File: _rap_music.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (269 lines) | stat: -rw-r--r-- 9,008 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
"""Compute a Recursively Applied and Projected MUltiple Signal Classification (RAP-MUSIC)."""  # noqa

# Authors: Yousra Bekhti <yousra.bekhti@gmail.com>
#          Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#
# License: BSD (3-clause)

import numpy as np
from scipy import linalg

from ..io.pick import pick_channels_evoked
from ..cov import compute_whitener
from ..utils import logger, verbose
from ..dipole import Dipole
from ._compute_beamformer import _prepare_beamformer_input, _setup_picks


def _apply_rap_music(data, info, times, forward, noise_cov, n_dipoles=2,
                     picks=None):
    """RAP-MUSIC for evoked data.

    Parameters
    ----------
    data : array, shape (n_channels, n_times)
        Evoked data.
    info : dict
        Measurement info.
    times : array
        Times.
    forward : instance of Forward
        Forward operator.
    noise_cov : instance of Covariance
        The noise covariance.
    n_dipoles : int
        The number of dipoles to estimate. The default value is 2.
    picks : array-like of int | None
        Indices (in info) of data channels. If None, MEG and EEG data channels
        (without bad channels) will be used.

    Returns
    -------
    dipoles : list of instances of Dipole
        The dipole fits.
    explained_data : array | None
        Data explained by the dipoles using a least square fitting with the
        selected active dipoles and their estimated orientation.
        Computed only if return_explained_data is True.
    """
    is_free_ori, ch_names, proj, vertno, G, _ = _prepare_beamformer_input(
        info, forward, label=None, picks=picks, pick_ori=None)

    gain = G.copy()

    # Handle whitening + data covariance
    whitener, _ = compute_whitener(noise_cov, info, picks)
    if info['projs']:
        whitener = np.dot(whitener, proj)

    # whiten the leadfield and the data
    G = np.dot(whitener, G)
    data = np.dot(whitener, data)

    eig_values, eig_vectors = linalg.eigh(np.dot(data, data.T))
    phi_sig = eig_vectors[:, -n_dipoles:]

    n_orient = 3 if is_free_ori else 1
    n_channels = G.shape[0]
    A = np.empty((n_channels, n_dipoles))
    gain_dip = np.empty((n_channels, n_dipoles))
    oris = np.empty((n_dipoles, 3))
    poss = np.empty((n_dipoles, 3))

    G_proj = G.copy()
    phi_sig_proj = phi_sig.copy()

    for k in range(n_dipoles):
        subcorr_max = -1.
        for i_source in range(G.shape[1] // n_orient):
            idx_k = slice(n_orient * i_source, n_orient * (i_source + 1))
            Gk = G_proj[:, idx_k]
            if n_orient == 3:
                Gk = np.dot(Gk, forward['source_nn'][idx_k])

            subcorr, ori = _compute_subcorr(Gk, phi_sig_proj)
            if subcorr > subcorr_max:
                subcorr_max = subcorr
                source_idx = i_source
                source_ori = ori
                if n_orient == 3 and source_ori[-1] < 0:
                    # make sure ori is relative to surface ori
                    source_ori *= -1  # XXX

                source_pos = forward['source_rr'][i_source]
                if n_orient == 1:
                    source_ori = forward['source_nn'][i_source]

        idx_k = slice(n_orient * source_idx, n_orient * (source_idx + 1))
        Ak = G[:, idx_k]
        if n_orient == 3:
            Ak = np.dot(Ak, np.dot(forward['source_nn'][idx_k], source_ori))

        A[:, k] = Ak.ravel()

        gain_k = gain[:, idx_k]
        if n_orient == 3:
            gain_k = np.dot(gain_k,
                            np.dot(forward['source_nn'][idx_k],
                                   source_ori))
        gain_dip[:, k] = gain_k.ravel()

        oris[k] = source_ori
        poss[k] = source_pos

        logger.info("source %s found: p = %s" % (k + 1, source_idx))
        if n_orient == 3:
            logger.info("ori = %s %s %s" % tuple(oris[k]))

        projection = _compute_proj(A[:, :k + 1])
        G_proj = np.dot(projection, G)
        phi_sig_proj = np.dot(projection, phi_sig)

    sol = linalg.lstsq(A, data)[0]

    explained_data = np.dot(gain_dip, sol)
    residual = data - np.dot(whitener, explained_data)
    gof = 1. - np.sum(residual ** 2, axis=0) / np.sum(data ** 2, axis=0)
    return _make_dipoles(times, poss,
                         oris, sol, gof), explained_data


def _make_dipoles(times, poss, oris, sol, gof):
    """Instantiate a list of Dipoles.

    Parameters
    ----------
    times : array, shape (n_times,)
        The time instants.
    poss : array, shape (n_dipoles, 3)
        The dipoles' positions.
    oris : array, shape (n_dipoles, 3)
        The dipoles' orientations.
    sol : array, shape (n_times,)
        The dipoles' amplitudes over time.
    gof : array, shape (n_times,)
        The goodness of fit of the dipoles.
        Shared between all dipoles.

    Returns
    -------
    dipoles : list
        The list of Dipole instances.
    """
    oris = np.array(oris)

    dipoles = []
    for i_dip in range(poss.shape[0]):
        i_pos = poss[i_dip][np.newaxis, :].repeat(len(times), axis=0)
        i_ori = oris[i_dip][np.newaxis, :].repeat(len(times), axis=0)
        dipoles.append(Dipole(times, i_pos, sol[i_dip], i_ori, gof))

    return dipoles


def _compute_subcorr(G, phi_sig):
    """Compute the subspace correlation."""
    Ug, Sg, Vg = linalg.svd(G, full_matrices=False)
    # Now we look at the actual rank of the forward fields
    # in G and handle the fact that it might be rank defficient
    # eg. when using MEG and a sphere model for which the
    # radial component will be truly 0.
    rank = np.sum(Sg > (Sg[0] * 1e-6))
    if rank == 0:
        return 0, np.zeros(len(G))
    rank = max(rank, 2)  # rank cannot be 1
    Ug, Sg, Vg = Ug[:, :rank], Sg[:rank], Vg[:rank]
    tmp = np.dot(Ug.T.conjugate(), phi_sig)
    Uc, Sc, _ = linalg.svd(tmp, full_matrices=False)
    X = np.dot(Vg.T / Sg[None, :], Uc[:, 0])  # subcorr
    return Sc[0], X / linalg.norm(X)


def _compute_proj(A):
    """Compute the orthogonal projection operation for a manifold vector A."""
    U, _, _ = linalg.svd(A, full_matrices=False)
    return np.identity(A.shape[0]) - np.dot(U, U.T.conjugate())


@verbose
def rap_music(evoked, forward, noise_cov, n_dipoles=5, return_residual=False,
              verbose=None):
    """RAP-MUSIC source localization method.

    Compute Recursively Applied and Projected MUltiple SIgnal Classification
    (RAP-MUSIC) on evoked data.

    .. note:: The goodness of fit (GOF) of all the returned dipoles is the
              same and corresponds to the GOF of the full set of dipoles.

    Parameters
    ----------
    evoked : instance of Evoked
        Evoked data to localize.
    forward : instance of Forward
        Forward operator.
    noise_cov : instance of Covariance
        The noise covariance.
    n_dipoles : int
        The number of dipoles to look for. The default value is 5.
    return_residual : bool
        If True, the residual is returned as an Evoked instance.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    dipoles : list of instance of Dipole
        The dipole fits.
    residual : instance of Evoked
        The residual a.k.a. data not explained by the dipoles.
        Only returned if return_residual is True.

    See Also
    --------
    mne.fit_dipole

    Notes
    -----
    The references are:

        J.C. Mosher and R.M. Leahy. 1999. Source localization using recursively
        applied and projected (RAP) MUSIC. Signal Processing, IEEE Trans. 47, 2
        (February 1999), 332-340.
        DOI=10.1109/78.740118 https://doi.org/10.1109/78.740118

        Mosher, J.C.; Leahy, R.M., EEG and MEG source localization using
        recursively applied (RAP) MUSIC, Signals, Systems and Computers, 1996.
        pp.1201,1207 vol.2, 3-6 Nov. 1996
        doi: 10.1109/ACSSC.1996.599135

    .. versionadded:: 0.9.0
    """
    info = evoked.info
    data = evoked.data
    times = evoked.times

    picks = _setup_picks(info, forward, data_cov=None, noise_cov=noise_cov)

    data = data[picks]

    dipoles, explained_data = _apply_rap_music(data, info, times, forward,
                                               noise_cov, n_dipoles,
                                               picks)

    if return_residual:
        residual = evoked.copy()
        selection = [info['ch_names'][p] for p in picks]

        residual = pick_channels_evoked(residual,
                                        include=selection)
        residual.data -= explained_data
        active_projs = [p for p in residual.info['projs'] if p['active']]
        for p in active_projs:
            p['active'] = False
        residual.add_proj(active_projs, remove_existing=True)
        residual.apply_proj()
        return dipoles, residual
    else:
        return dipoles