1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
# Denis Engemann <denis.engemann@gmail.com>
# Andrew Dykstra <andrew.r.dykstra@gmail.com>
# Teon Brooks <teon.brooks@gmail.com>
#
# License: BSD (3-clause)
import os
import os.path as op
import sys
import numpy as np
from scipy import sparse
from ..externals.six import string_types
from ..utils import verbose, logger, warn, copy_function_doc_to_method_doc
from ..utils import _check_preload, _validate_type
from ..io.compensator import get_current_comp
from ..io.constants import FIFF
from ..io.meas_info import anonymize_info, Info
from ..io.pick import (channel_type, pick_info, pick_types, _picks_by_type,
_check_excludes_includes, _PICK_TYPES_KEYS,
channel_indices_by_type, pick_channels)
def _get_meg_system(info):
"""Educated guess for the helmet type based on channels."""
have_helmet = True
for ch in info['chs']:
if ch['kind'] == FIFF.FIFFV_MEG_CH:
# Only take first 16 bits, as higher bits store CTF grad comp order
coil_type = ch['coil_type'] & 0xFFFF
if coil_type == FIFF.FIFFV_COIL_NM_122:
system = '122m'
break
elif coil_type // 1000 == 3: # All Vectorview coils are 30xx
system = '306m'
break
elif (coil_type == FIFF.FIFFV_COIL_MAGNES_MAG or
coil_type == FIFF.FIFFV_COIL_MAGNES_GRAD):
nmag = np.sum([c['kind'] == FIFF.FIFFV_MEG_CH
for c in info['chs']])
system = 'Magnes_3600wh' if nmag > 150 else 'Magnes_2500wh'
break
elif coil_type == FIFF.FIFFV_COIL_CTF_GRAD:
system = 'CTF_275'
break
elif coil_type == FIFF.FIFFV_COIL_KIT_GRAD:
system = 'KIT'
break
elif coil_type == FIFF.FIFFV_COIL_BABY_GRAD:
system = 'BabySQUID'
break
elif coil_type == FIFF.FIFFV_COIL_ARTEMIS123_GRAD:
system = 'ARTEMIS123'
have_helmet = False
break
else:
system = 'unknown'
have_helmet = False
return system, have_helmet
def _contains_ch_type(info, ch_type):
"""Check whether a certain channel type is in an info object.
Parameters
----------
info : instance of Info
The measurement information.
ch_type : str
the channel type to be checked for
Returns
-------
has_ch_type : bool
Whether the channel type is present or not.
"""
_validate_type(ch_type, 'str', "ch_type")
meg_extras = ['mag', 'grad', 'planar1', 'planar2']
fnirs_extras = ['hbo', 'hbr']
valid_channel_types = sorted([key for key in _PICK_TYPES_KEYS
if key != 'meg'] + meg_extras + fnirs_extras)
if ch_type not in valid_channel_types:
raise ValueError('ch_type must be one of %s, not "%s"'
% (valid_channel_types, ch_type))
if info is None:
raise ValueError('Cannot check for channels of type "%s" because info '
'is None' % (ch_type,))
return ch_type in [channel_type(info, ii) for ii in range(info['nchan'])]
def _get_ch_type(inst, ch_type):
"""Choose a single channel type (usually for plotting).
Usually used in plotting to plot a single datatype, e.g. look for mags,
then grads, then ... to plot.
"""
if ch_type is None:
for type_ in ['mag', 'grad', 'planar1', 'planar2', 'eeg']:
if isinstance(inst, Info):
if _contains_ch_type(inst, type_):
ch_type = type_
break
elif type_ in inst:
ch_type = type_
break
else:
raise RuntimeError('No plottable channel types found')
return ch_type
@verbose
def equalize_channels(candidates, verbose=None):
"""Equalize channel picks for a collection of MNE-Python objects.
Parameters
----------
candidates : list
list Raw | Epochs | Evoked | AverageTFR
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Notes
-----
This function operates inplace.
"""
from ..io.base import BaseRaw
from ..epochs import BaseEpochs
from ..evoked import Evoked
from ..time_frequency import _BaseTFR
for candidate in candidates:
_validate_type(candidate,
(BaseRaw, BaseEpochs, Evoked, _BaseTFR),
"Instances to be modified",
"Raw, Epochs, Evoked or TFR")
chan_max_idx = np.argmax([c.info['nchan'] for c in candidates])
chan_template = candidates[chan_max_idx].ch_names
logger.info('Identifying common channels ...')
channels = [set(c.ch_names) for c in candidates]
common_channels = set(chan_template).intersection(*channels)
dropped = list()
for c in candidates:
drop_them = list(set(c.ch_names) - common_channels)
if drop_them:
c.drop_channels(drop_them)
dropped.extend(drop_them)
if dropped:
dropped = list(set(dropped))
logger.info('Dropped the following channels:\n%s' % dropped)
else:
logger.info('all channels are corresponding, nothing to do.')
class ContainsMixin(object):
"""Mixin class for Raw, Evoked, Epochs."""
def __contains__(self, ch_type):
"""Check channel type membership.
Parameters
----------
ch_type : str
Channel type to check for. Can be e.g. 'meg', 'eeg', 'stim', etc.
Returns
-------
in : bool
Whether or not the instance contains the given channel type.
Examples
--------
Channel type membership can be tested as::
>>> 'meg' in inst # doctest: +SKIP
True
>>> 'seeg' in inst # doctest: +SKIP
False
"""
if ch_type == 'meg':
has_ch_type = (_contains_ch_type(self.info, 'mag') or
_contains_ch_type(self.info, 'grad'))
else:
has_ch_type = _contains_ch_type(self.info, ch_type)
return has_ch_type
@property
def compensation_grade(self):
"""The current gradient compensation grade."""
return get_current_comp(self.info)
# XXX Eventually de-duplicate with _kind_dict of mne/io/meas_info.py
_human2fiff = {'ecg': FIFF.FIFFV_ECG_CH,
'eeg': FIFF.FIFFV_EEG_CH,
'emg': FIFF.FIFFV_EMG_CH,
'eog': FIFF.FIFFV_EOG_CH,
'exci': FIFF.FIFFV_EXCI_CH,
'ias': FIFF.FIFFV_IAS_CH,
'misc': FIFF.FIFFV_MISC_CH,
'resp': FIFF.FIFFV_RESP_CH,
'seeg': FIFF.FIFFV_SEEG_CH,
'stim': FIFF.FIFFV_STIM_CH,
'syst': FIFF.FIFFV_SYST_CH,
'bio': FIFF.FIFFV_BIO_CH,
'ecog': FIFF.FIFFV_ECOG_CH,
'hbo': FIFF.FIFFV_FNIRS_CH,
'hbr': FIFF.FIFFV_FNIRS_CH}
_human2unit = {'ecg': FIFF.FIFF_UNIT_V,
'eeg': FIFF.FIFF_UNIT_V,
'emg': FIFF.FIFF_UNIT_V,
'eog': FIFF.FIFF_UNIT_V,
'exci': FIFF.FIFF_UNIT_NONE,
'ias': FIFF.FIFF_UNIT_NONE,
'misc': FIFF.FIFF_UNIT_V,
'resp': FIFF.FIFF_UNIT_NONE,
'seeg': FIFF.FIFF_UNIT_V,
'stim': FIFF.FIFF_UNIT_NONE,
'syst': FIFF.FIFF_UNIT_NONE,
'bio': FIFF.FIFF_UNIT_V,
'ecog': FIFF.FIFF_UNIT_V,
'hbo': FIFF.FIFF_UNIT_MOL,
'hbr': FIFF.FIFF_UNIT_MOL}
_unit2human = {FIFF.FIFF_UNIT_V: 'V',
FIFF.FIFF_UNIT_T: 'T',
FIFF.FIFF_UNIT_T_M: 'T/m',
FIFF.FIFF_UNIT_MOL: 'M',
FIFF.FIFF_UNIT_NONE: 'NA'}
def _check_set(ch, projs, ch_type):
"""Ensure type change is compatible with projectors."""
new_kind = _human2fiff[ch_type]
if ch['kind'] != new_kind:
for proj in projs:
if ch['ch_name'] in proj['data']['col_names']:
raise RuntimeError('Cannot change channel type for channel %s '
'in projector "%s"'
% (ch['ch_name'], proj['desc']))
ch['kind'] = new_kind
class SetChannelsMixin(object):
"""Mixin class for Raw, Evoked, Epochs."""
@verbose
def set_eeg_reference(self, ref_channels='average', projection=False,
verbose=None):
"""Specify which reference to use for EEG data.
By default, MNE-Python will automatically re-reference the EEG signal
to use an average reference (see below). Use this function to
explicitly specify the desired reference for EEG. This can be either an
existing electrode or a new virtual channel. This function will
re-reference the data according to the desired reference and prevent
MNE-Python from automatically adding an average reference projection.
Some common referencing schemes and the corresponding value for the
``ref_channels`` parameter:
No re-referencing:
If the EEG data is already using the proper reference, set
``ref_channels=[]``. This will prevent MNE-Python from
automatically adding an average reference projection.
Average reference:
A new virtual reference electrode is created by averaging the
current EEG signal by setting ``ref_channels='average'``. Bad EEG
channels are automatically excluded if they are properly set in
``info['bads']``.
A single electrode:
Set ``ref_channels`` to a list containing the name of the channel
that will act as the new reference, for example
``ref_channels=['Cz']``.
The mean of multiple electrodes:
A new virtual reference electrode is created by computing the
average of the current EEG signal recorded from two or more
selected channels. Set ``ref_channels`` to a list of channel names,
indicating which channels to use. For example, to apply an average
mastoid reference, when using the 10-20 naming scheme, set
``ref_channels=['M1', 'M2']``.
Parameters
----------
ref_channels : list of str | str
The name(s) of the channel(s) used to construct the reference. To
apply an average reference, specify ``'average'`` here (default).
If an empty list is specified, the data is assumed to already have
a proper reference and MNE will not attempt any re-referencing of
the data. Defaults to an average reference.
projection : bool
If ``ref_channels='average'`` this argument specifies if the
average reference should be computed as a projection (True) or not
(False; default). If ``projection=True``, the average reference is
added as a projection and is not applied to the data (it can be
applied afterwards with the ``apply_proj`` method). If
``projection=False``, the average reference is directly applied to
the data. If ``ref_channels`` is not ``'average'``, ``projection``
must be set to ``False`` (the default in this case).
verbose : bool, str, int, or None
If not None, override default verbose level (see
:func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
for more).
Returns
-------
inst : instance of Raw | Epochs | Evoked
Data with EEG channels re-referenced. If ``ref_channels='average'``
and ``projection=True`` a projection will be added instead of
directly re-referencing the data.
See Also
--------
mne.set_bipolar_reference : Convenience function for creating bipolar
references.
Notes
-----
1. If a reference is requested that is not the average reference, this
function removes any pre-existing average reference projections.
2. During source localization, the EEG signal should have an average
reference.
3. In order to apply a reference, the data must be preloaded. This is
not necessary if ``ref_channels='average'`` and ``projection=True``.
4. For an average reference, bad EEG channels are automatically
excluded if they are properly set in ``info['bads']``.
.. versionadded:: 0.9.0
"""
from ..io.reference import set_eeg_reference
return set_eeg_reference(self, ref_channels=ref_channels, copy=False,
projection=projection)[0]
def _get_channel_positions(self, picks=None):
"""Get channel locations from info.
Parameters
----------
picks : array-like of int | None
Indices of channels to include. If None (default), all meg and eeg
channels that are available are returned (bad channels excluded).
Notes
-----
.. versionadded:: 0.9.0
"""
if picks is None:
picks = pick_types(self.info, meg=True, eeg=True)
chs = self.info['chs']
pos = np.array([chs[k]['loc'][:3] for k in picks])
n_zero = np.sum(np.sum(np.abs(pos), axis=1) == 0)
if n_zero > 1: # XXX some systems have origin (0, 0, 0)
raise ValueError('Could not extract channel positions for '
'{} channels'.format(n_zero))
return pos
def _set_channel_positions(self, pos, names):
"""Update channel locations in info.
Parameters
----------
pos : array-like | np.ndarray, shape (n_points, 3)
The channel positions to be set.
names : list of str
The names of the channels to be set.
Notes
-----
.. versionadded:: 0.9.0
"""
if len(pos) != len(names):
raise ValueError('Number of channel positions not equal to '
'the number of names given.')
pos = np.asarray(pos, dtype=np.float)
if pos.shape[-1] != 3 or pos.ndim != 2:
msg = ('Channel positions must have the shape (n_points, 3) '
'not %s.' % (pos.shape,))
raise ValueError(msg)
for name, p in zip(names, pos):
if name in self.ch_names:
idx = self.ch_names.index(name)
self.info['chs'][idx]['loc'][:3] = p
else:
msg = ('%s was not found in the info. Cannot be updated.'
% name)
raise ValueError(msg)
def set_channel_types(self, mapping):
"""Define the sensor type of channels.
Note: The following sensor types are accepted:
ecg, eeg, emg, eog, exci, ias, misc, resp, seeg, stim, syst, ecog,
hbo, hbr
Parameters
----------
mapping : dict
a dictionary mapping a channel to a sensor type (str)
{'EEG061': 'eog'}.
Notes
-----
.. versionadded:: 0.9.0
"""
ch_names = self.info['ch_names']
# first check and assemble clean mappings of index and name
unit_changes = dict()
for ch_name, ch_type in mapping.items():
if ch_name not in ch_names:
raise ValueError("This channel name (%s) doesn't exist in "
"info." % ch_name)
c_ind = ch_names.index(ch_name)
if ch_type not in _human2fiff:
raise ValueError('This function cannot change to this '
'channel type: %s. Accepted channel types '
'are %s.'
% (ch_type,
", ".join(sorted(_human2unit.keys()))))
# Set sensor type
_check_set(self.info['chs'][c_ind], self.info['projs'], ch_type)
unit_old = self.info['chs'][c_ind]['unit']
unit_new = _human2unit[ch_type]
if unit_old not in _unit2human:
raise ValueError("Channel '%s' has unknown unit (%s). Please "
"fix the measurement info of your data."
% (ch_name, unit_old))
if unit_old != _human2unit[ch_type]:
this_change = (_unit2human[unit_old], _unit2human[unit_new])
if this_change not in unit_changes:
unit_changes[this_change] = list()
unit_changes[this_change].append(ch_name)
self.info['chs'][c_ind]['unit'] = _human2unit[ch_type]
if ch_type in ['eeg', 'seeg', 'ecog']:
coil_type = FIFF.FIFFV_COIL_EEG
elif ch_type == 'hbo':
coil_type = FIFF.FIFFV_COIL_FNIRS_HBO
elif ch_type == 'hbr':
coil_type = FIFF.FIFFV_COIL_FNIRS_HBR
else:
coil_type = FIFF.FIFFV_COIL_NONE
self.info['chs'][c_ind]['coil_type'] = coil_type
msg = "The unit for channel(s) {0} has changed from {1} to {2}."
for this_change, names in unit_changes.items():
warn(msg.format(", ".join(sorted(names)), *this_change))
def rename_channels(self, mapping):
"""Rename channels.
Parameters
----------
mapping : dict | callable
a dictionary mapping the old channel to a new channel name
e.g. {'EEG061' : 'EEG161'}. Can also be a callable function
that takes and returns a string (new in version 0.10.0).
Notes
-----
.. versionadded:: 0.9.0
"""
rename_channels(self.info, mapping)
@verbose
def set_montage(self, montage, set_dig=True, verbose=None):
"""Set EEG sensor configuration and head digitization.
Parameters
----------
montage : instance of Montage | instance of DigMontage | str | None
The montage to use (None removes any location information).
set_dig : bool
If True, update the digitization information (``info['dig']``)
in addition to the channel positions (``info['chs'][idx]['loc']``).
.. versionadded: 0.15
verbose : bool, str, int, or None
If not None, override default verbose level (see
:func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
for more).
Notes
-----
Operates in place.
.. versionadded:: 0.9.0
"""
from .montage import _set_montage
_set_montage(self.info, montage, set_dig=set_dig)
return self
def plot_sensors(self, kind='topomap', ch_type=None, title=None,
show_names=False, ch_groups=None, to_sphere=True,
axes=None, block=False, show=True):
"""Plot sensor positions.
Parameters
----------
kind : str
Whether to plot the sensors as 3d, topomap or as an interactive
sensor selection dialog. Available options 'topomap', '3d',
'select'. If 'select', a set of channels can be selected
interactively by using lasso selector or clicking while holding
control key. The selected channels are returned along with the
figure instance. Defaults to 'topomap'.
ch_type : None | str
The channel type to plot. Available options 'mag', 'grad', 'eeg',
'seeg', 'ecog', 'all'. If ``'all'``, all the available mag, grad,
eeg, seeg and ecog channels are plotted. If None (default), then
channels are chosen in the order given above.
title : str | None
Title for the figure. If None (default), equals to ``'Sensor
positions (%s)' % ch_type``.
show_names : bool | array of str
Whether to display all channel names. If an array, only the channel
names in the array are shown. Defaults to False.
ch_groups : 'position' | array of shape (ch_groups, picks) | None
Channel groups for coloring the sensors. If None (default), default
coloring scheme is used. If 'position', the sensors are divided
into 8 regions. See ``order`` kwarg of :func:`mne.viz.plot_raw`. If
array, the channels are divided by picks given in the array.
.. versionadded:: 0.13.0
to_sphere : bool
Whether to project the 3d locations to a sphere. When False, the
sensor array appears similar as to looking downwards straight above
the subject's head. Has no effect when kind='3d'. Defaults to True.
.. versionadded:: 0.14.0
axes : instance of Axes | instance of Axes3D | None
Axes to draw the sensors to. If ``kind='3d'``, axes must be an
instance of Axes3D. If None (default), a new axes will be created.
.. versionadded:: 0.13.0
block : bool
Whether to halt program execution until the figure is closed.
Defaults to False.
.. versionadded:: 0.13.0
show : bool
Show figure if True. Defaults to True.
Returns
-------
fig : instance of matplotlib figure
Figure containing the sensor topography.
selection : list
A list of selected channels. Only returned if ``kind=='select'``.
See Also
--------
mne.viz.plot_layout
Notes
-----
This function plots the sensor locations from the info structure using
matplotlib. For drawing the sensors using mayavi see
:func:`mne.viz.plot_alignment`.
.. versionadded:: 0.12.0
"""
from ..viz.utils import plot_sensors
return plot_sensors(self.info, kind=kind, ch_type=ch_type, title=title,
show_names=show_names, ch_groups=ch_groups,
to_sphere=to_sphere, axes=axes, block=block,
show=show)
@copy_function_doc_to_method_doc(anonymize_info)
def anonymize(self):
"""
.. versionadded:: 0.13.0
"""
anonymize_info(self.info)
if hasattr(self, 'annotations'):
# XXX : anonymize should rather subtract a random date
# rather than setting it to None
self.annotations.orig_time = None
self.annotations.onset -= self._first_time
return self
class UpdateChannelsMixin(object):
"""Mixin class for Raw, Evoked, Epochs, AverageTFR."""
@verbose
def pick_types(self, meg=True, eeg=False, stim=False, eog=False,
ecg=False, emg=False, ref_meg='auto', misc=False,
resp=False, chpi=False, exci=False, ias=False, syst=False,
seeg=False, dipole=False, gof=False, bio=False, ecog=False,
fnirs=False, include=(), exclude='bads', selection=None,
verbose=None):
"""Pick some channels by type and names.
Parameters
----------
meg : bool | str
If True include all MEG channels. If False include None
If string it can be 'mag', 'grad', 'planar1' or 'planar2' to select
only magnetometers, all gradiometers, or a specific type of
gradiometer.
eeg : bool
If True include EEG channels.
stim : bool
If True include stimulus channels.
eog : bool
If True include EOG channels.
ecg : bool
If True include ECG channels.
emg : bool
If True include EMG channels.
ref_meg: bool | str
If True include CTF / 4D reference channels. If 'auto', the
reference channels are only included if compensations are present.
misc : bool
If True include miscellaneous analog channels.
resp : bool
If True include response-trigger channel. For some MEG systems this
is separate from the stim channel.
chpi : bool
If True include continuous HPI coil channels.
exci : bool
Flux excitation channel used to be a stimulus channel.
ias : bool
Internal Active Shielding data (maybe on Triux only).
syst : bool
System status channel information (on Triux systems only).
seeg : bool
Stereotactic EEG channels.
dipole : bool
Dipole time course channels.
gof : bool
Dipole goodness of fit channels.
bio : bool
Bio channels.
ecog : bool
Electrocorticography channels.
fnirs : bool | str
Functional near-infrared spectroscopy channels. If True include all
fNIRS channels. If False (default) include none. If string it can
be 'hbo' (to include channels measuring oxyhemoglobin) or 'hbr' (to
include channels measuring deoxyhemoglobin).
include : list of string
List of additional channels to include. If empty do not include
any.
exclude : list of string | str
List of channels to exclude. If 'bads' (default), exclude channels
in ``info['bads']``.
selection : list of string
Restrict sensor channels (MEG, EEG) to this list of channel names.
verbose : bool, str, int, or None
If not None, override default verbose level (see
:func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
for more).
Returns
-------
inst : instance of Raw, Epochs, or Evoked
The modified instance.
See Also
--------
pick_channels
Notes
-----
.. versionadded:: 0.9.0
"""
idx = pick_types(
self.info, meg=meg, eeg=eeg, stim=stim, eog=eog, ecg=ecg, emg=emg,
ref_meg=ref_meg, misc=misc, resp=resp, chpi=chpi, exci=exci,
ias=ias, syst=syst, seeg=seeg, dipole=dipole, gof=gof, bio=bio,
ecog=ecog, fnirs=fnirs, include=include, exclude=exclude,
selection=selection)
return self._pick_drop_channels(idx)
def pick_channels(self, ch_names):
"""Pick some channels.
Parameters
----------
ch_names : list
The list of channels to select.
Returns
-------
inst : instance of Raw, Epochs, or Evoked
The modified instance.
See Also
--------
drop_channels
pick_types
reorder_channels
Notes
-----
The channel names given are assumed to be a set, i.e. the order
does not matter. The original order of the channels is preserved.
You can use ``reorder_channels`` to set channel order if necessary.
.. versionadded:: 0.9.0
"""
return self._pick_drop_channels(
pick_channels(self.info['ch_names'], ch_names))
def reorder_channels(self, ch_names):
"""Reorder channels.
Parameters
----------
ch_names : list
The desired channel order.
Returns
-------
inst : instance of Raw, Epochs, or Evoked
The modified instance.
See Also
--------
drop_channels
pick_types
pick_channels
Notes
-----
Channel names must be unique. Channels that are not in ``ch_names``
are dropped.
.. versionadded:: 0.16.0
"""
_check_excludes_includes(ch_names)
idx = list()
for ch_name in ch_names:
ii = self.ch_names.index(ch_name)
if ii in idx:
raise ValueError('Channel name repeated: %s' % (ch_name,))
idx.append(ii)
return self._pick_drop_channels(idx)
def drop_channels(self, ch_names):
"""Drop some channels.
Parameters
----------
ch_names : list
List of the names of the channels to remove.
Returns
-------
inst : instance of Raw, Epochs, or Evoked
The modified instance.
See Also
--------
reorder_channels
pick_channels
pick_types
Notes
-----
.. versionadded:: 0.9.0
"""
msg = ("'ch_names' should be a list of strings (the name[s] of the "
"channel to be dropped), not a {0}.")
if isinstance(ch_names, string_types):
raise ValueError(msg.format("string"))
else:
if not all([isinstance(ch_name, string_types)
for ch_name in ch_names]):
raise ValueError(msg.format(type(ch_names[0])))
missing = [ch_name for ch_name in ch_names
if ch_name not in self.ch_names]
if len(missing) > 0:
msg = "Channel(s) {0} not found, nothing dropped."
raise ValueError(msg.format(", ".join(missing)))
bad_idx = [self.ch_names.index(ch_name) for ch_name in ch_names
if ch_name in self.ch_names]
idx = np.setdiff1d(np.arange(len(self.ch_names)), bad_idx)
return self._pick_drop_channels(idx)
def _pick_drop_channels(self, idx):
# avoid circular imports
from ..time_frequency import AverageTFR, EpochsTFR
_check_preload(self, 'adding, dropping, or reordering channels')
if getattr(self, 'picks', None) is not None:
self.picks = self.picks[idx]
if hasattr(self, '_cals'):
self._cals = self._cals[idx]
pick_info(self.info, idx, copy=False)
if getattr(self, '_projector', None) is not None:
self._projector = self._projector[idx][:, idx]
# All others (Evoked, Epochs, Raw) have chs axis=-2
axis = -3 if isinstance(self, (AverageTFR, EpochsTFR)) else -2
self._data = self._data.take(idx, axis=axis)
return self
def add_channels(self, add_list, force_update_info=False):
"""Append new channels to the instance.
Parameters
----------
add_list : list
A list of objects to append to self. Must contain all the same
type as the current object
force_update_info : bool
If True, force the info for objects to be appended to match the
values in `self`. This should generally only be used when adding
stim channels for which important metadata won't be overwritten.
.. versionadded:: 0.12
Returns
-------
inst : instance of Raw, Epochs, or Evoked
The modified instance.
See Also
--------
drop_channels
Notes
-----
If ``self`` is a Raw instance that has been preloaded into a
:obj:`numpy.memmap` instance, the memmap will be resized.
"""
# avoid circular imports
from ..io import BaseRaw, _merge_info
from ..epochs import BaseEpochs
_validate_type(add_list, (list, tuple), 'Input')
# Object-specific checks
for inst in add_list + [self]:
_check_preload(inst, "adding channels")
if isinstance(self, BaseRaw):
con_axis = 0
comp_class = BaseRaw
elif isinstance(self, BaseEpochs):
con_axis = 1
comp_class = BaseEpochs
else:
con_axis = 0
comp_class = type(self)
for inst in add_list:
_validate_type(inst, comp_class, 'All input')
data = [inst._data for inst in [self] + add_list]
# Make sure that all dimensions other than channel axis are the same
compare_axes = [i for i in range(data[0].ndim) if i != con_axis]
shapes = np.array([dat.shape for dat in data])[:, compare_axes]
for shape in shapes:
if not ((shapes[0] - shape) == 0).all():
raise AssertionError('All data dimensions except channels '
'must match, got %s != %s'
% (shapes[0], shape))
del shapes
# Create final data / info objects
infos = [self.info] + [inst.info for inst in add_list]
new_info = _merge_info(infos, force_update_to_first=force_update_info)
# Now update the attributes
if isinstance(self._data, np.memmap) and con_axis == 0 and \
sys.platform != 'darwin': # resizing not available--no mremap
# Use a resize and fill in other ones
out_shape = (sum(d.shape[0] for d in data),) + data[0].shape[1:]
n_bytes = np.prod(out_shape) * self._data.dtype.itemsize
self._data.flush()
self._data.base.resize(n_bytes)
self._data = np.memmap(self._data.filename, mode='r+',
dtype=self._data.dtype, shape=out_shape)
assert self._data.shape == out_shape
assert self._data.nbytes == n_bytes
offset = len(data[0])
for d in data[1:]:
this_len = len(d)
self._data[offset:offset + this_len] = d
offset += this_len
else:
self._data = np.concatenate(data, axis=con_axis)
self.info = new_info
if isinstance(self, BaseRaw):
self._cals = np.concatenate([getattr(inst, '_cals')
for inst in [self] + add_list])
return self
class InterpolationMixin(object):
"""Mixin class for Raw, Evoked, Epochs."""
@verbose
def interpolate_bads(self, reset_bads=True, mode='accurate',
origin=(0., 0., 0.04), verbose=None):
"""Interpolate bad MEG and EEG channels.
Operates in place.
Parameters
----------
reset_bads : bool
If True, remove the bads from info.
mode : str
Either ``'accurate'`` or ``'fast'``, determines the quality of the
Legendre polynomial expansion used for interpolation of MEG
channels.
origin : array-like, shape (3,) | str
Origin of the sphere in the head coordinate frame and in meters.
Can be ``'auto'``, which means a head-digitization-based origin
fit. Default is ``(0., 0., 0.04)``.
.. versionadded:: 0.17
verbose : bool, str, int, or None
If not None, override default verbose level (see
:func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
for more).
Returns
-------
inst : instance of Raw, Epochs, or Evoked
The modified instance.
Notes
-----
.. versionadded:: 0.9.0
"""
from .interpolation import _interpolate_bads_eeg, _interpolate_bads_meg
_check_preload(self, "interpolation")
if len(self.info['bads']) == 0:
warn('No bad channels to interpolate. Doing nothing...')
return self
_interpolate_bads_eeg(self)
_interpolate_bads_meg(self, mode=mode, origin=origin)
if reset_bads is True:
self.info['bads'] = []
return self
def rename_channels(info, mapping):
"""Rename channels.
.. warning:: The channel names must have at most 15 characters
Parameters
----------
info : dict
Measurement info.
mapping : dict | callable
a dictionary mapping the old channel to a new channel name
e.g. {'EEG061' : 'EEG161'}. Can also be a callable function
that takes and returns a string (new in version 0.10.0).
"""
info._check_consistency()
bads = list(info['bads']) # make our own local copies
ch_names = list(info['ch_names'])
# first check and assemble clean mappings of index and name
if isinstance(mapping, dict):
orig_names = sorted(list(mapping.keys()))
missing = [orig_name not in ch_names for orig_name in orig_names]
if any(missing):
raise ValueError("Channel name(s) in mapping missing from info: "
"%s" % np.array(orig_names)[np.array(missing)])
new_names = [(ch_names.index(ch_name), new_name)
for ch_name, new_name in mapping.items()]
elif callable(mapping):
new_names = [(ci, mapping(ch_name))
for ci, ch_name in enumerate(ch_names)]
else:
raise ValueError('mapping must be callable or dict, not %s'
% (type(mapping),))
# check we got all strings out of the mapping
for new_name in new_names:
_validate_type(new_name[1], 'str', 'New channel mappings')
bad_new_names = [name for _, name in new_names if len(name) > 15]
if len(bad_new_names):
raise ValueError('Channel names cannot be longer than 15 '
'characters. These channel names are not '
'valid : %s' % new_names)
# do the remapping locally
for c_ind, new_name in new_names:
for bi, bad in enumerate(bads):
if bad == ch_names[c_ind]:
bads[bi] = new_name
ch_names[c_ind] = new_name
# check that all the channel names are unique
if len(ch_names) != len(np.unique(ch_names)):
raise ValueError('New channel names are not unique, renaming failed')
# do the reampping in info
info['bads'] = bads
for ch, ch_name in zip(info['chs'], ch_names):
ch['ch_name'] = ch_name
info._update_redundant()
info._check_consistency()
def _recursive_flatten(cell, dtype):
"""Unpack mat files in Python."""
if len(cell) > 0:
while not isinstance(cell[0], dtype):
cell = [c for d in cell for c in d]
return cell
def read_ch_connectivity(fname, picks=None):
"""Parse FieldTrip neighbors .mat file.
More information on these neighbor definitions can be found on the related
FieldTrip documentation pages:
http://fieldtrip.fcdonders.nl/template/neighbours
Parameters
----------
fname : str
The file name. Example: 'neuromag306mag', 'neuromag306planar',
'ctf275', 'biosemi64', etc.
picks : array-like of int, shape (n_channels,)
The indices of the channels to include. Must match the template.
Defaults to None.
Returns
-------
ch_connectivity : scipy.sparse matrix, shape (n_channels, n_channels)
The connectivity matrix.
ch_names : list
The list of channel names present in connectivity matrix.
See Also
--------
find_ch_connectivity
Notes
-----
This function is closely related to :func:`find_ch_connectivity`. If you
don't know the correct file for the neighbor definitions,
:func:`find_ch_connectivity` can compute the connectivity matrix from 2d
sensor locations.
"""
from scipy.io import loadmat
if not op.isabs(fname):
templates_dir = op.realpath(op.join(op.dirname(__file__),
'data', 'neighbors'))
templates = os.listdir(templates_dir)
for f in templates:
if f == fname:
break
if f == fname + '_neighb.mat':
fname += '_neighb.mat'
break
else:
raise ValueError('I do not know about this neighbor '
'template: "{}"'.format(fname))
fname = op.join(templates_dir, fname)
nb = loadmat(fname)['neighbours']
ch_names = _recursive_flatten(nb['label'], string_types)
neighbors = [_recursive_flatten(c, string_types) for c in
nb['neighblabel'].flatten()]
assert len(ch_names) == len(neighbors)
if picks is not None:
if max(picks) >= len(ch_names):
raise ValueError('The picks must be compatible with '
'channels. Found a pick ({}) which exceeds '
'the channel range ({})'
.format(max(picks), len(ch_names)))
connectivity = _ch_neighbor_connectivity(ch_names, neighbors)
if picks is not None:
# picking before constructing matrix is buggy
connectivity = connectivity[picks][:, picks]
ch_names = [ch_names[p] for p in picks]
return connectivity, ch_names
def _ch_neighbor_connectivity(ch_names, neighbors):
"""Compute sensor connectivity matrix.
Parameters
----------
ch_names : list of str
The channel names.
neighbors : list of list
A list of list of channel names. The neighbors to
which the channels in ch_names are connected with.
Must be of the same length as ch_names.
Returns
-------
ch_connectivity : scipy.sparse matrix
The connectivity matrix.
"""
if len(ch_names) != len(neighbors):
raise ValueError('`ch_names` and `neighbors` must '
'have the same length')
set_neighbors = set([c for d in neighbors for c in d])
rest = set_neighbors - set(ch_names)
if len(rest) > 0:
raise ValueError('Some of your neighbors are not present in the '
'list of channel names')
for neigh in neighbors:
if (not isinstance(neigh, list) and
not all(isinstance(c, string_types) for c in neigh)):
raise ValueError('`neighbors` must be a list of lists of str')
ch_connectivity = np.eye(len(ch_names), dtype=bool)
for ii, neigbs in enumerate(neighbors):
ch_connectivity[ii, [ch_names.index(i) for i in neigbs]] = True
ch_connectivity = sparse.csr_matrix(ch_connectivity)
return ch_connectivity
def find_ch_connectivity(info, ch_type):
"""Find the connectivity matrix for the given channels.
This function tries to infer the appropriate connectivity matrix template
for the given channels. If a template is not found, the connectivity matrix
is computed using Delaunay triangulation based on 2d sensor locations.
Parameters
----------
info : instance of Info
The measurement info.
ch_type : str | None
The channel type for computing the connectivity matrix. Currently
supports 'mag', 'grad', 'eeg' and None. If None, the info must contain
only one channel type.
Returns
-------
ch_connectivity : scipy.sparse matrix, shape (n_channels, n_channels)
The connectivity matrix.
ch_names : list
The list of channel names present in connectivity matrix.
See Also
--------
read_ch_connectivity
Notes
-----
.. versionadded:: 0.15
Automatic detection of an appropriate connectivity matrix template only
works for MEG data at the moment. This means that the connectivity matrix
is always computed for EEG data and never loaded from a template file. If
you want to load a template for a given montage use
:func:`read_ch_connectivity` directly.
"""
if ch_type is None:
picks = channel_indices_by_type(info)
if sum([len(p) != 0 for p in picks.values()]) != 1:
raise ValueError('info must contain only one channel type if '
'ch_type is None.')
ch_type = channel_type(info, 0)
elif ch_type not in ['mag', 'grad', 'eeg']:
raise ValueError("ch_type must be 'mag', 'grad' or 'eeg'. "
"Got %s." % ch_type)
(has_vv_mag, has_vv_grad, is_old_vv, has_4D_mag, ctf_other_types,
has_CTF_grad, n_kit_grads, has_any_meg, has_eeg_coils,
has_eeg_coils_and_meg, has_eeg_coils_only,
has_neuromag_122_grad) = _get_ch_info(info)
conn_name = None
if has_vv_mag and ch_type == 'mag':
conn_name = 'neuromag306mag'
elif has_vv_grad and ch_type == 'grad':
conn_name = 'neuromag306planar'
elif has_neuromag_122_grad:
conn_name = 'neuromag122'
elif has_4D_mag:
if 'MEG 248' in info['ch_names']:
idx = info['ch_names'].index('MEG 248')
grad = info['chs'][idx]['coil_type'] == FIFF.FIFFV_COIL_MAGNES_GRAD
mag = info['chs'][idx]['coil_type'] == FIFF.FIFFV_COIL_MAGNES_MAG
if ch_type == 'grad' and grad:
conn_name = 'bti248grad'
elif ch_type == 'mag' and mag:
conn_name = 'bti248'
elif 'MEG 148' in info['ch_names'] and ch_type == 'mag':
idx = info['ch_names'].index('MEG 148')
if info['chs'][idx]['coil_type'] == FIFF.FIFFV_COIL_MAGNES_MAG:
conn_name = 'bti148'
elif has_CTF_grad and ch_type == 'mag':
if info['nchan'] < 100:
conn_name = 'ctf64'
elif info['nchan'] > 200:
conn_name = 'ctf275'
else:
conn_name = 'ctf151'
if conn_name is not None:
logger.info('Reading connectivity matrix for %s.' % conn_name)
return read_ch_connectivity(conn_name)
logger.info('Could not find a connectivity matrix for the data. '
'Computing connectivity based on Delaunay triangulations.')
return _compute_ch_connectivity(info, ch_type)
def _compute_ch_connectivity(info, ch_type):
"""Compute channel connectivity matrix using Delaunay triangulations.
Parameters
----------
info : instance of mne.measuerment_info.Info
The measurement info.
ch_type : str
The channel type for computing the connectivity matrix. Currently
supports 'mag', 'grad' and 'eeg'.
Returns
-------
ch_connectivity : scipy.sparse matrix, shape (n_channels, n_channels)
The connectivity matrix.
ch_names : list
The list of channel names present in connectivity matrix.
"""
from scipy.spatial import Delaunay
from .. import spatial_tris_connectivity
from ..channels.layout import _auto_topomap_coords, _pair_grad_sensors
combine_grads = (ch_type == 'grad' and FIFF.FIFFV_COIL_VV_PLANAR_T1 in
np.unique([ch['coil_type'] for ch in info['chs']]))
picks = dict(_picks_by_type(info, exclude=[]))[ch_type]
ch_names = [info['ch_names'][pick] for pick in picks]
if combine_grads:
pairs = _pair_grad_sensors(info, topomap_coords=False, exclude=[])
if len(pairs) != len(picks):
raise RuntimeError('Cannot find a pair for some of the '
'gradiometers. Cannot compute connectivity '
'matrix.')
xy = _auto_topomap_coords(info, picks[::2]) # only for one of the pair
else:
xy = _auto_topomap_coords(info, picks)
tri = Delaunay(xy)
neighbors = spatial_tris_connectivity(tri.simplices)
if combine_grads:
ch_connectivity = np.eye(len(picks), dtype=bool)
for idx, neigbs in zip(neighbors.row, neighbors.col):
for ii in range(2): # make sure each pair is included
for jj in range(2):
ch_connectivity[idx * 2 + ii, neigbs * 2 + jj] = True
ch_connectivity[idx * 2 + ii, idx * 2 + jj] = True # pair
ch_connectivity = sparse.csr_matrix(ch_connectivity)
else:
ch_connectivity = sparse.lil_matrix(neighbors)
ch_connectivity.setdiag(np.repeat(1, ch_connectivity.shape[0]))
ch_connectivity = ch_connectivity.tocsr()
return ch_connectivity, ch_names
def fix_mag_coil_types(info):
"""Fix magnetometer coil types.
Parameters
----------
info : dict
The info dict to correct. Corrections are done in-place.
Notes
-----
This function changes magnetometer coil types 3022 (T1: SQ20483N) and
3023 (T2: SQ20483-A) to 3024 (T3: SQ20950N) in the channel definition
records in the info structure.
Neuromag Vectorview systems can contain magnetometers with two
different coil sizes (3022 and 3023 vs. 3024). The systems
incorporating coils of type 3024 were introduced last and are used at
the majority of MEG sites. At some sites with 3024 magnetometers,
the data files have still defined the magnetometers to be of type
3022 to ensure compatibility with older versions of Neuromag software.
In the MNE software as well as in the present version of Neuromag
software coil type 3024 is fully supported. Therefore, it is now safe
to upgrade the data files to use the true coil type.
.. note:: The effect of the difference between the coil sizes on the
current estimates computed by the MNE software is very small.
Therefore the use of mne_fix_mag_coil_types is not mandatory.
"""
old_mag_inds = _get_T1T2_mag_inds(info)
for ii in old_mag_inds:
info['chs'][ii]['coil_type'] = FIFF.FIFFV_COIL_VV_MAG_T3
logger.info('%d of %d T1/T2 magnetometer types replaced with T3.' %
(len(old_mag_inds), len(pick_types(info, meg='mag'))))
info._check_consistency()
def _get_T1T2_mag_inds(info):
"""Find T1/T2 magnetometer coil types."""
picks = pick_types(info, meg='mag')
old_mag_inds = []
for ii in picks:
ch = info['chs'][ii]
if ch['coil_type'] in (FIFF.FIFFV_COIL_VV_MAG_T1,
FIFF.FIFFV_COIL_VV_MAG_T2):
old_mag_inds.append(ii)
return old_mag_inds
def _get_ch_info(info):
"""Get channel info for inferring acquisition device."""
chs = info['chs']
# Only take first 16 bits, as higher bits store CTF comp order
coil_types = set([ch['coil_type'] & 0xFFFF for ch in chs])
channel_types = set([ch['kind'] for ch in chs])
has_vv_mag = any(k in coil_types for k in
[FIFF.FIFFV_COIL_VV_MAG_T1, FIFF.FIFFV_COIL_VV_MAG_T2,
FIFF.FIFFV_COIL_VV_MAG_T3])
has_vv_grad = any(k in coil_types for k in [FIFF.FIFFV_COIL_VV_PLANAR_T1,
FIFF.FIFFV_COIL_VV_PLANAR_T2,
FIFF.FIFFV_COIL_VV_PLANAR_T3])
has_neuromag_122_grad = any(k in coil_types
for k in [FIFF.FIFFV_COIL_NM_122])
is_old_vv = ' ' in chs[0]['ch_name']
has_4D_mag = FIFF.FIFFV_COIL_MAGNES_MAG in coil_types
ctf_other_types = (FIFF.FIFFV_COIL_CTF_REF_MAG,
FIFF.FIFFV_COIL_CTF_REF_GRAD,
FIFF.FIFFV_COIL_CTF_OFFDIAG_REF_GRAD)
has_CTF_grad = (FIFF.FIFFV_COIL_CTF_GRAD in coil_types or
(FIFF.FIFFV_MEG_CH in channel_types and
any(k in ctf_other_types for k in coil_types)))
# hack due to MNE-C bug in IO of CTF
# only take first 16 bits, as higher bits store CTF comp order
n_kit_grads = sum(ch['coil_type'] & 0xFFFF == FIFF.FIFFV_COIL_KIT_GRAD
for ch in chs)
has_any_meg = any([has_vv_mag, has_vv_grad, has_4D_mag, has_CTF_grad,
n_kit_grads])
has_eeg_coils = (FIFF.FIFFV_COIL_EEG in coil_types and
FIFF.FIFFV_EEG_CH in channel_types)
has_eeg_coils_and_meg = has_eeg_coils and has_any_meg
has_eeg_coils_only = has_eeg_coils and not has_any_meg
return (has_vv_mag, has_vv_grad, is_old_vv, has_4D_mag, ctf_other_types,
has_CTF_grad, n_kit_grads, has_any_meg, has_eeg_coils,
has_eeg_coils_and_meg, has_eeg_coils_only, has_neuromag_122_grad)
def make_1020_channel_selections(info, midline="z"):
"""Return dict mapping from ROI names to lists of picks for 10/20 setups.
This passes through all channel names, and uses a simple heuristic to
separate channel names into three Region of Interest-based selections:
Left, Midline and Right. The heuristic is that channels ending on any of
the characters in `midline` are filed under that heading, otherwise those
ending in odd numbers under "Left", those in even numbers under "Right".
Other channels are ignored. This is appropriate for 10/20 files, but not
for other channel naming conventions.
If an info object is provided, lists are sorted from posterior to anterior.
Parameters
----------
info : instance of info
Where to obtain the channel names from. The picks will
be in relation to the position in `info["ch_names"]`. If possible, this
lists will be sorted by y value position of the channel locations,
i.e., from back to front.
midline : str
Names ending in any of these characters are stored under the `Midline`
key. Defaults to 'z'. Note that capitalization is ignored.
Returns
-------
selections : dict
A dictionary mapping from ROI names to lists of picks (integers).
"""
_validate_type(info, "info")
try:
from .layout import find_layout
layout = find_layout(info)
pos = layout.pos
ch_names = layout.names
except RuntimeError: # no channel positions found
ch_names = info["ch_names"]
pos = None
selections = dict(Left=[], Midline=[], Right=[])
for pick, channel in enumerate(ch_names):
last_char = channel[-1].lower() # in 10/20, last char codes hemisphere
if last_char in midline:
selection = "Midline"
elif last_char.isdigit():
selection = "Left" if int(last_char) % 2 else "Right"
else: # ignore the channel
continue
selections[selection].append(pick)
if pos is not None:
# sort channels from front to center
# (y-coordinate of the position info in the layout)
selections = {selection: np.array(picks)[pos[picks, 1].argsort()]
for selection, picks in selections.items()}
return selections
|