1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
# Eric Larson <larson.eric.d@gmail.com>
# Lorenzo De Santis <lorenzo.de-santis@u-psud.fr>
#
# License: BSD (3-clause)
from functools import partial
import glob
import os
import os.path as op
import shutil
from copy import deepcopy
import numpy as np
from scipy import linalg
from .io.constants import FIFF, FWD
from .io.write import (start_file, start_block, write_float, write_int,
write_float_matrix, write_int_matrix, end_block,
end_file)
from .io.tag import find_tag
from .io.tree import dir_tree_find
from .io.open import fiff_open
from .surface import (read_surface, write_surface, complete_surface_info,
_compute_nearest, _get_ico_surface, read_tri,
_fast_cross_nd_sum, _get_solids)
from .transforms import _ensure_trans, apply_trans
from .utils import (verbose, logger, run_subprocess, get_subjects_dir, warn,
_pl, _validate_type)
from .fixes import einsum
from .externals.six import string_types
# ############################################################################
# Compute BEM solution
# The following approach is based on:
#
# de Munck JC: "A linear discretization of the volume conductor boundary
# integral equation using analytically integrated elements",
# IEEE Trans Biomed Eng. 1992 39(9) : 986 - 990
#
class ConductorModel(dict):
"""BEM or sphere model."""
def __repr__(self): # noqa: D105
if self['is_sphere']:
center = ', '.join('%0.1f' % (x * 1000.) for x in self['r0'])
rad = self.radius
if rad is None: # no radius / MEG only
extra = 'Sphere (no layers): r0=[%s] mm' % center
else:
extra = ('Sphere (%s layer%s): r0=[%s] R=%1.f mm'
% (len(self['layers']) - 1, _pl(self['layers']),
center, rad * 1000.))
else:
extra = ('BEM (%s layer%s)' % (len(self['surfs']),
_pl(self['surfs'])))
return '<ConductorModel | %s>' % extra
def copy(self):
"""Return copy of ConductorModel instance."""
return deepcopy(self)
@property
def radius(self):
"""Sphere radius if an EEG sphere model."""
if not self['is_sphere']:
raise RuntimeError('radius undefined for BEM')
return None if len(self['layers']) == 0 else self['layers'][-1]['rad']
def _calc_beta(rk, rk_norm, rk1, rk1_norm):
"""Compute coefficients for calculating the magic vector omega."""
rkk1 = rk1[0] - rk[0]
size = np.linalg.norm(rkk1)
rkk1 /= size
num = rk_norm + np.dot(rk, rkk1)
den = rk1_norm + np.dot(rk1, rkk1)
res = np.log(num / den) / size
return res
def _lin_pot_coeff(fros, tri_rr, tri_nn, tri_area):
"""Compute the linear potential matrix element computations."""
omega = np.zeros((len(fros), 3))
# we replicate a little bit of the _get_solids code here for speed
# (we need some of the intermediate values later)
v1 = tri_rr[np.newaxis, 0, :] - fros
v2 = tri_rr[np.newaxis, 1, :] - fros
v3 = tri_rr[np.newaxis, 2, :] - fros
triples = _fast_cross_nd_sum(v1, v2, v3)
l1 = np.linalg.norm(v1, axis=1)
l2 = np.linalg.norm(v2, axis=1)
l3 = np.linalg.norm(v3, axis=1)
ss = l1 * l2 * l3
ss += einsum('ij,ij,i->i', v1, v2, l3)
ss += einsum('ij,ij,i->i', v1, v3, l2)
ss += einsum('ij,ij,i->i', v2, v3, l1)
solids = np.arctan2(triples, ss)
# We *could* subselect the good points from v1, v2, v3, triples, solids,
# l1, l2, and l3, but there are *very* few bad points. So instead we do
# some unnecessary calculations, and then omit them from the final
# solution. These three lines ensure we don't get invalid values in
# _calc_beta.
bad_mask = np.abs(solids) < np.pi / 1e6
l1[bad_mask] = 1.
l2[bad_mask] = 1.
l3[bad_mask] = 1.
# Calculate the magic vector vec_omega
beta = [_calc_beta(v1, l1, v2, l2)[:, np.newaxis],
_calc_beta(v2, l2, v3, l3)[:, np.newaxis],
_calc_beta(v3, l3, v1, l1)[:, np.newaxis]]
vec_omega = (beta[2] - beta[0]) * v1
vec_omega += (beta[0] - beta[1]) * v2
vec_omega += (beta[1] - beta[2]) * v3
area2 = 2.0 * tri_area
n2 = 1.0 / (area2 * area2)
# leave omega = 0 otherwise
# Put it all together...
yys = [v1, v2, v3]
idx = [0, 1, 2, 0, 2]
for k in range(3):
diff = yys[idx[k - 1]] - yys[idx[k + 1]]
zdots = _fast_cross_nd_sum(yys[idx[k + 1]], yys[idx[k - 1]], tri_nn)
omega[:, k] = -n2 * (area2 * zdots * 2. * solids -
triples * (diff * vec_omega).sum(axis=-1))
# omit the bad points from the solution
omega[bad_mask] = 0.
return omega
def _correct_auto_elements(surf, mat):
"""Improve auto-element approximation."""
pi2 = 2.0 * np.pi
tris_flat = surf['tris'].ravel()
misses = pi2 - mat.sum(axis=1)
for j, miss in enumerate(misses):
# How much is missing?
n_memb = len(surf['neighbor_tri'][j])
# The node itself receives one half
mat[j, j] = miss / 2.0
# The rest is divided evenly among the member nodes...
miss /= (4.0 * n_memb)
members = np.where(j == tris_flat)[0]
mods = members % 3
offsets = np.array([[1, 2], [-1, 1], [-1, -2]])
tri_1 = members + offsets[mods, 0]
tri_2 = members + offsets[mods, 1]
for t1, t2 in zip(tri_1, tri_2):
mat[j, tris_flat[t1]] += miss
mat[j, tris_flat[t2]] += miss
return
def _fwd_bem_lin_pot_coeff(surfs):
"""Calculate the coefficients for linear collocation approach."""
# taken from fwd_bem_linear_collocation.c
nps = [surf['np'] for surf in surfs]
np_tot = sum(nps)
coeff = np.zeros((np_tot, np_tot))
offsets = np.cumsum(np.concatenate(([0], nps)))
for si_1, surf1 in enumerate(surfs):
rr_ord = np.arange(nps[si_1])
for si_2, surf2 in enumerate(surfs):
logger.info(" %s (%d) -> %s (%d) ..." %
(_bem_explain_surface(surf1['id']), nps[si_1],
_bem_explain_surface(surf2['id']), nps[si_2]))
tri_rr = surf2['rr'][surf2['tris']]
tri_nn = surf2['tri_nn']
tri_area = surf2['tri_area']
submat = coeff[offsets[si_1]:offsets[si_1 + 1],
offsets[si_2]:offsets[si_2 + 1]] # view
for k in range(surf2['ntri']):
tri = surf2['tris'][k]
if si_1 == si_2:
skip_idx = ((rr_ord == tri[0]) |
(rr_ord == tri[1]) |
(rr_ord == tri[2]))
else:
skip_idx = list()
# No contribution from a triangle that
# this vertex belongs to
# if sidx1 == sidx2 and (tri == j).any():
# continue
# Otherwise do the hard job
coeffs = _lin_pot_coeff(surf1['rr'], tri_rr[k], tri_nn[k],
tri_area[k])
coeffs[skip_idx] = 0.
submat[:, tri] -= coeffs
if si_1 == si_2:
_correct_auto_elements(surf1, submat)
return coeff
def _fwd_bem_multi_solution(solids, gamma, nps):
"""Do multi surface solution.
* Invert I - solids/(2*M_PI)
* Take deflation into account
* The matrix is destroyed after inversion
* This is the general multilayer case
"""
pi2 = 1.0 / (2 * np.pi)
n_tot = np.sum(nps)
assert solids.shape == (n_tot, n_tot)
nsurf = len(nps)
defl = 1.0 / n_tot
# Modify the matrix
offsets = np.cumsum(np.concatenate(([0], nps)))
for si_1 in range(nsurf):
for si_2 in range(nsurf):
mult = pi2 if gamma is None else pi2 * gamma[si_1, si_2]
slice_j = slice(offsets[si_1], offsets[si_1 + 1])
slice_k = slice(offsets[si_2], offsets[si_2 + 1])
solids[slice_j, slice_k] = defl - solids[slice_j, slice_k] * mult
solids += np.eye(n_tot)
return linalg.inv(solids, overwrite_a=True)
def _fwd_bem_homog_solution(solids, nps):
"""Make a homogeneous solution."""
return _fwd_bem_multi_solution(solids, None, nps)
def _fwd_bem_ip_modify_solution(solution, ip_solution, ip_mult, n_tri):
"""Modify the solution according to the IP approach."""
n_last = n_tri[-1]
mult = (1.0 + ip_mult) / ip_mult
logger.info(' Combining...')
offsets = np.cumsum(np.concatenate(([0], n_tri)))
for si in range(len(n_tri)):
# Pick the correct submatrix (right column) and multiply
sub = solution[offsets[si]:offsets[si + 1], np.sum(n_tri[:-1]):]
# Multiply
sub -= 2 * np.dot(sub, ip_solution)
# The lower right corner is a special case
sub[-n_last:, -n_last:] += mult * ip_solution
# Final scaling
logger.info(' Scaling...')
solution *= ip_mult
return
def _fwd_bem_linear_collocation_solution(m):
"""Compute the linear collocation potential solution."""
# first, add surface geometries
for surf in m['surfs']:
complete_surface_info(surf, copy=False, verbose=False)
logger.info('Computing the linear collocation solution...')
logger.info(' Matrix coefficients...')
coeff = _fwd_bem_lin_pot_coeff(m['surfs'])
m['nsol'] = len(coeff)
logger.info(" Inverting the coefficient matrix...")
nps = [surf['np'] for surf in m['surfs']]
m['solution'] = _fwd_bem_multi_solution(coeff, m['gamma'], nps)
if len(m['surfs']) == 3:
ip_mult = m['sigma'][1] / m['sigma'][2]
if ip_mult <= FWD.BEM_IP_APPROACH_LIMIT:
logger.info('IP approach required...')
logger.info(' Matrix coefficients (homog)...')
coeff = _fwd_bem_lin_pot_coeff([m['surfs'][-1]])
logger.info(' Inverting the coefficient matrix (homog)...')
ip_solution = _fwd_bem_homog_solution(coeff,
[m['surfs'][-1]['np']])
logger.info(' Modify the original solution to incorporate '
'IP approach...')
_fwd_bem_ip_modify_solution(m['solution'], ip_solution, ip_mult,
nps)
m['bem_method'] = FWD.BEM_LINEAR_COLL
logger.info("Solution ready.")
@verbose
def make_bem_solution(surfs, verbose=None):
"""Create a BEM solution using the linear collocation approach.
Parameters
----------
surfs : list of dict
The BEM surfaces to use (`from make_bem_model`)
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
bem : instance of ConductorModel
The BEM solution.
Notes
-----
.. versionadded:: 0.10.0
See Also
--------
make_bem_model
read_bem_surfaces
write_bem_surfaces
read_bem_solution
write_bem_solution
"""
logger.info('Approximation method : Linear collocation\n')
if isinstance(surfs, string_types):
# Load the surfaces
logger.info('Loading surfaces...')
surfs = read_bem_surfaces(surfs)
bem = ConductorModel(is_sphere=False, surfs=surfs)
_add_gamma_multipliers(bem)
if len(bem['surfs']) == 3:
logger.info('Three-layer model surfaces loaded.')
elif len(bem['surfs']) == 1:
logger.info('Homogeneous model surface loaded.')
else:
raise RuntimeError('Only 1- or 3-layer BEM computations supported')
_check_bem_size(bem['surfs'])
_fwd_bem_linear_collocation_solution(bem)
logger.info('BEM geometry computations complete.')
return bem
# ############################################################################
# Make BEM model
def _ico_downsample(surf, dest_grade):
"""Downsample the surface if isomorphic to a subdivided icosahedron."""
n_tri = len(surf['tris'])
found = -1
bad_msg = ("A surface with %d triangles cannot be isomorphic with a "
"subdivided icosahedron." % n_tri)
if n_tri % 20 != 0:
raise RuntimeError(bad_msg)
n_tri = n_tri // 20
found = int(round(np.log(n_tri) / np.log(4)))
if n_tri != 4 ** found:
raise RuntimeError(bad_msg)
del n_tri
if dest_grade > found:
raise RuntimeError('For this surface, decimation grade should be %d '
'or less, not %s.' % (found, dest_grade))
source = _get_ico_surface(found)
dest = _get_ico_surface(dest_grade, patch_stats=True)
del dest['tri_cent']
del dest['tri_nn']
del dest['neighbor_tri']
del dest['tri_area']
if not np.array_equal(source['tris'], surf['tris']):
raise RuntimeError('The source surface has a matching number of '
'triangles but ordering is wrong')
logger.info('Going from %dth to %dth subdivision of an icosahedron '
'(n_tri: %d -> %d)' % (found, dest_grade, len(surf['tris']),
len(dest['tris'])))
# Find the mapping
dest['rr'] = surf['rr'][_get_ico_map(source, dest)]
return dest
def _get_ico_map(fro, to):
"""Get a mapping between ico surfaces."""
nearest, dists = _compute_nearest(fro['rr'], to['rr'], return_dists=True)
n_bads = (dists > 5e-3).sum()
if n_bads > 0:
raise RuntimeError('No matching vertex for %d destination vertices'
% (n_bads))
return nearest
def _order_surfaces(surfs):
"""Reorder the surfaces."""
if len(surfs) != 3:
return surfs
# we have three surfaces
surf_order = [FIFF.FIFFV_BEM_SURF_ID_HEAD,
FIFF.FIFFV_BEM_SURF_ID_SKULL,
FIFF.FIFFV_BEM_SURF_ID_BRAIN]
ids = np.array([surf['id'] for surf in surfs])
if set(ids) != set(surf_order):
raise RuntimeError('bad surface ids: %s' % ids)
order = [np.where(ids == id_)[0][0] for id_ in surf_order]
surfs = [surfs[idx] for idx in order]
return surfs
def _assert_complete_surface(surf, incomplete='raise'):
"""Check the sum of solid angles as seen from inside."""
# from surface_checks.c
tot_angle = 0.
# Center of mass....
cm = surf['rr'].mean(axis=0)
logger.info('%s CM is %6.2f %6.2f %6.2f mm' %
(_surf_name[surf['id']],
1000 * cm[0], 1000 * cm[1], 1000 * cm[2]))
tot_angle = _get_solids(surf['rr'][surf['tris']], cm[np.newaxis, :])[0]
prop = tot_angle / (2 * np.pi)
if np.abs(prop - 1.0) > 1e-5:
msg = ('Surface %s is not complete (sum of solid angles '
'yielded %g, should be 1.)'
% (_surf_name[surf['id']], prop))
if incomplete == 'raise':
raise RuntimeError(msg)
else:
warn(msg)
_surf_name = {
FIFF.FIFFV_BEM_SURF_ID_HEAD: 'outer skin ',
FIFF.FIFFV_BEM_SURF_ID_SKULL: 'outer skull',
FIFF.FIFFV_BEM_SURF_ID_BRAIN: 'inner skull',
FIFF.FIFFV_BEM_SURF_ID_UNKNOWN: 'unknown ',
}
def _assert_inside(fro, to):
"""Check one set of points is inside a surface."""
# this is "is_inside" in surface_checks.c
tot_angle = _get_solids(to['rr'][to['tris']], fro['rr'])
if (np.abs(tot_angle / (2 * np.pi) - 1.0) > 1e-5).any():
raise RuntimeError('Surface %s is not completely inside surface %s'
% (_surf_name[fro['id']], _surf_name[to['id']]))
def _check_surfaces(surfs, incomplete='raise'):
"""Check that the surfaces are complete and non-intersecting."""
for surf in surfs:
_assert_complete_surface(surf, incomplete=incomplete)
# Then check the topology
for surf_1, surf_2 in zip(surfs[:-1], surfs[1:]):
logger.info('Checking that %s surface is inside %s surface...' %
(_surf_name[surf_2['id']], _surf_name[surf_1['id']]))
_assert_inside(surf_2, surf_1)
def _check_surface_size(surf):
"""Check that the coordinate limits are reasonable."""
sizes = surf['rr'].max(axis=0) - surf['rr'].min(axis=0)
if (sizes < 0.05).any():
raise RuntimeError('Dimensions of the surface %s seem too small '
'(%9.5f mm). Maybe the the unit of measure is '
'meters instead of mm' %
(_surf_name[surf['id']], 1000 * sizes.min()))
def _check_thicknesses(surfs):
"""Compute how close we are."""
for surf_1, surf_2 in zip(surfs[:-1], surfs[1:]):
min_dist = _compute_nearest(surf_1['rr'], surf_2['rr'],
return_dists=True)[0]
min_dist = min_dist.min()
logger.info('Checking distance between %s and %s surfaces...' %
(_surf_name[surf_1['id']], _surf_name[surf_2['id']]))
logger.info('Minimum distance between the %s and %s surfaces is '
'approximately %6.1f mm' %
(_surf_name[surf_1['id']], _surf_name[surf_2['id']],
1000 * min_dist))
def _surfaces_to_bem(surfs, ids, sigmas, ico=None, rescale=True,
incomplete='raise'):
"""Convert surfaces to a BEM."""
# equivalent of mne_surf2bem
# surfs can be strings (filenames) or surface dicts
if len(surfs) not in (1, 3) or not (len(surfs) == len(ids) ==
len(sigmas)):
raise ValueError('surfs, ids, and sigmas must all have the same '
'number of elements (1 or 3)')
surf = list(surfs)
for si, surf in enumerate(surfs):
if isinstance(surf, string_types):
surfs[si] = read_surface(surf, return_dict=True)[-1]
# Downsampling if the surface is isomorphic with a subdivided icosahedron
if ico is not None:
for si, surf in enumerate(surfs):
surfs[si] = _ico_downsample(surf, ico)
for surf, id_ in zip(surfs, ids):
surf['id'] = id_
surf['coord_frame'] = surf.get('coord_frame', FIFF.FIFFV_COORD_MRI)
surf.update(np=len(surf['rr']), ntri=len(surf['tris']))
if rescale:
surf['rr'] /= 1000. # convert to meters
# Shifting surfaces is not implemented here...
# Order the surfaces for the benefit of the topology checks
for surf, sigma in zip(surfs, sigmas):
surf['sigma'] = sigma
surfs = _order_surfaces(surfs)
# Check topology as best we can
_check_surfaces(surfs, incomplete=incomplete)
for surf in surfs:
_check_surface_size(surf)
_check_thicknesses(surfs)
logger.info('Surfaces passed the basic topology checks.')
return surfs
@verbose
def make_bem_model(subject, ico=4, conductivity=(0.3, 0.006, 0.3),
subjects_dir=None, verbose=None):
"""Create a BEM model for a subject.
.. note:: To get a single layer bem corresponding to the --homog flag in
the command line tool set the ``conductivity`` parameter
to a list/tuple with a single value (e.g. [0.3]).
Parameters
----------
subject : str
The subject.
ico : int | None
The surface ico downsampling to use, e.g. 5=20484, 4=5120, 3=1280.
If None, no subsampling is applied.
conductivity : array of int, shape (3,) or (1,)
The conductivities to use for each shell. Should be a single element
for a one-layer model, or three elements for a three-layer model.
Defaults to ``[0.3, 0.006, 0.3]``. The MNE-C default for a
single-layer model would be ``[0.3]``.
subjects_dir : string, or None
Path to SUBJECTS_DIR if it is not set in the environment.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
surfaces : list of dict
The BEM surfaces. Use `make_bem_solution` to turn these into a
`ConductorModel` suitable for forward calculation.
Notes
-----
.. versionadded:: 0.10.0
See Also
--------
make_bem_solution
make_sphere_model
read_bem_surfaces
write_bem_surfaces
"""
conductivity = np.array(conductivity, float)
if conductivity.ndim != 1 or conductivity.size not in (1, 3):
raise ValueError('conductivity must be 1D array-like with 1 or 3 '
'elements')
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
subject_dir = op.join(subjects_dir, subject)
bem_dir = op.join(subject_dir, 'bem')
inner_skull = op.join(bem_dir, 'inner_skull.surf')
outer_skull = op.join(bem_dir, 'outer_skull.surf')
outer_skin = op.join(bem_dir, 'outer_skin.surf')
surfaces = [inner_skull, outer_skull, outer_skin]
ids = [FIFF.FIFFV_BEM_SURF_ID_BRAIN,
FIFF.FIFFV_BEM_SURF_ID_SKULL,
FIFF.FIFFV_BEM_SURF_ID_HEAD]
logger.info('Creating the BEM geometry...')
if len(conductivity) == 1:
surfaces = surfaces[:1]
ids = ids[:1]
surfaces = _surfaces_to_bem(surfaces, ids, conductivity, ico)
_check_bem_size(surfaces)
logger.info('Complete.\n')
return surfaces
# ############################################################################
# Compute EEG sphere model
def _fwd_eeg_get_multi_sphere_model_coeffs(m, n_terms):
"""Get the model depended weighting factor for n."""
nlayer = len(m['layers'])
if nlayer in (0, 1):
return 1.
# Initialize the arrays
c1 = np.zeros(nlayer - 1)
c2 = np.zeros(nlayer - 1)
cr = np.zeros(nlayer - 1)
cr_mult = np.zeros(nlayer - 1)
for k in range(nlayer - 1):
c1[k] = m['layers'][k]['sigma'] / m['layers'][k + 1]['sigma']
c2[k] = c1[k] - 1.0
cr_mult[k] = m['layers'][k]['rel_rad']
cr[k] = cr_mult[k]
cr_mult[k] *= cr_mult[k]
coeffs = np.zeros(n_terms - 1)
for n in range(1, n_terms):
# Increment the radius coefficients
for k in range(nlayer - 1):
cr[k] *= cr_mult[k]
# Multiply the matrices
M = np.eye(2)
n1 = n + 1.0
for k in range(nlayer - 2, -1, -1):
M = np.dot([[n + n1 * c1[k], n1 * c2[k] / cr[k]],
[n * c2[k] * cr[k], n1 + n * c1[k]]], M)
num = n * (2.0 * n + 1.0) ** (nlayer - 1)
coeffs[n - 1] = num / (n * M[1, 1] + n1 * M[1, 0])
return coeffs
def _compose_linear_fitting_data(mu, u):
"""Get the linear fitting data."""
k1 = np.arange(1, u['nterms'])
mu1ns = mu[0] ** k1
# data to be fitted
y = u['w'][:-1] * (u['fn'][1:] - mu1ns * u['fn'][0])
# model matrix
M = u['w'][:-1, np.newaxis] * (mu[1:] ** k1[:, np.newaxis] -
mu1ns[:, np.newaxis])
uu, sing, vv = linalg.svd(M, full_matrices=False)
ncomp = u['nfit'] - 1
uu, sing, vv = uu[:, :ncomp], sing[:ncomp], vv[:ncomp]
return y, uu, sing, vv
def _compute_linear_parameters(mu, u):
"""Compute the best-fitting linear parameters."""
y, uu, sing, vv = _compose_linear_fitting_data(mu, u)
# Compute the residuals
resi = y.copy()
vec = np.dot(y, uu)
resi = y - np.dot(uu, vec)
vec /= sing
lambda_ = np.zeros(u['nfit'])
lambda_[1:] = np.dot(vec, vv)
lambda_[0] = u['fn'][0] - np.sum(lambda_[1:])
rv = np.dot(resi, resi) / np.dot(y, y)
return rv, lambda_
def _one_step(mu, u):
"""Evaluate the residual sum of squares fit for one set of mu values."""
if np.abs(mu).max() > 1.0:
return 1.0
# Compose the data for the linear fitting, compute SVD, then residuals
y, uu, sing, vv = _compose_linear_fitting_data(mu, u)
resi = y - np.dot(uu, np.dot(y, uu))
return np.dot(resi, resi)
def _fwd_eeg_fit_berg_scherg(m, nterms, nfit):
"""Fit the Berg-Scherg equivalent spherical model dipole parameters."""
from scipy.optimize import fmin_cobyla
assert nfit >= 2
u = dict(nfit=nfit, nterms=nterms)
# (1) Calculate the coefficients of the true expansion
u['fn'] = _fwd_eeg_get_multi_sphere_model_coeffs(m, nterms + 1)
# (2) Calculate the weighting
f = (min([layer['rad'] for layer in m['layers']]) /
max([layer['rad'] for layer in m['layers']]))
# correct weighting
k = np.arange(1, nterms + 1)
u['w'] = np.sqrt((2.0 * k + 1) * (3.0 * k + 1.0) /
k) * np.power(f, (k - 1.0))
u['w'][-1] = 0
# Do the nonlinear minimization, constraining mu to the interval [-1, +1]
mu_0 = np.zeros(3)
fun = partial(_one_step, u=u)
max_ = 1. - 2e-4 # adjust for fmin_cobyla "catol" that not all scipy have
cons = [(lambda x: max_ - np.abs(x[ii])) for ii in range(nfit)]
mu = fmin_cobyla(fun, mu_0, cons, rhobeg=0.5, rhoend=1e-5, disp=0)
# (6) Do the final step: calculation of the linear parameters
rv, lambda_ = _compute_linear_parameters(mu, u)
order = np.argsort(mu)[::-1]
mu, lambda_ = mu[order], lambda_[order] # sort: largest mu first
m['mu'] = mu
# This division takes into account the actual conductivities
m['lambda'] = lambda_ / m['layers'][-1]['sigma']
m['nfit'] = nfit
return rv
@verbose
def make_sphere_model(r0=(0., 0., 0.04), head_radius=0.09, info=None,
relative_radii=(0.90, 0.92, 0.97, 1.0),
sigmas=(0.33, 1.0, 0.004, 0.33), verbose=None):
"""Create a spherical model for forward solution calculation.
Parameters
----------
r0 : array-like | str
Head center to use (in head coordinates). If 'auto', the head
center will be calculated from the digitization points in info.
head_radius : float | str | None
If float, compute spherical shells for EEG using the given radius.
If 'auto', estimate an appropriate radius from the dig points in Info,
If None, exclude shells (single layer sphere model).
info : instance of Info | None
Measurement info. Only needed if ``r0`` or ``head_radius`` are
``'auto'``.
relative_radii : array-like
Relative radii for the spherical shells.
sigmas : array-like
Sigma values for the spherical shells.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
sphere : instance of ConductorModel
The resulting spherical conductor model.
Notes
-----
.. versionadded:: 0.9.0
See Also
--------
make_bem_model
make_bem_solution
"""
for name in ('r0', 'head_radius'):
param = locals()[name]
if isinstance(param, string_types):
if param != 'auto':
raise ValueError('%s, if str, must be "auto" not "%s"'
% (name, param))
relative_radii = np.array(relative_radii, float).ravel()
sigmas = np.array(sigmas, float).ravel()
if len(relative_radii) != len(sigmas):
raise ValueError('relative_radii length (%s) must match that of '
'sigmas (%s)' % (len(relative_radii),
len(sigmas)))
if len(sigmas) <= 1 and head_radius is not None:
raise ValueError('at least 2 sigmas must be supplied if '
'head_radius is not None, got %s' % (len(sigmas),))
if (isinstance(r0, string_types) and r0 == 'auto') or \
(isinstance(head_radius, string_types) and head_radius == 'auto'):
if info is None:
raise ValueError('Info must not be None for auto mode')
head_radius_fit, r0_fit = fit_sphere_to_headshape(info, units='m')[:2]
if isinstance(r0, string_types):
r0 = r0_fit
if isinstance(head_radius, string_types):
head_radius = head_radius_fit
sphere = ConductorModel(is_sphere=True, r0=np.array(r0),
coord_frame=FIFF.FIFFV_COORD_HEAD)
sphere['layers'] = list()
if head_radius is not None:
# Eventually these could be configurable...
relative_radii = np.array(relative_radii, float)
sigmas = np.array(sigmas, float)
order = np.argsort(relative_radii)
relative_radii = relative_radii[order]
sigmas = sigmas[order]
for rel_rad, sig in zip(relative_radii, sigmas):
# sort layers by (relative) radius, and scale radii
layer = dict(rad=rel_rad, sigma=sig)
layer['rel_rad'] = layer['rad'] = rel_rad
sphere['layers'].append(layer)
# scale the radii
R = sphere['layers'][-1]['rad']
rR = sphere['layers'][-1]['rel_rad']
for layer in sphere['layers']:
layer['rad'] /= R
layer['rel_rad'] /= rR
#
# Setup the EEG sphere model calculations
#
# Scale the relative radii
for k in range(len(relative_radii)):
sphere['layers'][k]['rad'] = (head_radius *
sphere['layers'][k]['rel_rad'])
rv = _fwd_eeg_fit_berg_scherg(sphere, 200, 3)
logger.info('\nEquiv. model fitting -> RV = %g %%' % (100 * rv))
for k in range(3):
logger.info('mu%d = %g lambda%d = %g'
% (k + 1, sphere['mu'][k], k + 1,
sphere['layers'][-1]['sigma'] *
sphere['lambda'][k]))
logger.info('Set up EEG sphere model with scalp radius %7.1f mm\n'
% (1000 * head_radius,))
return sphere
# #############################################################################
# Sphere fitting
_dig_kind_dict = {
'cardinal': FIFF.FIFFV_POINT_CARDINAL,
'hpi': FIFF.FIFFV_POINT_HPI,
'eeg': FIFF.FIFFV_POINT_EEG,
'extra': FIFF.FIFFV_POINT_EXTRA,
}
_dig_kind_rev = dict((val, key) for key, val in _dig_kind_dict.items())
_dig_kind_ints = tuple(_dig_kind_dict.values())
@verbose
def fit_sphere_to_headshape(info, dig_kinds='auto', units='m', verbose=None):
"""Fit a sphere to the headshape points to determine head center.
Parameters
----------
info : instance of Info
Measurement info.
dig_kinds : list of str | str
Kind of digitization points to use in the fitting. These can be any
combination of ('cardinal', 'hpi', 'eeg', 'extra'). Can also
be 'auto' (default), which will use only the 'extra' points if
enough (more than 10) are available, and if not, uses 'extra' and
'eeg' points.
units : str
Can be "m" (default) or "mm".
.. versionadded:: 0.12
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
radius : float
Sphere radius.
origin_head: ndarray, shape (3,)
Head center in head coordinates.
origin_device: ndarray, shape (3,)
Head center in device coordinates.
Notes
-----
This function excludes any points that are low and frontal
(``z < 0 and y > 0``) to improve the fit.
"""
if not isinstance(units, string_types) or units not in ('m', 'mm'):
raise ValueError('units must be a "m" or "mm"')
radius, origin_head, origin_device = _fit_sphere_to_headshape(
info, dig_kinds)
if units == 'mm':
radius *= 1e3
origin_head *= 1e3
origin_device *= 1e3
return radius, origin_head, origin_device
@verbose
def get_fitting_dig(info, dig_kinds='auto', verbose=None):
"""Get digitization points suitable for sphere fitting.
Parameters
----------
info : instance of Info
The measurement info.
dig_kinds : list of str | str
Kind of digitization points to use in the fitting. These can be any
combination of ('cardinal', 'hpi', 'eeg', 'extra'). Can also
be 'auto' (default), which will use only the 'extra' points if
enough (more than 10) are available, and if not, uses 'extra' and
'eeg' points.
verbose : bool, str or None
If not None, override default verbose level
Returns
-------
dig : array, shape (n_pts, 3)
The digitization points (in head coordinates) to use for fitting.
Notes
-----
This will exclude digitization locations that have ``z < 0 and y > 0``,
i.e. points on the nose and below the nose on the face.
.. versionadded:: 0.14
"""
_validate_type(info, "info")
if info['dig'] is None:
raise RuntimeError('Cannot fit headshape without digitization '
', info["dig"] is None')
if isinstance(dig_kinds, string_types):
if dig_kinds == 'auto':
# try "extra" first
try:
return get_fitting_dig(info, 'extra')
except ValueError:
pass
return get_fitting_dig(info, ('extra', 'eeg'))
else:
dig_kinds = (dig_kinds,)
# convert string args to ints (first make dig_kinds mutable in case tuple)
dig_kinds = list(dig_kinds)
for di, d in enumerate(dig_kinds):
dig_kinds[di] = _dig_kind_dict.get(d, d)
if dig_kinds[di] not in _dig_kind_ints:
raise ValueError('dig_kinds[#%d] (%s) must be one of %s'
% (di, d, sorted(list(_dig_kind_dict.keys()))))
# get head digization points of the specified kind(s)
hsp = [p['r'] for p in info['dig'] if p['kind'] in dig_kinds]
if any(p['coord_frame'] != FIFF.FIFFV_COORD_HEAD for p in info['dig']):
raise RuntimeError('Digitization points not in head coordinates, '
'contact mne-python developers')
# exclude some frontal points (nose etc.)
hsp = np.array([p for p in hsp if not (p[2] < -1e-6 and p[1] > 1e-6)])
if len(hsp) <= 10:
kinds_str = ', '.join(['"%s"' % _dig_kind_rev[d]
for d in sorted(dig_kinds)])
msg = ('Only %s head digitization points of the specified kind%s (%s,)'
% (len(hsp), _pl(dig_kinds), kinds_str))
if len(hsp) < 4:
raise ValueError(msg + ', at least 4 required')
else:
warn(msg + ', fitting may be inaccurate')
return hsp
@verbose
def _fit_sphere_to_headshape(info, dig_kinds, verbose=None):
"""Fit a sphere to the given head shape."""
hsp = get_fitting_dig(info, dig_kinds)
radius, origin_head = _fit_sphere(np.array(hsp), disp=False)
# compute origin in device coordinates
head_to_dev = _ensure_trans(info['dev_head_t'], 'head', 'meg')
origin_device = apply_trans(head_to_dev, origin_head)
logger.info('Fitted sphere radius:'.ljust(30) + '%0.1f mm'
% (radius * 1e3,))
# 99th percentile on Wikipedia for Giabella to back of head is 21.7cm,
# i.e. 108mm "radius", so let's go with 110mm
# en.wikipedia.org/wiki/Human_head#/media/File:HeadAnthropometry.JPG
if radius > 0.110:
warn('Estimated head size (%0.1f mm) exceeded 99th '
'percentile for adult head size' % (1e3 * radius,))
# > 2 cm away from head center in X or Y is strange
if np.linalg.norm(origin_head[:2]) > 0.02:
warn('(X, Y) fit (%0.1f, %0.1f) more than 20 mm from '
'head frame origin' % tuple(1e3 * origin_head[:2]))
logger.info('Origin head coordinates:'.ljust(30) +
'%0.1f %0.1f %0.1f mm' % tuple(1e3 * origin_head))
logger.info('Origin device coordinates:'.ljust(30) +
'%0.1f %0.1f %0.1f mm' % tuple(1e3 * origin_device))
return radius, origin_head, origin_device
def _fit_sphere(points, disp='auto'):
"""Fit a sphere to an arbitrary set of points."""
from scipy.optimize import fmin_cobyla
if isinstance(disp, string_types) and disp == 'auto':
disp = True if logger.level <= 20 else False
# initial guess for center and radius
radii = (np.max(points, axis=1) - np.min(points, axis=1)) / 2.
radius_init = radii.mean()
center_init = np.median(points, axis=0)
# optimization
x0 = np.concatenate([center_init, [radius_init]])
def cost_fun(center_rad):
d = np.linalg.norm(points - center_rad[:3], axis=1) - center_rad[3]
d *= d
return d.sum()
def constraint(center_rad):
return center_rad[3] # radius must be >= 0
x_opt = fmin_cobyla(cost_fun, x0, constraint, rhobeg=radius_init,
rhoend=radius_init * 1e-6, disp=disp)
origin = x_opt[:3]
radius = x_opt[3]
return radius, origin
def _check_origin(origin, info, coord_frame='head', disp=False):
"""Check or auto-determine the origin."""
if isinstance(origin, string_types):
if origin != 'auto':
raise ValueError('origin must be a numerical array, or "auto", '
'not %s' % (origin,))
if coord_frame == 'head':
R, origin = fit_sphere_to_headshape(info, verbose=False,
units='m')[:2]
logger.info(' Automatic origin fit: head of radius %0.1f mm'
% (R * 1000.,))
del R
else:
origin = (0., 0., 0.)
origin = np.array(origin, float)
if origin.shape != (3,):
raise ValueError('origin must be a 3-element array')
if disp:
origin_str = ', '.join(['%0.1f' % (o * 1000) for o in origin])
msg = (' Using origin %s mm in the %s frame'
% (origin_str, coord_frame))
if coord_frame == 'meg' and info['dev_head_t'] is not None:
o_dev = apply_trans(info['dev_head_t'], origin)
origin_str = ', '.join('%0.1f' % (o * 1000,) for o in o_dev)
msg += ' (%s mm in the head frame)' % (origin_str,)
logger.info(msg)
return origin
# ############################################################################
# Create BEM surfaces
@verbose
def make_watershed_bem(subject, subjects_dir=None, overwrite=False,
volume='T1', atlas=False, gcaatlas=False, preflood=None,
show=False, verbose=None):
"""Create BEM surfaces using the FreeSurfer watershed algorithm.
Parameters
----------
subject : str
Subject name (required)
subjects_dir : str
Directory containing subjects data. If None use
the Freesurfer SUBJECTS_DIR environment variable.
overwrite : bool
Write over existing files
volume : str
Defaults to T1
atlas : bool
Specify the --atlas option for mri_watershed
gcaatlas : bool
Use the subcortical atlas
preflood : int
Change the preflood height
show : bool
Show surfaces to visually inspect all three BEM surfaces (recommended).
.. versionadded:: 0.12
verbose : bool, str or None
If not None, override default verbose level
Notes
-----
.. versionadded:: 0.10
"""
from .viz.misc import plot_bem
env, mri_dir = _prepare_env(subject, subjects_dir,
requires_freesurfer=True)[:2]
subjects_dir = env['SUBJECTS_DIR']
subject_dir = op.join(subjects_dir, subject)
mri_dir = op.join(subject_dir, 'mri')
T1_dir = op.join(mri_dir, volume)
T1_mgz = op.join(mri_dir, volume + '.mgz')
bem_dir = op.join(subject_dir, 'bem')
ws_dir = op.join(subject_dir, 'bem', 'watershed')
if not op.isdir(bem_dir):
os.makedirs(bem_dir)
if not op.isdir(T1_dir) and not op.isfile(T1_mgz):
raise RuntimeError('Could not find the MRI data')
if op.isdir(ws_dir):
if not overwrite:
raise RuntimeError('%s already exists. Use the --overwrite option'
' to recreate it.' % ws_dir)
else:
shutil.rmtree(ws_dir)
# put together the command
cmd = ['mri_watershed']
if preflood:
cmd += ["-h", "%s" % int(preflood)]
if gcaatlas:
cmd += ['-atlas', '-T1', '-brain_atlas', env['FREESURFER_HOME'] +
'/average/RB_all_withskull_2007-08-08.gca',
subject_dir + '/mri/transforms/talairach_with_skull.lta']
elif atlas:
cmd += ['-atlas']
if op.exists(T1_mgz):
cmd += ['-useSRAS', '-surf', op.join(ws_dir, subject), T1_mgz,
op.join(ws_dir, 'ws')]
else:
cmd += ['-useSRAS', '-surf', op.join(ws_dir, subject), T1_dir,
op.join(ws_dir, 'ws')]
# report and run
logger.info('\nRunning mri_watershed for BEM segmentation with the '
'following parameters:\n\n'
'SUBJECTS_DIR = %s\n'
'SUBJECT = %s\n'
'Results dir = %s\n' % (subjects_dir, subject, ws_dir))
os.makedirs(op.join(ws_dir, 'ws'))
run_subprocess(cmd, env=env)
if op.isfile(T1_mgz):
new_info = _extract_volume_info(T1_mgz)
if new_info is None:
warn('nibabel is required to replace the volume info. Volume info'
'not updated in the written surface.')
new_info = dict()
surfs = ['brain', 'inner_skull', 'outer_skull', 'outer_skin']
for s in surfs:
surf_ws_out = op.join(ws_dir, '%s_%s_surface' % (subject, s))
rr, tris, volume_info = read_surface(surf_ws_out,
read_metadata=True)
volume_info.update(new_info) # replace volume info, 'head' stays
write_surface(s, rr, tris, volume_info=volume_info)
# Create symbolic links
surf_out = op.join(bem_dir, '%s.surf' % s)
if not overwrite and op.exists(surf_out):
skip_symlink = True
else:
if op.exists(surf_out):
os.remove(surf_out)
_symlink(surf_ws_out, surf_out)
skip_symlink = False
if skip_symlink:
logger.info("Unable to create all symbolic links to .surf files "
"in bem folder. Use --overwrite option to recreate "
"them.")
dest = op.join(bem_dir, 'watershed')
else:
logger.info("Symbolic links to .surf files created in bem folder")
dest = bem_dir
logger.info("\nThank you for waiting.\nThe BEM triangulations for this "
"subject are now available at:\n%s." % dest)
# Write a head file for coregistration
fname_head = op.join(bem_dir, subject + '-head.fif')
if op.isfile(fname_head):
os.remove(fname_head)
surf = _surfaces_to_bem([op.join(ws_dir, subject + '_outer_skin_surface')],
[FIFF.FIFFV_BEM_SURF_ID_HEAD], sigmas=[1])
write_bem_surfaces(fname_head, surf)
# Show computed BEM surfaces
if show:
plot_bem(subject=subject, subjects_dir=subjects_dir,
orientation='coronal', slices=None, show=True)
logger.info('Created %s\n\nComplete.' % (fname_head,))
def _extract_volume_info(mgz, raise_error=True):
"""Extract volume info from a mgz file."""
try:
import nibabel as nib
except ImportError:
return # warning raised elsewhere
header = nib.load(mgz).header
vol_info = dict()
version = header['version']
if version == 1:
version = '%s # volume info valid' % version
else:
raise ValueError('Volume info invalid.')
vol_info['valid'] = version
vol_info['filename'] = mgz
vol_info['volume'] = header['dims'][:3]
vol_info['voxelsize'] = header['delta']
vol_info['xras'], vol_info['yras'], vol_info['zras'] = header['Mdc'].T
vol_info['cras'] = header['Pxyz_c']
return vol_info
# ############################################################################
# Read
@verbose
def read_bem_surfaces(fname, patch_stats=False, s_id=None, verbose=None):
"""Read the BEM surfaces from a FIF file.
Parameters
----------
fname : string
The name of the file containing the surfaces.
patch_stats : bool, optional (default False)
Calculate and add cortical patch statistics to the surfaces.
s_id : int | None
If int, only read and return the surface with the given s_id.
An error will be raised if it doesn't exist. If None, all
surfaces are read and returned.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
surf: list | dict
A list of dictionaries that each contain a surface. If s_id
is not None, only the requested surface will be returned.
See Also
--------
write_bem_surfaces, write_bem_solution, make_bem_model
"""
# Default coordinate frame
coord_frame = FIFF.FIFFV_COORD_MRI
# Open the file, create directory
f, tree, _ = fiff_open(fname)
with f as fid:
# Find BEM
bem = dir_tree_find(tree, FIFF.FIFFB_BEM)
if bem is None or len(bem) == 0:
raise ValueError('BEM data not found')
bem = bem[0]
# Locate all surfaces
bemsurf = dir_tree_find(bem, FIFF.FIFFB_BEM_SURF)
if bemsurf is None:
raise ValueError('BEM surface data not found')
logger.info(' %d BEM surfaces found' % len(bemsurf))
# Coordinate frame possibly at the top level
tag = find_tag(fid, bem, FIFF.FIFF_BEM_COORD_FRAME)
if tag is not None:
coord_frame = tag.data
# Read all surfaces
if s_id is not None:
surf = [_read_bem_surface(fid, bsurf, coord_frame, s_id)
for bsurf in bemsurf]
surf = [s for s in surf if s is not None]
if not len(surf) == 1:
raise ValueError('surface with id %d not found' % s_id)
else:
surf = list()
for bsurf in bemsurf:
logger.info(' Reading a surface...')
this = _read_bem_surface(fid, bsurf, coord_frame)
surf.append(this)
logger.info('[done]')
logger.info(' %d BEM surfaces read' % len(surf))
for this in surf:
if patch_stats or this['nn'] is None:
complete_surface_info(this, copy=False)
return surf[0] if s_id is not None else surf
def _read_bem_surface(fid, this, def_coord_frame, s_id=None):
"""Read one bem surface."""
# fid should be open as a context manager here
res = dict()
# Read all the interesting stuff
tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_ID)
if tag is None:
res['id'] = FIFF.FIFFV_BEM_SURF_ID_UNKNOWN
else:
res['id'] = int(tag.data)
if s_id is not None and res['id'] != s_id:
return None
tag = find_tag(fid, this, FIFF.FIFF_BEM_SIGMA)
res['sigma'] = 1.0 if tag is None else float(tag.data)
tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NNODE)
if tag is None:
raise ValueError('Number of vertices not found')
res['np'] = int(tag.data)
tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NTRI)
if tag is None:
raise ValueError('Number of triangles not found')
res['ntri'] = int(tag.data)
tag = find_tag(fid, this, FIFF.FIFF_MNE_COORD_FRAME)
if tag is None:
tag = find_tag(fid, this, FIFF.FIFF_BEM_COORD_FRAME)
if tag is None:
res['coord_frame'] = def_coord_frame
else:
res['coord_frame'] = tag.data
else:
res['coord_frame'] = tag.data
# Vertices, normals, and triangles
tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NODES)
if tag is None:
raise ValueError('Vertex data not found')
res['rr'] = tag.data.astype(np.float) # XXX : double because of mayavi bug
if res['rr'].shape[0] != res['np']:
raise ValueError('Vertex information is incorrect')
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NORMALS)
if tag is None:
tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NORMALS)
if tag is None:
res['nn'] = None
else:
res['nn'] = tag.data.copy()
if res['nn'].shape[0] != res['np']:
raise ValueError('Vertex normal information is incorrect')
tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_TRIANGLES)
if tag is None:
raise ValueError('Triangulation not found')
res['tris'] = tag.data - 1 # index start at 0 in Python
if res['tris'].shape[0] != res['ntri']:
raise ValueError('Triangulation information is incorrect')
return res
@verbose
def read_bem_solution(fname, verbose=None):
"""Read the BEM solution from a file.
Parameters
----------
fname : string
The file containing the BEM solution.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
bem : instance of ConductorModel
The BEM solution.
See Also
--------
write_bem_solution, read_bem_surfaces, write_bem_surfaces,
make_bem_solution
"""
# mirrors fwd_bem_load_surfaces from fwd_bem_model.c
logger.info('Loading surfaces...')
bem_surfs = read_bem_surfaces(fname, patch_stats=True, verbose=False)
if len(bem_surfs) == 3:
logger.info('Three-layer model surfaces loaded.')
needed = np.array([FIFF.FIFFV_BEM_SURF_ID_HEAD,
FIFF.FIFFV_BEM_SURF_ID_SKULL,
FIFF.FIFFV_BEM_SURF_ID_BRAIN])
if not all(x['id'] in needed for x in bem_surfs):
raise RuntimeError('Could not find necessary BEM surfaces')
# reorder surfaces as necessary (shouldn't need to?)
reorder = [None] * 3
for x in bem_surfs:
reorder[np.where(x['id'] == needed)[0][0]] = x
bem_surfs = reorder
elif len(bem_surfs) == 1:
if not bem_surfs[0]['id'] == FIFF.FIFFV_BEM_SURF_ID_BRAIN:
raise RuntimeError('BEM Surfaces not found')
logger.info('Homogeneous model surface loaded.')
# convert from surfaces to solution
bem = ConductorModel(is_sphere=False, surfs=bem_surfs)
logger.info('\nLoading the solution matrix...\n')
f, tree, _ = fiff_open(fname)
with f as fid:
# Find the BEM data
nodes = dir_tree_find(tree, FIFF.FIFFB_BEM)
if len(nodes) == 0:
raise RuntimeError('No BEM data in %s' % fname)
bem_node = nodes[0]
# Approximation method
tag = find_tag(f, bem_node, FIFF.FIFF_BEM_APPROX)
if tag is None:
raise RuntimeError('No BEM solution found in %s' % fname)
method = tag.data[0]
if method not in (FIFF.FIFFV_BEM_APPROX_CONST,
FIFF.FIFFV_BEM_APPROX_LINEAR):
raise RuntimeError('Cannot handle BEM approximation method : %d'
% method)
tag = find_tag(fid, bem_node, FIFF.FIFF_BEM_POT_SOLUTION)
dims = tag.data.shape
if len(dims) != 2:
raise RuntimeError('Expected a two-dimensional solution matrix '
'instead of a %d dimensional one' % dims[0])
dim = 0
for surf in bem['surfs']:
if method == FIFF.FIFFV_BEM_APPROX_LINEAR:
dim += surf['np']
else: # method == FIFF.FIFFV_BEM_APPROX_CONST
dim += surf['ntri']
if dims[0] != dim or dims[1] != dim:
raise RuntimeError('Expected a %d x %d solution matrix instead of '
'a %d x %d one' % (dim, dim, dims[1], dims[0]))
sol = tag.data
nsol = dims[0]
bem['solution'] = sol
bem['nsol'] = nsol
bem['bem_method'] = method
# Gamma factors and multipliers
_add_gamma_multipliers(bem)
kind = {
FIFF.FIFFV_BEM_APPROX_CONST: 'constant collocation',
FIFF.FIFFV_BEM_APPROX_LINEAR: 'linear_collocation',
}[bem['bem_method']]
logger.info('Loaded %s BEM solution from %s', kind, fname)
return bem
def _add_gamma_multipliers(bem):
"""Add gamma and multipliers in-place."""
bem['sigma'] = np.array([surf['sigma'] for surf in bem['surfs']])
# Dirty trick for the zero conductivity outside
sigma = np.r_[0.0, bem['sigma']]
bem['source_mult'] = 2.0 / (sigma[1:] + sigma[:-1])
bem['field_mult'] = sigma[1:] - sigma[:-1]
# make sure subsequent "zip"s work correctly
assert len(bem['surfs']) == len(bem['field_mult'])
bem['gamma'] = ((sigma[1:] - sigma[:-1])[np.newaxis, :] /
(sigma[1:] + sigma[:-1])[:, np.newaxis])
_surf_dict = {'inner_skull': FIFF.FIFFV_BEM_SURF_ID_BRAIN,
'outer_skull': FIFF.FIFFV_BEM_SURF_ID_SKULL,
'head': FIFF.FIFFV_BEM_SURF_ID_HEAD}
def _bem_find_surface(bem, id_):
"""Find surface from already-loaded BEM."""
if isinstance(id_, string_types):
name = id_
id_ = _surf_dict[id_]
else:
name = _bem_explain_surface(id_)
idx = np.where(np.array([s['id'] for s in bem['surfs']]) == id_)[0]
if len(idx) != 1:
raise RuntimeError('BEM model does not have the %s triangulation'
% name.replace('_', ' '))
return bem['surfs'][idx[0]]
def _bem_explain_surface(id_):
"""Return a string corresponding to the given surface ID."""
_rev_dict = dict((val, key) for key, val in _surf_dict.items())
return _rev_dict[id_]
# ############################################################################
# Write
def write_bem_surfaces(fname, surfs):
"""Write BEM surfaces to a fiff file.
Parameters
----------
fname : str
Filename to write.
surfs : dict | list of dict
The surfaces, or a single surface.
"""
if isinstance(surfs, dict):
surfs = [surfs]
with start_file(fname) as fid:
start_block(fid, FIFF.FIFFB_BEM)
write_int(fid, FIFF.FIFF_BEM_COORD_FRAME, surfs[0]['coord_frame'])
_write_bem_surfaces_block(fid, surfs)
end_block(fid, FIFF.FIFFB_BEM)
end_file(fid)
def _write_bem_surfaces_block(fid, surfs):
"""Write bem surfaces to open file handle."""
for surf in surfs:
start_block(fid, FIFF.FIFFB_BEM_SURF)
write_float(fid, FIFF.FIFF_BEM_SIGMA, surf['sigma'])
write_int(fid, FIFF.FIFF_BEM_SURF_ID, surf['id'])
write_int(fid, FIFF.FIFF_MNE_COORD_FRAME, surf['coord_frame'])
write_int(fid, FIFF.FIFF_BEM_SURF_NNODE, surf['np'])
write_int(fid, FIFF.FIFF_BEM_SURF_NTRI, surf['ntri'])
write_float_matrix(fid, FIFF.FIFF_BEM_SURF_NODES, surf['rr'])
# index start at 0 in Python
write_int_matrix(fid, FIFF.FIFF_BEM_SURF_TRIANGLES,
surf['tris'] + 1)
if 'nn' in surf and surf['nn'] is not None and len(surf['nn']) > 0:
write_float_matrix(fid, FIFF.FIFF_BEM_SURF_NORMALS, surf['nn'])
end_block(fid, FIFF.FIFFB_BEM_SURF)
def write_bem_solution(fname, bem):
"""Write a BEM model with solution.
Parameters
----------
fname : str
The filename to use.
bem : instance of ConductorModel
The BEM model with solution to save.
See Also
--------
read_bem_solution
"""
_check_bem_size(bem['surfs'])
with start_file(fname) as fid:
start_block(fid, FIFF.FIFFB_BEM)
# Coordinate frame (mainly for backward compatibility)
write_int(fid, FIFF.FIFF_BEM_COORD_FRAME,
bem['surfs'][0]['coord_frame'])
# Surfaces
_write_bem_surfaces_block(fid, bem['surfs'])
# The potential solution
if 'solution' in bem:
if bem['bem_method'] != FWD.BEM_LINEAR_COLL:
raise RuntimeError('Only linear collocation supported')
write_int(fid, FIFF.FIFF_BEM_APPROX, FIFF.FIFFV_BEM_APPROX_LINEAR)
write_float_matrix(fid, FIFF.FIFF_BEM_POT_SOLUTION,
bem['solution'])
end_block(fid, FIFF.FIFFB_BEM)
end_file(fid)
# #############################################################################
# Create 3-Layers BEM model from Flash MRI images
def _prepare_env(subject, subjects_dir, requires_freesurfer):
"""Prepare an env object for subprocess calls."""
env = os.environ.copy()
if requires_freesurfer and not os.environ.get('FREESURFER_HOME'):
raise RuntimeError('I cannot find freesurfer. The FREESURFER_HOME '
'environment variable is not set.')
_validate_type(subject, "str")
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
if not op.isdir(subjects_dir):
raise RuntimeError('Could not find the MRI data directory "%s"'
% subjects_dir)
subject_dir = op.join(subjects_dir, subject)
if not op.isdir(subject_dir):
raise RuntimeError('Could not find the subject data directory "%s"'
% (subject_dir,))
env['SUBJECT'] = subject
env['SUBJECTS_DIR'] = subjects_dir
mri_dir = op.join(subject_dir, 'mri')
bem_dir = op.join(subject_dir, 'bem')
return env, mri_dir, bem_dir
@verbose
def convert_flash_mris(subject, flash30=True, convert=True, unwarp=False,
subjects_dir=None, verbose=None):
"""Convert DICOM files for use with make_flash_bem.
Parameters
----------
subject : str
Subject name.
flash30 : bool
Use 30-degree flip angle data.
convert : bool
Assume that the Flash MRI images have already been converted
to mgz files.
unwarp : bool
Run grad_unwarp with -unwarp option on each of the converted
data sets. It requires FreeSurfer's MATLAB toolbox to be properly
installed.
subjects_dir : string, or None
Path to SUBJECTS_DIR if it is not set in the environment.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Notes
-----
Before running this script do the following:
(unless convert=False is specified)
1. Copy all of your FLASH images in a single directory <source> and
create a directory <dest> to hold the output of mne_organize_dicom
2. cd to <dest> and run
$ mne_organize_dicom <source>
to create an appropriate directory structure
3. Create symbolic links to make flash05 and flash30 point to the
appropriate series:
$ ln -s <FLASH 5 series dir> flash05
$ ln -s <FLASH 30 series dir> flash30
Some partition formats (e.g. FAT32) do not support symbolic links.
In this case, copy the file to the appropriate series:
$ cp <FLASH 5 series dir> flash05
$ cp <FLASH 30 series dir> flash30
4. cd to the directory where flash05 and flash30 links are
5. Set SUBJECTS_DIR and SUBJECT environment variables appropriately
6. Run this script
This function assumes that the Freesurfer segmentation of the subject
has been completed. In particular, the T1.mgz and brain.mgz MRI volumes
should be, as usual, in the subject's mri directory.
"""
env, mri_dir = _prepare_env(subject, subjects_dir,
requires_freesurfer=True)[:2]
curdir = os.getcwd()
# Step 1a : Data conversion to mgz format
if not op.exists(op.join(mri_dir, 'flash', 'parameter_maps')):
os.makedirs(op.join(mri_dir, 'flash', 'parameter_maps'))
echos_done = 0
if convert:
logger.info("\n---- Converting Flash images ----")
echos = ['001', '002', '003', '004', '005', '006', '007', '008']
if flash30:
flashes = ['05']
else:
flashes = ['05', '30']
#
missing = False
for flash in flashes:
for echo in echos:
if not op.isdir(op.join('flash' + flash, echo)):
missing = True
if missing:
echos = ['002', '003', '004', '005', '006', '007', '008', '009']
for flash in flashes:
for echo in echos:
if not op.isdir(op.join('flash' + flash, echo)):
raise RuntimeError("Directory %s is missing."
% op.join('flash' + flash, echo))
#
for flash in flashes:
for echo in echos:
if not op.isdir(op.join('flash' + flash, echo)):
raise RuntimeError("Directory %s is missing."
% op.join('flash' + flash, echo))
sample_file = glob.glob(op.join('flash' + flash, echo, '*'))[0]
dest_file = op.join(mri_dir, 'flash',
'mef' + flash + '_' + echo + '.mgz')
# do not redo if already present
if op.isfile(dest_file):
logger.info("The file %s is already there")
else:
cmd = ['mri_convert', sample_file, dest_file]
run_subprocess(cmd, env=env)
echos_done += 1
# Step 1b : Run grad_unwarp on converted files
os.chdir(op.join(mri_dir, "flash"))
template = "mef*.mgz"
files = glob.glob(template)
if len(files) == 0:
raise ValueError('No suitable source files found (%s)'
% op.join(os.getcwd(), template))
if unwarp:
logger.info("\n---- Unwarp mgz data sets ----")
for infile in files:
outfile = infile.replace(".mgz", "u.mgz")
cmd = ['grad_unwarp', '-i', infile, '-o', outfile, '-unwarp',
'true']
run_subprocess(cmd, env=env)
# Clear parameter maps if some of the data were reconverted
if echos_done > 0 and op.exists("parameter_maps"):
shutil.rmtree("parameter_maps")
logger.info("\nParameter maps directory cleared")
if not op.exists("parameter_maps"):
os.makedirs("parameter_maps")
# Step 2 : Create the parameter maps
if flash30:
logger.info("\n---- Creating the parameter maps ----")
if unwarp:
files = glob.glob("mef05*u.mgz")
if len(os.listdir('parameter_maps')) == 0:
cmd = ['mri_ms_fitparms'] + files + ['parameter_maps']
run_subprocess(cmd, env=env)
else:
logger.info("Parameter maps were already computed")
# Step 3 : Synthesize the flash 5 images
logger.info("\n---- Synthesizing flash 5 images ----")
os.chdir('parameter_maps')
if not op.exists('flash5.mgz'):
cmd = ['mri_synthesize', '20 5 5', 'T1.mgz', 'PD.mgz',
'flash5.mgz']
run_subprocess(cmd, env=env)
os.remove('flash5_reg.mgz')
else:
logger.info("Synthesized flash 5 volume is already there")
else:
logger.info("\n---- Averaging flash5 echoes ----")
os.chdir('parameter_maps')
template = "mef05*u.mgz" if unwarp else "mef05*.mgz"
files = glob.glob(template)
if len(files) == 0:
raise ValueError('No suitable source files found (%s)'
% op.join(os.getcwd(), template))
cmd = ['mri_average', '-noconform'] + files + ['flash5.mgz']
run_subprocess(cmd, env=env)
if op.exists('flash5_reg.mgz'):
os.remove('flash5_reg.mgz')
# Go back to initial directory
os.chdir(curdir)
@verbose
def make_flash_bem(subject, overwrite=False, show=True, subjects_dir=None,
flash_path=None, verbose=None):
"""Create 3-Layer BEM model from prepared flash MRI images.
Parameters
----------
subject : str
Subject name.
overwrite : bool
Write over existing .surf files in bem folder.
show : bool
Show surfaces to visually inspect all three BEM surfaces (recommended).
subjects_dir : string, or None
Path to SUBJECTS_DIR if it is not set in the environment.
flash_path : str | None
Path to the flash images. If None (default), mri/flash/parameter_maps
within the subject reconstruction is used.
.. versionadded:: 0.13.0
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Notes
-----
This program assumes that FreeSurfer is installed and sourced properly.
This function extracts the BEM surfaces (outer skull, inner skull, and
outer skin) from multiecho FLASH MRI data with spin angles of 5 and 30
degrees, in mgz format.
See Also
--------
convert_flash_mris
"""
from .viz.misc import plot_bem
is_test = os.environ.get('MNE_SKIP_FS_FLASH_CALL', False)
env, mri_dir, bem_dir = _prepare_env(subject, subjects_dir,
requires_freesurfer=True)
if flash_path is None:
flash_path = op.join(mri_dir, 'flash', 'parameter_maps')
else:
flash_path = op.abspath(flash_path)
curdir = os.getcwd()
subjects_dir = env['SUBJECTS_DIR']
logger.info('\nProcessing the flash MRI data to produce BEM meshes with '
'the following parameters:\n'
'SUBJECTS_DIR = %s\n'
'SUBJECT = %s\n'
'Result dir = %s\n' % (subjects_dir, subject,
op.join(bem_dir, 'flash')))
# Step 4 : Register with MPRAGE
logger.info("\n---- Registering flash 5 with MPRAGE ----")
flash5 = op.join(flash_path, 'flash5.mgz')
flash5_reg = op.join(flash_path, 'flash5_reg.mgz')
if not op.exists(flash5_reg):
if op.exists(op.join(mri_dir, 'T1.mgz')):
ref_volume = op.join(mri_dir, 'T1.mgz')
else:
ref_volume = op.join(mri_dir, 'T1')
cmd = ['fsl_rigid_register', '-r', ref_volume, '-i', flash5,
'-o', flash5_reg]
run_subprocess(cmd, env=env)
else:
logger.info("Registered flash 5 image is already there")
# Step 5a : Convert flash5 into COR
logger.info("\n---- Converting flash5 volume into COR format ----")
shutil.rmtree(op.join(mri_dir, 'flash5'), ignore_errors=True)
os.makedirs(op.join(mri_dir, 'flash5'))
if not is_test: # CIs don't have freesurfer, skipped when testing.
cmd = ['mri_convert', flash5_reg, op.join(mri_dir, 'flash5')]
run_subprocess(cmd, env=env)
# Step 5b and c : Convert the mgz volumes into COR
os.chdir(mri_dir)
convert_T1 = False
if not op.isdir('T1') or len(glob.glob(op.join('T1', 'COR*'))) == 0:
convert_T1 = True
convert_brain = False
if not op.isdir('brain') or len(glob.glob(op.join('brain', 'COR*'))) == 0:
convert_brain = True
logger.info("\n---- Converting T1 volume into COR format ----")
if convert_T1:
if not op.isfile('T1.mgz'):
raise RuntimeError("Both T1 mgz and T1 COR volumes missing.")
os.makedirs('T1')
cmd = ['mri_convert', 'T1.mgz', 'T1']
run_subprocess(cmd, env=env)
else:
logger.info("T1 volume is already in COR format")
logger.info("\n---- Converting brain volume into COR format ----")
if convert_brain:
if not op.isfile('brain.mgz'):
raise RuntimeError("Both brain mgz and brain COR volumes missing.")
os.makedirs('brain')
cmd = ['mri_convert', 'brain.mgz', 'brain']
run_subprocess(cmd, env=env)
else:
logger.info("Brain volume is already in COR format")
# Finally ready to go
if not is_test: # CIs don't have freesurfer, skipped when testing.
logger.info("\n---- Creating the BEM surfaces ----")
cmd = ['mri_make_bem_surfaces', subject]
run_subprocess(cmd, env=env)
logger.info("\n---- Converting the tri files into surf files ----")
os.chdir(bem_dir)
if not op.exists('flash'):
os.makedirs('flash')
os.chdir('flash')
surfs = ['inner_skull', 'outer_skull', 'outer_skin']
for surf in surfs:
shutil.move(op.join(bem_dir, surf + '.tri'), surf + '.tri')
nodes, tris = read_tri(surf + '.tri', swap=True)
vol_info = _extract_volume_info(flash5_reg)
if vol_info is None:
warn('nibabel is required to update the volume info. Volume info '
'omitted from the written surface.')
else:
vol_info['head'] = np.array([20])
write_surface(surf + '.surf', nodes, tris, volume_info=vol_info)
# Cleanup section
logger.info("\n---- Cleaning up ----")
os.chdir(bem_dir)
os.remove('inner_skull_tmp.tri')
os.chdir(mri_dir)
if convert_T1:
shutil.rmtree('T1')
logger.info("Deleted the T1 COR volume")
if convert_brain:
shutil.rmtree('brain')
logger.info("Deleted the brain COR volume")
shutil.rmtree('flash5')
logger.info("Deleted the flash5 COR volume")
# Create symbolic links to the .surf files in the bem folder
logger.info("\n---- Creating symbolic links ----")
os.chdir(bem_dir)
for surf in surfs:
surf = surf + '.surf'
if not overwrite and op.exists(surf):
skip_symlink = True
else:
if op.exists(surf):
os.remove(surf)
_symlink(op.join('flash', surf), op.join(surf))
skip_symlink = False
if skip_symlink:
logger.info("Unable to create all symbolic links to .surf files "
"in bem folder. Use --overwrite option to recreate them.")
dest = op.join(bem_dir, 'flash')
else:
logger.info("Symbolic links to .surf files created in bem folder")
dest = bem_dir
logger.info("\nThank you for waiting.\nThe BEM triangulations for this "
"subject are now available at:\n%s.\nWe hope the BEM meshes "
"created will facilitate your MEG and EEG data analyses."
% dest)
# Show computed BEM surfaces
if show:
plot_bem(subject=subject, subjects_dir=subjects_dir,
orientation='coronal', slices=None, show=True)
# Go back to initial directory
os.chdir(curdir)
def _check_bem_size(surfs):
"""Check bem surface sizes."""
if len(surfs) > 1 and surfs[0]['np'] > 10000:
warn('The bem surfaces have %s data points. 5120 (ico grade=4) '
'should be enough. Dense 3-layer bems may not save properly.' %
surfs[0]['np'])
def _symlink(src, dest):
"""Create a relative symlink."""
src = op.relpath(src, op.dirname(dest))
try:
os.symlink(src, dest)
except OSError:
warn('Could not create symbolic link %s. Check that your partition '
'handles symbolic links. The file will be copied instead.' % dest)
shutil.copy(src, dest)
|