 'lcmv')
# apply SSPs
is_ssp = False
if info['projs']:
Cm = np.dot(proj, np.dot(Cm, proj.T))
is_ssp = True
if noise_cov is not None:
# Handle whitening + data covariance
whitener_rank = None if rank == 'full' else rank
whitener, _, rank = compute_whitener(
noise_cov, info, picks, rank=whitener_rank, return_rank=True)
# whiten the leadfield
G = np.dot(whitener, G)
# whiten data covariance
Cm = np.dot(whitener, np.dot(Cm, whitener.T))
noise_cov = noise_cov.copy()
if 'estimator' in noise_cov:
del noise_cov['estimator']
else:
whitener = None
rank = G.shape[0]
# leadfield rank and optional rank reduction
if reduce_rank:
if not pick_ori == 'max-power':
raise NotImplementedError('The computation of spatial filters '
'with rank reduction using reduce_rank '
'parameter is only implemented with '
'pick_ori=="max-power".')
_validate_type(reduce_rank, bool, "reduce_rank", "a boolean")
# compute spatial filter
n_orient = 3 if is_free_ori else 1
W = _compute_beamformer(G, Cm, reg, n_orient, weight_norm,
pick_ori, reduce_rank, rank,
inversion='matrix', nn=nn)
# get src type to store with filters for _make_stc
src_type = _get_src_type(forward['src'], vertno)
# get subject to store with filters
subject_from = _subject_from_forward(forward)
# Is the computed beamformer a scalar or vector beamformer?
is_free_ori = is_free_ori if pick_ori in [None, 'vector'] else False
filters = Beamformer(
kind='LCMV', weights=W, data_cov=data_cov, noise_cov=noise_cov,
whitener=whitener, weight_norm=weight_norm, pick_ori=pick_ori,
ch_names=ch_names, proj=proj, is_ssp=is_ssp, vertices=vertno,
is_free_ori=is_free_ori, nsource=forward['nsource'], src_type=src_type,
source_nn=forward['source_nn'].copy(), subject=subject_from, rank=rank)
return filters
def _apply_lcmv(data, filters, info, tmin, max_ori_out):
"""Apply LCMV spatial filter to data for source reconstruction."""
if max_ori_out != 'signed':
raise ValueError('max_ori_out must be "signed", got %s'
% (max_ori_out,))
if isinstance(data, np.ndarray) and data.ndim == 2:
data = [data]
return_single = True
else:
return_single = False
W = filters['weights']
for i, M in enumerate(data):
if len(M) != len(filters['ch_names']):
raise ValueError('data and picks must have the same length')
if not return_single:
logger.info("Processing epoch : %d" % (i + 1))
if filters['is_ssp']:
# check whether data and filter projs match
_check_proj_match(info, filters)
# apply projection
M = np.dot(filters['proj'], M)
if filters['whitener'] is not None:
M = np.dot(filters['whitener'], M)
# project to source space using beamformer weights
vector = False
if filters['is_free_ori']:
sol = np.dot(W, M)
if filters['pick_ori'] == 'vector':
vector = True
else:
logger.info('combining the current components...')
sol = combine_xyz(sol)
else:
# Linear inverse: do computation here or delayed
if (M.shape[0] < W.shape[0] and
filters['pick_ori'] != 'max-power'):
sol = (W, M)
else:
sol = np.dot(W, M)
if filters['pick_ori'] == 'max-power' and max_ori_out == 'abs':
sol = np.abs(sol)
tstep = 1.0 / info['sfreq']
# compatibility with 0.16, add src_type as None if not present:
filters, warn_text = _check_src_type(filters)
yield _make_stc(sol, vertices=filters['vertices'], tmin=tmin,
tstep=tstep, subject=filters['subject'],
vector=vector, source_nn=filters['source_nn'],
src_type=filters['src_type'], warn_text=warn_text)
logger.info('[done]')
@verbose
def apply_lcmv(evoked, filters, max_ori_out='signed', verbose=None):
"""Apply Linearly Constrained Minimum Variance (LCMV) beamformer weights.
Apply Linearly Constrained Minimum Variance (LCMV) beamformer weights
on evoked data.
Parameters
----------
evoked : Evoked
Evoked data to invert.
filters : instance of Beamformer
LCMV spatial filter (beamformer weights).
Filter weights returned from :func:`make_lcmv`.
max_ori_out: 'signed'
Specify in case of pick_ori='max-power'.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
stc : SourceEstimate | VolSourceEstimate | VectorSourceEstimate
Source time courses.
See Also
--------
make_lcmv, apply_lcmv_raw, apply_lcmv_epochs
"""
_check_reference(evoked)
info = evoked.info
data = evoked.data
tmin = evoked.times[0]
sel = _pick_channels_spatial_filter(evoked.ch_names, filters)
data = data[sel]
stc = _apply_lcmv(data=data, filters=filters, info=info,
tmin=tmin, max_ori_out=max_ori_out)
return six.advance_iterator(stc)
@verbose
def apply_lcmv_epochs(epochs, filters, max_ori_out='signed',
return_generator=False, verbose=None):
"""Apply Linearly Constrained Minimum Variance (LCMV) beamformer weights.
Apply Linearly Constrained Minimum Variance (LCMV) beamformer weights
on single trial data.
Parameters
----------
epochs : Epochs
Single trial epochs.
filters : instance of Beamformer
LCMV spatial filter (beamformer weights)
Filter weights returned from :func:`make_lcmv`.
max_ori_out: 'signed'
Specify in case of pick_ori='max-power'.
return_generator : bool
Return a generator object instead of a list. This allows iterating
over the stcs without having to keep them all in memory.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
stc: list | generator of (SourceEstimate | VolSourceEstimate)
The source estimates for all epochs.
See Also
--------
make_lcmv, apply_lcmv_raw, apply_lcmv
"""
_check_reference(epochs)
info = epochs.info
tmin = epochs.times[0]
sel = _pick_channels_spatial_filter(epochs.ch_names, filters)
data = epochs.get_data()[:, sel, :]
stcs = _apply_lcmv(data=data, filters=filters, info=info,
tmin=tmin, max_ori_out=max_ori_out)
if not return_generator:
stcs = [s for s in stcs]
return stcs
@verbose
def apply_lcmv_raw(raw, filters, start=None, stop=None, max_ori_out='signed',
verbose=None):
"""Apply Linearly Constrained Minimum Variance (LCMV) beamformer weights.
Apply Linearly Constrained Minimum Variance (LCMV) beamformer weights
on raw data.
NOTE : This implementation has not been heavily tested so please
report any issue or suggestions.
Parameters
----------
raw : mne.io.Raw
Raw data to invert.
filters : instance of Beamformer
LCMV spatial filter (beamformer weights).
Filter weights returned from :func:`make_lcmv`.
start : int
Index of first time sample (index not time is seconds).
stop : int
Index of first time sample not to include (index not time is seconds).
max_ori_out: 'signed'
Specify in case of pick_ori='max-power'.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
stc : SourceEstimate | VolSourceEstimate
Source time courses.
See Also
--------
make_lcmv, apply_lcmv_epochs, apply_lcmv
"""
_check_reference(raw)
info = raw.info
sel = _pick_channels_spatial_filter(raw.ch_names, filters)
data, times = raw[sel, start:stop]
tmin = times[0]
stc = _apply_lcmv(data=data, filters=filters, info=info,
tmin=tmin, max_ori_out=max_ori_out)
return six.advance_iterator(stc)
@verbose
def _lcmv_source_power(info, forward, noise_cov, data_cov, reg=0.05,
label=None, picks=None, pick_ori=None, rank=None,
weight_norm=None, verbose=None):
"""Linearly Constrained Minimum Variance (LCMV) beamformer."""
if weight_norm not in [None, 'unit-noise-gain']:
raise ValueError('Unrecognized weight normalization option in '
'weight_norm, available choices are None and '
'"unit-noise-gain", got "%s".' % weight_norm)
if picks is None:
picks = pick_types(info, meg=True, eeg=True, ref_meg=False,
exclude='bads')
is_free_ori, ch_names, proj, vertno, G, _ =\
_prepare_beamformer_input(
info, forward, label, picks, pick_ori)
# Handle whitening
info = pick_info(
info, [info['ch_names'].index(k) for k in ch_names
if k in info['ch_names']])
# XXX this could maybe use pca=True to avoid needing to use
# _reg_pinv(..., rank=rank) later
if noise_cov is not None:
whitener_rank = None if rank == 'full' else rank
whitener, _ = compute_whitener(
noise_cov, info, picks, rank=whitener_rank)
# whiten the leadfield
G = np.dot(whitener, G)
# Apply SSPs + whitener to data covariance
data_cov = pick_channels_cov(data_cov, include=ch_names)
Cm = data_cov['data']
if info['projs']:
Cm = np.dot(proj, np.dot(Cm, proj.T))
if noise_cov is not None:
Cm = np.dot(whitener, np.dot(Cm, whitener.T))
# Tikhonov regularization using reg parameter to control for
# trade-off between spatial resolution and noise sensitivity
# This modifies Cm inplace, regularizing it
Cm_inv, d, _ = _reg_pinv(Cm, reg, rank=rank)
# Compute spatial filters
W = np.dot(G.T, Cm_inv)
n_orient = 3 if is_free_ori else 1
n_sources = G.shape[1] // n_orient
source_power = np.zeros((n_sources, 1))
for k in range(n_sources):
Wk = W[n_orient * k: n_orient * k + n_orient]
Gk = G[:, n_orient * k: n_orient * k + n_orient]
Ck = np.dot(Wk, Gk)
if is_free_ori:
# Free source orientation
Wk[:] = np.dot(linalg.pinv(Ck, 0.1), Wk)
else:
# Fixed source orientation
Wk /= Ck
if weight_norm == 'unit-noise-gain':
# Noise normalization
noise_norm = np.dot(Wk, Wk.T)
noise_norm = noise_norm.trace()
# Calculating source power
sp_temp = np.dot(np.dot(Wk, Cm), Wk.T)
if weight_norm == 'unit-noise-gain':
sp_temp /= max(noise_norm, 1e-40) # Avoid division by 0
if pick_ori == 'normal':
source_power[k, 0] = sp_temp[2, 2]
else:
source_power[k, 0] = sp_temp.trace()
logger.info('[done]')
subject = _subject_from_forward(forward)
return SourceEstimate(source_power, vertices=vertno, tmin=1,
tstep=1, subject=subject)
@verbose
def tf_lcmv(epochs, forward, noise_covs, tmin, tmax, tstep, win_lengths,
freq_bins, subtract_evoked=False, reg=0.05, label=None,
pick_ori=None, n_jobs=1, rank='full',
weight_norm='unit-noise-gain', raw=None, verbose=None):
"""5D time-frequency beamforming based on LCMV.
Calculate source power in time-frequency windows using a spatial filter
based on the Linearly Constrained Minimum Variance (LCMV) beamforming
approach [1]_. Band-pass filtered epochs are divided into time windows
from which covariance is computed and used to create a beamformer
spatial filter.
.. note:: This implementation has not been heavily tested so please
report any issues or suggestions.
Parameters
----------
epochs : Epochs
Single trial epochs. It is recommended to pass epochs that have
been constructed with ``preload=False`` (i.e., not preloaded or
read from disk) so that the parameter ``raw=None`` can be used
below, as this ensures the correct :class:`mne.io.Raw` instance is
used for band-pass filtering.
forward : dict
Forward operator.
noise_covs : list of instances of Covariance | None
Noise covariance for each frequency bin. If provided, whitening will be
done. Providing noise covariances is mandatory if you mix sensor types,
e.g., gradiometers with magnetometers or EEG with MEG.
tmin : float
Minimum time instant to consider.
tmax : float
Maximum time instant to consider.
tstep : float
Spacing between consecutive time windows, should be smaller than or
equal to the shortest time window length.
win_lengths : list of float
Time window lengths in seconds. One time window length should be
provided for each frequency bin.
freq_bins : list of tuples of float
Start and end point of frequency bins of interest.
subtract_evoked : bool
If True, subtract the averaged evoked response prior to computing the
tf source grid.
reg : float
The regularization for the whitened data covariance.
label : Label | None
Restricts the solution to a given label.
pick_ori : None | 'normal'
If 'normal', rather than pooling the orientations by taking the norm,
only the radial component is kept.
If None, the solution depends on the forward model: if the orientation
is fixed, a scalar beamformer is computed. If the forward model has
free orientation, a vector beamformer is computed, combining the output
for all source orientations.
n_jobs : int | str
Number of jobs to run in parallel.
Can be 'cuda' if ``cupy`` is installed properly.
rank : int | None | 'full'
This controls the effective rank of the covariance matrix when
computing the inverse. The rank can be set explicitly by specifying an
integer value. If ``None``, the rank will be automatically estimated.
Since applying regularization will always make the covariance matrix
full rank, the rank is estimated before regularization in this case. If
'full', the rank will be estimated after regularization and hence
will mean using the full rank, unless ``reg=0`` is used.
The default is ``'full'``.
weight_norm : 'unit-noise-gain' | None
If 'unit-noise-gain', the unit-noise gain minimum variance beamformer
will be computed (Borgiotti-Kaplan beamformer) [2]_,
if None, the unit-gain LCMV beamformer [2]_ will be computed.
raw : instance of Raw | None
The raw instance used to construct the epochs.
Must be provided unless epochs are constructed with
``preload=False``.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
stcs : list of SourceEstimate
Source power at each time window. One SourceEstimate object is returned
for each frequency bin.
References
----------
.. [1] Dalal et al. Five-dimensional neuroimaging: Localization of the
time-frequency dynamics of cortical activity.
NeuroImage (2008) vol. 40 (4) pp. 1686-1700
.. [2] Sekihara & Nagarajan. Adaptive spatial filters for electromagnetic
brain imaging (2008) Springer Science & Business Media
"""
_check_reference(epochs)
rank = _check_rank(rank)
if pick_ori not in [None, 'normal']:
raise ValueError('pick_ori must be one of "normal" and None, '
'got %s' % (pick_ori,))
if noise_covs is not None and len(noise_covs) != len(freq_bins):
raise ValueError('One noise covariance object expected per frequency '
'bin')
if len(win_lengths) != len(freq_bins):
raise ValueError('One time window length expected per frequency bin')
if any(win_length < tstep for win_length in win_lengths):
raise ValueError('Time step should not be larger than any of the '
'window lengths')
# Extract raw object from the epochs object
raw = epochs._raw if raw is None else raw
if raw is None:
raise ValueError('The provided epochs object does not contain the '
'underlying raw object. Please use preload=False '
'when constructing the epochs object or pass the '
'underlying raw instance to this function')
if noise_covs is None:
picks = _setup_picks(epochs.info, forward, data_cov=None)
else:
picks = _setup_picks(epochs.info, forward, data_cov=None,
noise_cov=noise_covs[0])
ch_names = [epochs.ch_names[k] for k in picks]
# check number of sensor types present in the data
_check_one_ch_type(epochs.info, picks, noise_covs, 'lcmv')
# Use picks from epochs for picking channels in the raw object
raw_picks = [raw.ch_names.index(c) for c in ch_names]
# Make sure epochs.events contains only good events:
epochs.drop_bad()
# Multiplying by 1e3 to avoid numerical issues, e.g. 0.3 // 0.05 == 5
n_time_steps = int(((tmax - tmin) * 1e3) // (tstep * 1e3))
# create a list to iterate over if no noise covariances are given
if noise_covs is None:
noise_covs = [None] * len(win_lengths)
sol_final = []
for (l_freq, h_freq), win_length, noise_cov in \
zip(freq_bins, win_lengths, noise_covs):
n_overlap = int((win_length * 1e3) // (tstep * 1e3))
raw_band = raw.copy()
raw_band.filter(l_freq, h_freq, picks=raw_picks, method='iir',
n_jobs=n_jobs, iir_params=dict(output='ba'))
raw_band.info['highpass'] = l_freq
raw_band.info['lowpass'] = h_freq
epochs_band = Epochs(raw_band, epochs.events, epochs.event_id,
tmin=epochs.tmin, tmax=epochs.tmax, baseline=None,
picks=raw_picks, proj=epochs.proj, preload=True)
del raw_band
if subtract_evoked:
epochs_band.subtract_evoked()
sol_single = []
sol_overlap = []
for i_time in range(n_time_steps):
win_tmin = tmin + i_time * tstep
win_tmax = win_tmin + win_length
# If in the last step the last time point was not covered in
# previous steps and will not be covered now, a solution needs to
# be calculated for an additional time window
if i_time == n_time_steps - 1 and win_tmax - tstep < tmax and\
win_tmax >= tmax + (epochs.times[-1] - epochs.times[-2]):
warn('Adding a time window to cover last time points')
win_tmin = tmax - win_length
win_tmax = tmax
if win_tmax < tmax + (epochs.times[-1] - epochs.times[-2]):
logger.info('Computing time-frequency LCMV beamformer for '
'time window %d to %d ms, in frequency range '
'%d to %d Hz' % (win_tmin * 1e3, win_tmax * 1e3,
l_freq, h_freq))
# Counteracts unsafe floating point arithmetic ensuring all
# relevant samples will be taken into account when selecting
# data in time windows
win_tmin = win_tmin - 1e-10
win_tmax = win_tmax + 1e-10
# Calculating data covariance from filtered epochs in current
# time window
data_cov = compute_covariance(epochs_band, tmin=win_tmin,
tmax=win_tmax)
stc = _lcmv_source_power(epochs_band.info, forward, noise_cov,
data_cov, reg=reg, label=label,
pick_ori=pick_ori, rank=rank,
weight_norm=weight_norm,
verbose=verbose)
sol_single.append(stc.data[:, 0])
# Average over all time windows that contain the current time
# point, which is the current time window along with
# n_overlap - 1 previous ones
if i_time - n_overlap < 0:
curr_sol = np.mean(sol_single[0:i_time + 1], axis=0)
else:
curr_sol = np.mean(sol_single[i_time - n_overlap + 1:
i_time + 1], axis=0)
# The final result for the current time point in the current
# frequency bin
sol_overlap.append(curr_sol)
# Gathering solutions for all time points for current frequency bin
sol_final.append(sol_overlap)
sol_final = np.array(sol_final)
# Creating stc objects containing all time points for each frequency bin
stcs = []
for i_freq, _ in enumerate(freq_bins):
stc = SourceEstimate(sol_final[i_freq, :, :].T, vertices=stc.vertices,
tmin=tmin, tstep=tstep, subject=stc.subject)
stcs.append(stc)
return stcs
|