1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Denis Engemann <denis.engemann@gmail.com>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Eric Larson <larson.eric.d@gmail.com>
# Marijn van Vliet <w.m.vanvliet@gmail.com>
# Jona Sassenhagen <jona.sassenhagen@gmail.com>
# Teon Brooks <teon.brooks@gmail.com>
#
# License: Simplified BSD
import logging
from collections import defaultdict
from itertools import combinations
import os.path as op
import numpy as np
from ..transforms import _pol_to_cart, _cart_to_sph
from ..bem import fit_sphere_to_headshape
from ..io.pick import pick_types
from ..io.constants import FIFF
from ..io.meas_info import Info
from ..utils import _clean_names, warn, _check_ch_locs
from ..externals.six.moves import map
from .channels import _get_ch_info
class Layout(object):
"""Sensor layouts.
Layouts are typically loaded from a file using read_layout. Only use this
class directly if you're constructing a new layout.
Parameters
----------
box : tuple of length 4
The box dimension (x_min, x_max, y_min, y_max).
pos : array, shape=(n_channels, 4)
The positions of the channels in 2d (x, y, width, height).
names : list
The channel names.
ids : list
The channel ids.
kind : str
The type of Layout (e.g. 'Vectorview-all').
"""
def __init__(self, box, pos, names, ids, kind): # noqa: D102
self.box = box
self.pos = pos
self.names = names
self.ids = ids
self.kind = kind
def save(self, fname):
"""Save Layout to disk.
Parameters
----------
fname : str
The file name (e.g. 'my_layout.lout').
See Also
--------
read_layout
"""
x = self.pos[:, 0]
y = self.pos[:, 1]
width = self.pos[:, 2]
height = self.pos[:, 3]
if fname.endswith('.lout'):
out_str = '%8.2f %8.2f %8.2f %8.2f\n' % self.box
elif fname.endswith('.lay'):
out_str = ''
else:
raise ValueError('Unknown layout type. Should be of type '
'.lout or .lay.')
for ii in range(x.shape[0]):
out_str += ('%03d %8.2f %8.2f %8.2f %8.2f %s\n' % (self.ids[ii],
x[ii], y[ii], width[ii], height[ii], self.names[ii]))
f = open(fname, 'w')
f.write(out_str)
f.close()
def __repr__(self):
"""Return the string representation."""
return '<Layout | %s - Channels: %s ...>' % (self.kind,
', '.join(self.names[:3]))
def plot(self, picks=None, show=True):
"""Plot the sensor positions.
Parameters
----------
picks : array-like
Indices of the channels to show. If None (default), all the
channels are shown.
show : bool
Show figure if True. Defaults to True.
Returns
-------
fig : instance of matplotlib figure
Figure containing the sensor topography.
Notes
-----
.. versionadded:: 0.12.0
"""
from ..viz.topomap import plot_layout
return plot_layout(self, picks=picks, show=show)
def _read_lout(fname):
"""Aux function."""
with open(fname) as f:
box_line = f.readline() # first line contains box dimension
box = tuple(map(float, box_line.split()))
names, pos, ids = [], [], []
for line in f:
splits = line.split()
if len(splits) == 7:
cid, x, y, dx, dy, chkind, nb = splits
name = chkind + ' ' + nb
else:
cid, x, y, dx, dy, name = splits
pos.append(np.array([x, y, dx, dy], dtype=np.float))
names.append(name)
ids.append(int(cid))
pos = np.array(pos)
return box, pos, names, ids
def _read_lay(fname):
"""Aux function."""
with open(fname) as f:
box = None
names, pos, ids = [], [], []
for line in f:
splits = line.split()
if len(splits) == 7:
cid, x, y, dx, dy, chkind, nb = splits
name = chkind + ' ' + nb
else:
cid, x, y, dx, dy, name = splits
pos.append(np.array([x, y, dx, dy], dtype=np.float))
names.append(name)
ids.append(int(cid))
pos = np.array(pos)
return box, pos, names, ids
def read_layout(kind, path=None, scale=True):
"""Read layout from a file.
Parameters
----------
kind : str
The name of the .lout file (e.g. kind='Vectorview-all' for
'Vectorview-all.lout').
path : str | None
The path of the folder containing the Layout file. Defaults to the
mne/channels/data/layouts folder inside your mne-python installation.
scale : bool
Apply useful scaling for out the box plotting using layout.pos.
Defaults to True.
Returns
-------
layout : instance of Layout
The layout.
See Also
--------
Layout.save
"""
if path is None:
path = op.join(op.dirname(__file__), 'data', 'layouts')
if not kind.endswith('.lout') and op.exists(op.join(path, kind + '.lout')):
kind += '.lout'
elif not kind.endswith('.lay') and op.exists(op.join(path, kind + '.lay')):
kind += '.lay'
if kind.endswith('.lout'):
fname = op.join(path, kind)
kind = kind[:-5]
box, pos, names, ids = _read_lout(fname)
elif kind.endswith('.lay'):
fname = op.join(path, kind)
kind = kind[:-4]
box, pos, names, ids = _read_lay(fname)
kind.endswith('.lay')
else:
raise ValueError('Unknown layout type. Should be of type '
'.lout or .lay.')
if scale:
pos[:, 0] -= np.min(pos[:, 0])
pos[:, 1] -= np.min(pos[:, 1])
scaling = max(np.max(pos[:, 0]), np.max(pos[:, 1])) + pos[0, 2]
pos /= scaling
pos[:, :2] += 0.03
pos[:, :2] *= 0.97 / 1.03
pos[:, 2:] *= 0.94
return Layout(box=box, pos=pos, names=names, kind=kind, ids=ids)
def make_eeg_layout(info, radius=0.5, width=None, height=None, exclude='bads'):
"""Create .lout file from EEG electrode digitization.
Parameters
----------
info : instance of Info
Measurement info (e.g., raw.info).
radius : float
Viewport radius as a fraction of main figure height. Defaults to 0.5.
width : float | None
Width of sensor axes as a fraction of main figure height. By default,
this will be the maximum width possible without axes overlapping.
height : float | None
Height of sensor axes as a fraction of main figure height. By default,
this will be the maximum height possible withough axes overlapping.
exclude : list of string | str
List of channels to exclude. If empty do not exclude any.
If 'bads', exclude channels in info['bads'] (default).
Returns
-------
layout : Layout
The generated Layout.
See Also
--------
make_grid_layout, generate_2d_layout
"""
if not (0 <= radius <= 0.5):
raise ValueError('The radius parameter should be between 0 and 0.5.')
if width is not None and not (0 <= width <= 1.0):
raise ValueError('The width parameter should be between 0 and 1.')
if height is not None and not (0 <= height <= 1.0):
raise ValueError('The height parameter should be between 0 and 1.')
picks = pick_types(info, meg=False, eeg=True, ref_meg=False,
exclude=exclude)
loc2d = _auto_topomap_coords(info, picks)
names = [info['chs'][i]['ch_name'] for i in picks]
# Scale [x, y] to [-0.5, 0.5]
loc2d_min = np.min(loc2d, axis=0)
loc2d_max = np.max(loc2d, axis=0)
loc2d = (loc2d - (loc2d_max + loc2d_min) / 2.) / (loc2d_max - loc2d_min)
# If no width or height specified, calculate the maximum value possible
# without axes overlapping.
if width is None or height is None:
width, height = _box_size(loc2d, width, height, padding=0.1)
# Scale to viewport radius
loc2d *= 2 * radius
# Some subplot centers will be at the figure edge. Shrink everything so it
# fits in the figure.
scaling = min(1 / (1. + width), 1 / (1. + height))
loc2d *= scaling
width *= scaling
height *= scaling
# Shift to center
loc2d += 0.5
n_channels = loc2d.shape[0]
pos = np.c_[loc2d[:, 0] - 0.5 * width,
loc2d[:, 1] - 0.5 * height,
width * np.ones(n_channels),
height * np.ones(n_channels)]
box = (0, 1, 0, 1)
ids = 1 + np.arange(n_channels)
layout = Layout(box=box, pos=pos, names=names, kind='EEG', ids=ids)
return layout
def make_grid_layout(info, picks=None, n_col=None):
"""Generate .lout file for custom data, i.e., ICA sources.
Parameters
----------
info : instance of Info | None
Measurement info (e.g., raw.info). If None, default names will be
employed.
picks : array-like of int | None
The indices of the channels to be included. If None, al misc channels
will be included.
n_col : int | None
Number of columns to generate. If None, a square grid will be produced.
Returns
-------
layout : Layout
The generated layout.
See Also
--------
make_eeg_layout, generate_2d_layout
"""
if picks is None:
picks = pick_types(info, misc=True, ref_meg=False, exclude='bads')
names = [info['chs'][k]['ch_name'] for k in picks]
if not names:
raise ValueError('No misc data channels found.')
ids = list(range(len(picks)))
size = len(picks)
if n_col is None:
# prepare square-like layout
n_row = n_col = np.sqrt(size) # try square
if n_col % 1:
# try n * (n-1) rectangle
n_col, n_row = int(n_col + 1), int(n_row)
if n_col * n_row < size: # jump to the next full square
n_row += 1
else:
n_row = int(np.ceil(size / float(n_col)))
# setup position grid
x, y = np.meshgrid(np.linspace(-0.5, 0.5, n_col),
np.linspace(-0.5, 0.5, n_row))
x, y = x.ravel()[:size], y.ravel()[:size]
width, height = _box_size(np.c_[x, y], padding=0.1)
# Some axes will be at the figure edge. Shrink everything so it fits in the
# figure. Add 0.01 border around everything
border_x, border_y = (0.01, 0.01)
x_scaling = 1 / (1. + width + border_x)
y_scaling = 1 / (1. + height + border_y)
x = x * x_scaling
y = y * y_scaling
width *= x_scaling
height *= y_scaling
# Shift to center
x += 0.5
y += 0.5
# calculate pos
pos = np.c_[x - 0.5 * width, y - 0.5 * height,
width * np.ones(size), height * np.ones(size)]
box = (0, 1, 0, 1)
layout = Layout(box=box, pos=pos, names=names, kind='grid-misc', ids=ids)
return layout
def find_layout(info, ch_type=None, exclude='bads'):
"""Choose a layout based on the channels in the info 'chs' field.
Parameters
----------
info : instance of Info
The measurement info.
ch_type : {'mag', 'grad', 'meg', 'eeg'} | None
The channel type for selecting single channel layouts.
Defaults to None. Note, this argument will only be considered for
VectorView type layout. Use `meg` to force using the full layout
in situations where the info does only contain one sensor type.
exclude : list of string | str
List of channels to exclude. If empty do not exclude any.
If 'bads', exclude channels in info['bads'] (default).
Returns
-------
layout : Layout instance | None
None if layout not found.
"""
our_types = ' or '.join(['`None`', '`mag`', '`grad`', '`meg`'])
if ch_type not in (None, 'meg', 'mag', 'grad', 'eeg'):
raise ValueError('Invalid channel type (%s) requested '
'`ch_type` must be %s' % (ch_type, our_types))
(has_vv_mag, has_vv_grad, is_old_vv, has_4D_mag, ctf_other_types,
has_CTF_grad, n_kit_grads, has_any_meg, has_eeg_coils,
has_eeg_coils_and_meg, has_eeg_coils_only,
has_neuromag_122_grad) = _get_ch_info(info)
has_vv_meg = has_vv_mag and has_vv_grad
has_vv_only_mag = has_vv_mag and not has_vv_grad
has_vv_only_grad = has_vv_grad and not has_vv_mag
if ch_type == "meg" and not has_any_meg:
raise RuntimeError('No MEG channels present. Cannot find MEG layout.')
if ch_type == "eeg" and not has_eeg_coils:
raise RuntimeError('No EEG channels present. Cannot find EEG layout.')
if ((has_vv_meg and ch_type is None) or
(any([has_vv_mag, has_vv_grad]) and ch_type == 'meg')):
layout_name = 'Vectorview-all'
elif has_vv_only_mag or (has_vv_meg and ch_type == 'mag'):
layout_name = 'Vectorview-mag'
elif has_vv_only_grad or (has_vv_meg and ch_type == 'grad'):
if info['ch_names'][0].endswith('X'):
layout_name = 'Vectorview-grad_norm'
else:
layout_name = 'Vectorview-grad'
elif has_neuromag_122_grad:
layout_name = 'Neuromag_122'
elif ((has_eeg_coils_only and ch_type in [None, 'eeg']) or
(has_eeg_coils_and_meg and ch_type == 'eeg')):
if not isinstance(info, (dict, Info)):
raise RuntimeError('Cannot make EEG layout, no measurement info '
'was passed to `find_layout`')
return make_eeg_layout(info, exclude=exclude)
elif has_4D_mag:
layout_name = 'magnesWH3600'
elif has_CTF_grad:
layout_name = 'CTF-275'
elif n_kit_grads > 0:
layout_name = _find_kit_layout(info, n_kit_grads)
else:
xy = _auto_topomap_coords(info, picks=range(info['nchan']),
ignore_overlap=True, to_sphere=False)
return generate_2d_layout(xy, ch_names=info['ch_names'], name='custom',
normalize=False)
layout = read_layout(layout_name)
if not is_old_vv:
layout.names = _clean_names(layout.names, remove_whitespace=True)
if has_CTF_grad:
layout.names = _clean_names(layout.names, before_dash=True)
# Apply mask for excluded channels.
if exclude == 'bads':
exclude = info['bads']
idx = [ii for ii, name in enumerate(layout.names) if name not in exclude]
layout.names = [layout.names[ii] for ii in idx]
layout.pos = layout.pos[idx]
layout.ids = [layout.ids[ii] for ii in idx]
return layout
def _find_kit_layout(info, n_grads):
"""Determine the KIT layout.
Parameters
----------
info : Info
Info object.
n_grads : int
Number of KIT-gradiometers in the info.
Returns
-------
kit_layout : str
One of 'KIT-AD', 'KIT-157', 'KIT-160', or 'KIT-UMD'.
"""
if info['kit_system_id'] is not None:
# avoid circular import
from ..io.kit.constants import KIT_LAYOUT
if info['kit_system_id'] in KIT_LAYOUT:
kit_layout = KIT_LAYOUT[info['kit_system_id']]
if kit_layout is not None:
return kit_layout
raise NotImplementedError("The layout for the KIT system with ID %i "
"is missing. Please contact the developers "
"about adding it." % info['kit_system_id'])
elif n_grads == 160:
return 'KIT-160'
elif n_grads > 157:
return 'KIT-AD'
# channels which are on the left hemisphere for NY and right for UMD
test_chs = ('MEG 13', 'MEG 14', 'MEG 15', 'MEG 16', 'MEG 25',
'MEG 26', 'MEG 27', 'MEG 28', 'MEG 29', 'MEG 30',
'MEG 31', 'MEG 32', 'MEG 57', 'MEG 60', 'MEG 61',
'MEG 62', 'MEG 63', 'MEG 64', 'MEG 73', 'MEG 90',
'MEG 93', 'MEG 95', 'MEG 96', 'MEG 105', 'MEG 112',
'MEG 120', 'MEG 121', 'MEG 122', 'MEG 123', 'MEG 124',
'MEG 125', 'MEG 126', 'MEG 142', 'MEG 144', 'MEG 153',
'MEG 154', 'MEG 155', 'MEG 156')
x = [ch['loc'][0] < 0 for ch in info['chs'] if ch['ch_name'] in test_chs]
if np.all(x):
return 'KIT-157' # KIT-NY
elif np.all(np.invert(x)):
raise NotImplementedError("Guessing sensor layout for legacy UMD "
"files is not implemented. Please convert "
"your files using MNE-Python 0.13 or "
"higher.")
else:
raise RuntimeError("KIT system could not be determined for data")
def _box_size(points, width=None, height=None, padding=0.0):
"""Given a series of points, calculate an appropriate box size.
Parameters
----------
points : array, shape (n_points, 2)
The centers of the axes as a list of (x, y) coordinate pairs. Normally
these are points in the range [0, 1] centered at 0.5.
width : float | None
An optional box width to enforce. When set, only the box height will be
calculated by the function.
height : float | None
An optional box height to enforce. When set, only the box width will be
calculated by the function.
padding : float
Portion of the box to reserve for padding. The value can range between
0.0 (boxes will touch, default) to 1.0 (boxes consist of only padding).
Returns
-------
width : float
Width of the box
height : float
Height of the box
"""
from scipy.spatial.distance import pdist
def xdiff(a, b):
return np.abs(a[0] - b[0])
def ydiff(a, b):
return np.abs(a[1] - b[1])
points = np.asarray(points)
all_combinations = list(combinations(points, 2))
if width is None and height is None:
if len(points) <= 1:
# Trivial case first
width = 1.0
height = 1.0
else:
# Find the closest two points A and B.
a, b = all_combinations[np.argmin(pdist(points))]
# The closest points define either the max width or max height.
w, h = xdiff(a, b), ydiff(a, b)
if w > h:
width = w
else:
height = h
# At this point, either width or height is known, or both are known.
if height is None:
# Find all axes that could potentially overlap horizontally.
hdist = pdist(points, xdiff)
candidates = [all_combinations[i] for i, d in enumerate(hdist)
if d < width]
if len(candidates) == 0:
# No axes overlap, take all the height you want.
height = 1.0
else:
# Find an appropriate height so all none of the found axes will
# overlap.
height = np.min([ydiff(*c) for c in candidates])
elif width is None:
# Find all axes that could potentially overlap vertically.
vdist = pdist(points, ydiff)
candidates = [all_combinations[i] for i, d in enumerate(vdist)
if d < height]
if len(candidates) == 0:
# No axes overlap, take all the width you want.
width = 1.0
else:
# Find an appropriate width so all none of the found axes will
# overlap.
width = np.min([xdiff(*c) for c in candidates])
# Add a bit of padding between boxes
width *= 1 - padding
height *= 1 - padding
return width, height
def _find_topomap_coords(info, picks, layout=None):
"""Guess the E/MEG layout and return appropriate topomap coordinates.
Parameters
----------
info : instance of Info
Measurement info.
picks : list of int
Channel indices to generate topomap coords for.
layout : None | instance of Layout
Enforce using a specific layout. With None, a new map is generated
and a layout is chosen based on the channels in the picks
parameter.
Returns
-------
coords : array, shape = (n_chs, 2)
2 dimensional coordinates for each sensor for a topomap plot.
"""
if len(picks) == 0:
raise ValueError("Need more than 0 channels.")
if layout is not None:
chs = [info['chs'][i] for i in picks]
pos = [layout.pos[layout.names.index(ch['ch_name'])] for ch in chs]
pos = np.asarray(pos)
else:
pos = _auto_topomap_coords(info, picks)
return pos
def _auto_topomap_coords(info, picks, ignore_overlap=False, to_sphere=True):
"""Make a 2 dimensional sensor map from sensor positions in an info dict.
The default is to use the electrode locations. The fallback option is to
attempt using digitization points of kind FIFFV_POINT_EEG. This only works
with EEG and requires an equal number of digitization points and sensors.
Parameters
----------
info : instance of Info
The measurement info.
picks : list of int
The channel indices to generate topomap coords for.
ignore_overlap : bool
Whether to ignore overlapping positions in the layout. If False and
positions overlap, an error is thrown.
to_sphere : bool
If True, the radial distance of spherical coordinates is ignored, in
effect fitting the xyz-coordinates to a sphere. Defaults to True.
Returns
-------
locs : array, shape = (n_sensors, 2)
An array of positions of the 2 dimensional map.
"""
from scipy.spatial.distance import pdist, squareform
chs = [info['chs'][i] for i in picks]
# Use channel locations if available
locs3d = np.array([ch['loc'][:3] for ch in chs])
# If electrode locations are not available, use digization points
if not _check_ch_locs(chs):
logging.warning('Did not find any electrode locations (in the info '
'object), will attempt to use digitization points '
'instead. However, if digitization points do not '
'correspond to the EEG electrodes, this will lead to '
'bad results. Please verify that the sensor locations '
'in the plot are accurate.')
# MEG/EOG/ECG sensors don't have digitization points; all requested
# channels must be EEG
for ch in chs:
if ch['kind'] != FIFF.FIFFV_EEG_CH:
raise ValueError("Cannot determine location of MEG/EOG/ECG "
"channels using digitization points.")
eeg_ch_names = [ch['ch_name'] for ch in info['chs']
if ch['kind'] == FIFF.FIFFV_EEG_CH]
# Get EEG digitization points
if info['dig'] is None or len(info['dig']) == 0:
raise RuntimeError('No digitization points found.')
locs3d = np.array([point['r'] for point in info['dig']
if point['kind'] == FIFF.FIFFV_POINT_EEG])
if len(locs3d) == 0:
raise RuntimeError('Did not find any digitization points of '
'kind FIFFV_POINT_EEG (%d) in the info.'
% FIFF.FIFFV_POINT_EEG)
if len(locs3d) != len(eeg_ch_names):
raise ValueError("Number of EEG digitization points (%d) "
"doesn't match the number of EEG channels "
"(%d)" % (len(locs3d), len(eeg_ch_names)))
# Center digitization points on head origin
dig_kinds = (FIFF.FIFFV_POINT_CARDINAL,
FIFF.FIFFV_POINT_EEG,
FIFF.FIFFV_POINT_EXTRA)
_, origin_head, _ = fit_sphere_to_headshape(info, dig_kinds, units='m')
locs3d -= origin_head
# Match the digitization points with the requested
# channels.
eeg_ch_locs = dict(zip(eeg_ch_names, locs3d))
locs3d = np.array([eeg_ch_locs[ch['ch_name']] for ch in chs])
# Duplicate points cause all kinds of trouble during visualization
dist = pdist(locs3d)
if len(locs3d) > 1 and np.min(dist) < 1e-10 and not ignore_overlap:
problematic_electrodes = [
chs[elec_i]['ch_name']
for elec_i in squareform(dist < 1e-10).any(axis=0).nonzero()[0]
]
raise ValueError('The following electrodes have overlapping positions,'
' which causes problems during visualization:\n' +
', '.join(problematic_electrodes))
if to_sphere:
# use spherical (theta, pol) as (r, theta) for polar->cartesian
return _pol_to_cart(_cart_to_sph(locs3d)[:, 1:][:, ::-1])
return _pol_to_cart(_cart_to_sph(locs3d))
def _topo_to_sphere(pos, eegs):
"""Transform xy-coordinates to sphere.
Parameters
----------
pos : array-like, shape (n_channels, 2)
xy-oordinates to transform.
eegs : list of int
Indices of EEG channels that are included when calculating the sphere.
Returns
-------
coords : array, shape (n_channels, 3)
xyz-coordinates.
"""
xs, ys = np.array(pos).T
sqs = np.max(np.sqrt((xs[eegs] ** 2) + (ys[eegs] ** 2)))
xs /= sqs # Shape to a sphere and normalize
ys /= sqs
xs += 0.5 - np.mean(xs[eegs]) # Center the points
ys += 0.5 - np.mean(ys[eegs])
xs = xs * 2. - 1. # Values ranging from -1 to 1
ys = ys * 2. - 1.
rs = np.clip(np.sqrt(xs ** 2 + ys ** 2), 0., 1.)
alphas = np.arccos(rs)
zs = np.sin(alphas)
return np.column_stack([xs, ys, zs])
def _pair_grad_sensors(info, layout=None, topomap_coords=True, exclude='bads',
raise_error=True):
"""Find the picks for pairing grad channels.
Parameters
----------
info : instance of Info
An info dictionary containing channel information.
layout : Layout | None
The layout if available. Defaults to None.
topomap_coords : bool
Return the coordinates for a topomap plot along with the picks. If
False, only picks are returned. Defaults to True.
exclude : list of str | str
List of channels to exclude. If empty, do not exclude any.
If 'bads', exclude channels in info['bads']. Defaults to 'bads'.
raise_error : bool
Whether to raise an error when no pairs are found. If False, raises a
warning.
Returns
-------
picks : array of int
Picks for the grad channels, ordered in pairs.
coords : array, shape = (n_grad_channels, 3)
Coordinates for a topomap plot (optional, only returned if
topomap_coords == True).
"""
# find all complete pairs of grad channels
pairs = defaultdict(list)
grad_picks = pick_types(info, meg='grad', ref_meg=False, exclude=exclude)
(_, has_vv_grad, _, _, _, _, _, _, _, _, _, has_neuromag_122_grad) = \
_get_ch_info(info)
for i in grad_picks:
ch = info['chs'][i]
name = ch['ch_name']
if has_vv_grad and name.startswith('MEG'):
if name.endswith(('2', '3')):
key = name[-4:-1]
pairs[key].append(ch)
if has_neuromag_122_grad and name.startswith('MEG'):
key = (int(name[-3:]) - 1) // 2
pairs[key].append(ch)
pairs = [p for p in pairs.values() if len(p) == 2]
if len(pairs) == 0:
if raise_error:
raise ValueError("No 'grad' channel pairs found.")
else:
warn("No 'grad' channel pairs found.")
return list()
# find the picks corresponding to the grad channels
grad_chs = sum(pairs, [])
ch_names = info['ch_names']
picks = [ch_names.index(c['ch_name']) for c in grad_chs]
if topomap_coords:
shape = (len(pairs), 2, -1)
coords = (_find_topomap_coords(info, picks, layout)
.reshape(shape).mean(axis=1))
return picks, coords
else:
return picks
# this function is used to pair grad when info is not present
# it is the case of Projection that don't have the info.
def _pair_grad_sensors_ch_names_vectorview(ch_names):
"""Find the indices for pairing grad channels in a Vectorview system.
Parameters
----------
ch_names : list of str
A list of channel names.
Returns
-------
indexes : list of int
Indices of the grad channels, ordered in pairs.
"""
pairs = defaultdict(list)
for i, name in enumerate(ch_names):
if name.startswith('MEG'):
if name.endswith(('2', '3')):
key = name[-4:-1]
pairs[key].append(i)
pairs = [p for p in pairs.values() if len(p) == 2]
grad_chs = sum(pairs, [])
return grad_chs
# this function is used to pair grad when info is not present
# it is the case of Projection that don't have the info.
def _pair_grad_sensors_ch_names_neuromag122(ch_names):
"""Find the indices for pairing grad channels in a Neuromag 122 system.
Parameters
----------
ch_names : list of str
A list of channel names.
Returns
-------
indexes : list of int
Indices of the grad channels, ordered in pairs.
"""
pairs = defaultdict(list)
for i, name in enumerate(ch_names):
if name.startswith('MEG'):
key = (int(name[-3:]) - 1) // 2
pairs[key].append(i)
pairs = [p for p in pairs.values() if len(p) == 2]
grad_chs = sum(pairs, [])
return grad_chs
def _merge_grad_data(data, method='rms'):
"""Merge data from channel pairs using the RMS or mean.
Parameters
----------
data : array, shape = (n_channels, ..., n_times)
Data for channels, ordered in pairs.
method : str
Can be 'rms' or 'mean'.
Returns
-------
data : array, shape = (n_channels / 2, ..., n_times)
The root mean square or mean for each pair.
"""
data, orig_shape = data.reshape((len(data) // 2, 2, -1)), data.shape
if method == 'mean':
data = np.mean(data, axis=1)
elif method == 'rms':
data = np.sqrt(np.sum(data ** 2, axis=1) / 2)
else:
raise ValueError('method must be "rms" or "mean, got %s.' % method)
return data.reshape(data.shape[:1] + orig_shape[1:])
def generate_2d_layout(xy, w=.07, h=.05, pad=.02, ch_names=None,
ch_indices=None, name='ecog', bg_image=None,
normalize=True):
"""Generate a custom 2D layout from xy points.
Generates a 2-D layout for plotting with plot_topo methods and
functions. XY points will be normalized between 0 and 1, where
normalization extremes will be either the min/max of xy, or
the width/height of bg_image.
Parameters
----------
xy : ndarray (N x 2)
The xy coordinates of sensor locations.
w : float
The width of each sensor's axis (between 0 and 1)
h : float
The height of each sensor's axis (between 0 and 1)
pad : float
Portion of the box to reserve for padding. The value can range between
0.0 (boxes will touch, default) to 1.0 (boxes consist of only padding).
ch_names : list
The names of each channel. Must be a list of strings, with one
string per channel.
ch_indices : list
Index of each channel - must be a collection of unique integers,
one index per channel.
name : string
The name of this layout type.
bg_image : str | ndarray
The image over which sensor axes will be plotted. Either a path to an
image file, or an array that can be plotted with plt.imshow. If
provided, xy points will be normalized by the width/height of this
image. If not, xy points will be normalized by their own min/max.
normalize : bool
Whether to normalize the coordinates to run from 0 to 1. Defaults to
True.
Returns
-------
layout : Layout
A Layout object that can be plotted with plot_topo
functions and methods.
See Also
--------
make_eeg_layout, make_grid_layout
Notes
-----
.. versionadded:: 0.9.0
"""
import matplotlib.pyplot as plt
if ch_indices is None:
ch_indices = np.arange(xy.shape[0])
if ch_names is None:
ch_names = ['{0}'.format(i) for i in ch_indices]
if len(ch_names) != len(ch_indices):
raise ValueError('# channel names and indices must be equal')
if len(ch_names) != len(xy):
raise ValueError('# channel names and xy vals must be equal')
x, y = xy.copy().astype(float).T
# Normalize xy to 0-1
if bg_image is not None:
# Normalize by image dimensions
img = plt.imread(bg_image) if isinstance(bg_image, str) else bg_image
x /= img.shape[1]
y /= img.shape[0]
elif normalize:
# Normalize x and y by their maxes
for i_dim in [x, y]:
i_dim -= i_dim.min(0)
i_dim /= (i_dim.max(0) - i_dim.min(0))
# Create box and pos variable
box = _box_size(np.vstack([x, y]).T, padding=pad)
box = (0, 0, box[0], box[1])
w, h = [np.array([i] * x.shape[0]) for i in [w, h]]
loc_params = np.vstack([x, y, w, h]).T
layout = Layout(box, loc_params, ch_names, ch_indices, name)
return layout
|