1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
|
# -*- coding: utf-8 -*-
"""Functions for fitting head positions with (c)HPI coils."""
# To fit head positions (continuously), the procedure using
# ``_calculate_chpi_positions`` is:
#
# 1. Get HPI coil locations (as digitized in info['dig'] in head coords
# using ``_get_hpi_initial_fit``.
# 2. Get HPI frequencies, HPI status channel, HPI status bits,
# and digitization order using ``_setup_hpi_struct``.
# 3. Map HPI coil locations into device coords and compute coil to coil
# distances.
# 4. Window data using ``t_window`` (half before and half after ``t``) and
# ``t_step_min``.
# (Here Elekta high-passes the data, but we omit this step.)
# 5. Use a linear model (DC + linear slope + sin + cos terms set up
# in ``_setup_hpi_struct``) to fit sinusoidal amplitudes to MEG
# channels. Use SVD to determine the phase/amplitude of the sinusoids.
# This step is accomplished using ``_fit_cHPI_amplitudes``
# 6. If the amplitudes are 98% correlated with last position
# (and Δt < t_step_max), skip fitting.
# 7. Fit magnetic dipoles using the amplitudes for each coil frequency
# (calling ``_fit_magnetic_dipole``).
# 8. If ``use_distances is True`` choose good coils based on pairwise
# distances, taking into account the tolerance ``dist_limit``.
# 9. Fit dev_head_t quaternion (using ``_fit_chpi_quat``).
# 10. Accept or reject fit based on GOF threshold ``gof_limit``.
#
# The function ``filter_chpi`` uses the same linear model to filter cHPI
# and (optionally) line frequencies from the data.
# Authors: Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD (3-clause)
from functools import partial
import numpy as np
from scipy import linalg
import itertools
from .io.pick import pick_types, pick_channels, pick_channels_regexp
from .io.constants import FIFF
from .io.ctf.trans import _make_ctf_coord_trans_set
from .forward import (_magnetic_dipole_field_vec, _create_meg_coils,
_concatenate_coils)
from .cov import make_ad_hoc_cov, compute_whitener
from .transforms import (apply_trans, invert_transform, _angle_between_quats,
quat_to_rot, rot_to_quat)
from .utils import verbose, logger, use_log_level, _check_fname, warn
from .externals.six import string_types
# Eventually we should add:
# hpicons
# high-passing of data during fits
# parsing cHPI coil information from acq pars, then to PSD if necessary
# ############################################################################
# Reading from text or FIF file
def read_head_pos(fname):
"""Read MaxFilter-formatted head position parameters.
Parameters
----------
fname : str
The filename to read. This can be produced by e.g.,
``maxfilter -headpos <name>.pos``.
Returns
-------
pos : array, shape (N, 10)
The position and quaternion parameters from cHPI fitting.
See Also
--------
write_head_pos
head_pos_to_trans_rot_t
Notes
-----
.. versionadded:: 0.12
"""
_check_fname(fname, must_exist=True, overwrite='read')
data = np.loadtxt(fname, skiprows=1) # first line is header, skip it
data.shape = (-1, 10) # ensure it's the right size even if empty
if np.isnan(data).any(): # make sure we didn't do something dumb
raise RuntimeError('positions could not be read properly from %s'
% fname)
return data
def write_head_pos(fname, pos):
"""Write MaxFilter-formatted head position parameters.
Parameters
----------
fname : str
The filename to write.
pos : array, shape (N, 10)
The position and quaternion parameters from cHPI fitting.
See Also
--------
read_head_pos
head_pos_to_trans_rot_t
Notes
-----
.. versionadded:: 0.12
"""
_check_fname(fname, overwrite=True)
pos = np.array(pos, np.float64)
if pos.ndim != 2 or pos.shape[1] != 10:
raise ValueError('pos must be a 2D array of shape (N, 10)')
with open(fname, 'wb') as fid:
fid.write(' Time q1 q2 q3 q4 q5 '
'q6 g-value error velocity\n'.encode('ASCII'))
for p in pos:
fmts = ['% 9.3f'] + ['% 8.5f'] * 9
fid.write(((' ' + ' '.join(fmts) + '\n')
% tuple(p)).encode('ASCII'))
def head_pos_to_trans_rot_t(quats):
"""Convert Maxfilter-formatted head position quaternions.
Parameters
----------
quats : ndarray, shape (N, 10)
MaxFilter-formatted position and quaternion parameters.
Returns
-------
translation : ndarray, shape (N, 3)
Translations at each time point.
rotation : ndarray, shape (N, 3, 3)
Rotations at each time point.
t : ndarray, shape (N,)
The time points.
See Also
--------
read_head_pos
write_head_pos
"""
t = quats[..., 0].copy()
rotation = quat_to_rot(quats[..., 1:4])
translation = quats[..., 4:7].copy()
return translation, rotation, t
def _apply_quat(quat, pts, move=True):
"""Apply MaxFilter-formatted head position parameters to points."""
trans = np.concatenate(
(quat_to_rot(quat[:3]),
quat[3:][:, np.newaxis]), axis=1)
return(apply_trans(trans, pts, move=move))
def _calculate_head_pos_ctf(raw, gof_limit=0.98):
r"""Extract head position parameters from ctf dataset.
Parameters
----------
raw : instance of raw
Raw data with cHPI information. HLC00 channels
gof_limit : float
Minimum goodness of fit to accept.
Returns
-------
pos : array, shape (N, 10)
The position and quaternion parameters from cHPI fitting.
Notes
-----
CTF continuous head monitoring stores the x,y,z location (m) of each chpi
coil as separate channels in the dataset.
HLC001[123]-\\* - nasion
HLC002[123]-\\* - lpa
HLC003[123]-\\* - rpa
"""
# Pick channels cooresponding to the cHPI positions
hpi_picks = pick_channels_regexp(raw.info['ch_names'],
'HLC00[123][123]-.*')
# make sure we get 9 channels
if len(hpi_picks) != 9:
raise RuntimeError('Could not find all 9 cHPI channels')
# get indices in alphabetical order
sorted_picks = np.array(sorted(hpi_picks,
key=lambda k: raw.info['ch_names'][k]))
# make picks to match order of dig cardinial ident codes.
# LPA (HPIC002[123]-*), NAS(HPIC001[123]-*), RPA(HPIC003[123]-*)
hpi_picks = sorted_picks[[3, 4, 5, 0, 1, 2, 6, 7, 8]]
del sorted_picks
# process the entire run
time_sl = slice(0, len(raw.times))
chpi_data = raw[hpi_picks, time_sl][0]
# grab initial cHPI locations
# point sorted in hpi_results are in mne device coords
chpi_locs_dev = sorted([d for d in raw.info['hpi_results'][-1]
['dig_points']], key=lambda x: x['ident'])
chpi_locs_dev = np.array([d['r'] for d in chpi_locs_dev])
# transforms
dev_head_t = raw.info['dev_head_t']
tmp_trans = _make_ctf_coord_trans_set(None, None)
ctf_dev_dev_t = tmp_trans['t_ctf_dev_dev']
del tmp_trans
# move to head coords
chpi_locs_head = apply_trans(dev_head_t, chpi_locs_dev)
# find indices where chpi locations change
indices = [0]
indices.extend(np.where(np.all(chpi_data[:, :-1] != chpi_data[:, 1:],
axis=0))[0] + 1)
# initialized quaternion
last_quat = np.concatenate([rot_to_quat(dev_head_t['trans'][:3, :3]),
dev_head_t['trans'][:3, 3]])
quats = []
for idx in indices:
# data in channels are in ctf device coordinates (cm)
this_ctf_dev = chpi_data[:, idx].reshape(3, 3) # m
# map to mne device coords
this_dev = apply_trans(ctf_dev_dev_t, this_ctf_dev)
# fit quaternion
this_quat, g = _fit_chpi_quat(this_dev, chpi_locs_head, last_quat)
if g < gof_limit:
raise RuntimeError('Bad coil fit! (g=%7.3f)' % (g,))
if (idx > 0):
dt = float(raw.times[idx] - raw.times[idx - 1])
else:
dt = 0.001
this_locs_head = _apply_quat(this_quat, this_dev, move=True)
errs = 1000. * np.sqrt(((chpi_locs_head -
this_locs_head) ** 2).sum(axis=-1))
e = errs.mean() / 1000. # mm -> m
d = 100 * np.sqrt(np.sum(last_quat[3:] - this_quat[3:]) ** 2) # cm
v = d / dt # cm/sec
quats.append(np.concatenate(([raw.times[idx]], this_quat, [g],
[e * 100], [v]))) # e in centimeters
last_quat = this_quat
quats = np.array(quats, np.float64)
quats = np.zeros((0, 10)) if quats.size == 0 else quats
return quats
# ############################################################################
# Estimate positions from data
@verbose
def _get_hpi_info(info, verbose=None):
"""Get HPI information from raw."""
if len(info['hpi_meas']) == 0 or \
('coil_freq' not in info['hpi_meas'][0]['hpi_coils'][0]):
raise RuntimeError('Appropriate cHPI information not found in'
'info["hpi_meas"] and info["hpi_subsystem"], '
'cannot process cHPI')
hpi_coils = sorted(info['hpi_meas'][-1]['hpi_coils'],
key=lambda x: x['number']) # ascending (info) order
# get frequencies
hpi_freqs = np.array([float(x['coil_freq']) for x in hpi_coils])
logger.info('Using %s HPI coils: %s Hz'
% (len(hpi_freqs), ' '.join(str(int(s)) for s in hpi_freqs)))
# how cHPI active is indicated in the FIF file
hpi_sub = info['hpi_subsystem']
hpi_pick = None # there is no pick!
if hpi_sub is not None:
if 'event_channel' in hpi_sub:
hpi_pick = pick_channels(info['ch_names'],
[hpi_sub['event_channel']])
hpi_pick = hpi_pick[0] if len(hpi_pick) > 0 else None
# grab codes indicating a coil is active
hpi_on = [coil['event_bits'][0] for coil in hpi_sub['hpi_coils']]
# not all HPI coils will actually be used
hpi_on = np.array([hpi_on[hc['number'] - 1] for hc in hpi_coils])
# mask for coils that may be active
hpi_mask = np.array([event_bit != 0 for event_bit in hpi_on])
hpi_on = hpi_on[hpi_mask]
hpi_freqs = hpi_freqs[hpi_mask]
else:
hpi_on = np.zeros(len(hpi_freqs))
return hpi_freqs, hpi_pick, hpi_on
@verbose
def _get_hpi_initial_fit(info, adjust=False, verbose=None):
"""Get HPI fit locations from raw."""
if info['hpi_results'] is None:
raise RuntimeError('no initial cHPI head localization performed')
hpi_result = info['hpi_results'][-1]
hpi_coils = sorted(info['hpi_meas'][-1]['hpi_coils'],
key=lambda x: x['number']) # ascending (info) order
hpi_dig = sorted([d for d in info['dig']
if d['kind'] == FIFF.FIFFV_POINT_HPI],
key=lambda x: x['ident']) # ascending (dig) order
pos_order = hpi_result['order'] - 1 # zero-based indexing, dig->info
# this shouldn't happen, eventually we could add the transforms
# necessary to put it in head coords
if not all(d['coord_frame'] == FIFF.FIFFV_COORD_HEAD for d in hpi_dig):
raise RuntimeError('cHPI coordinate frame incorrect')
# Give the user some info
logger.info('HPIFIT: %s coils digitized in order %s'
% (len(pos_order), ' '.join(str(o + 1) for o in pos_order)))
logger.debug('HPIFIT: %s coils accepted: %s'
% (len(hpi_result['used']),
' '.join(str(h) for h in hpi_result['used'])))
hpi_rrs = np.array([d['r'] for d in hpi_dig])[pos_order]
# Fitting errors
hpi_rrs_fit = sorted([d for d in info['hpi_results'][-1]['dig_points']],
key=lambda x: x['ident'])
hpi_rrs_fit = np.array([d['r'] for d in hpi_rrs_fit])
# hpi_result['dig_points'] are in FIFFV_COORD_UNKNOWN coords, but this
# is probably a misnomer because it should be FIFFV_COORD_DEVICE for this
# to work
assert hpi_result['coord_trans']['to'] == FIFF.FIFFV_COORD_HEAD
hpi_rrs_fit = apply_trans(hpi_result['coord_trans']['trans'], hpi_rrs_fit)
if 'moments' in hpi_result:
logger.debug('Hpi coil moments (%d %d):'
% hpi_result['moments'].shape[::-1])
for moment in hpi_result['moments']:
logger.debug("%g %g %g" % tuple(moment))
errors = np.sqrt(((hpi_rrs - hpi_rrs_fit) ** 2).sum(axis=1))
logger.debug('HPIFIT errors: %s mm.'
% ', '.join('%0.1f' % (1000. * e) for e in errors))
if errors.sum() < len(errors) * hpi_result['dist_limit']:
logger.info('HPI consistency of isotrak and hpifit is OK.')
elif not adjust and (len(hpi_result['used']) == len(hpi_coils)):
warn('HPI consistency of isotrak and hpifit is poor.')
else:
# adjust HPI coil locations using the hpifit transformation
for hi, (r_dig, r_fit) in enumerate(zip(hpi_rrs, hpi_rrs_fit)):
# transform to head frame
d = 1000 * np.sqrt(((r_dig - r_fit) ** 2).sum())
if not adjust:
warn('Discrepancy of HPI coil %d isotrak and hpifit is %.1f '
'mm!' % (hi + 1, d))
elif hi + 1 not in hpi_result['used']:
if hpi_result['goodness'][hi] >= hpi_result['good_limit']:
logger.info('Note: HPI coil %d isotrak is adjusted by '
'%.1f mm!' % (hi + 1, d))
hpi_rrs[hi] = r_fit
else:
warn('Discrepancy of HPI coil %d isotrak and hpifit of '
'%.1f mm was not adjusted!' % (hi + 1, d))
logger.debug('HP fitting limits: err = %.1f mm, gval = %.3f.'
% (1000 * hpi_result['dist_limit'], hpi_result['good_limit']))
return hpi_rrs
def _magnetic_dipole_objective(x, B, B2, coils, scale, method, too_close):
"""Project data onto right eigenvectors of whitened forward."""
if method == 'forward':
fwd = _magnetic_dipole_field_vec(x[np.newaxis, :], coils, too_close)
else:
from .preprocessing.maxwell import _sss_basis
# Eventually we can try incorporating external bases here, which
# is why the :3 is on the SVD below
fwd = _sss_basis(dict(origin=x, int_order=1, ext_order=0), coils).T
fwd = np.dot(fwd, scale.T)
one = np.dot(linalg.svd(fwd, full_matrices=False)[2][:3], B)
one *= one
Bm2 = one.sum()
return B2 - Bm2
def _fit_magnetic_dipole(B_orig, x0, coils, scale, method, too_close):
"""Fit a single bit of data (x0 = pos)."""
from scipy.optimize import fmin_cobyla
B = np.dot(scale, B_orig)
B2 = np.dot(B, B)
objective = partial(_magnetic_dipole_objective, B=B, B2=B2,
coils=coils, scale=scale, method=method,
too_close=too_close)
x = fmin_cobyla(objective, x0, (), rhobeg=1e-4, rhoend=1e-5, disp=False)
return x, 1. - objective(x) / B2
def _chpi_objective(x, coil_dev_rrs, coil_head_rrs):
"""Compute objective function."""
d = np.dot(coil_dev_rrs, quat_to_rot(x[:3]).T)
d += x[3:] / 10. # in decimeters to get quats and head units close
d -= coil_head_rrs
d *= d
return d.sum()
def _unit_quat_constraint(x):
"""Constrain our 3 quaternion rot params (ignoring w) to have norm <= 1."""
return 1 - (x * x).sum()
def _fit_chpi_quat(coil_dev_rrs, coil_head_rrs, x0):
"""Fit rotation and translation (quaternion) parameters for cHPI coils."""
from scipy.optimize import fmin_cobyla
denom = np.sum((coil_head_rrs - np.mean(coil_head_rrs, axis=0)) ** 2)
objective = partial(_chpi_objective, coil_dev_rrs=coil_dev_rrs,
coil_head_rrs=coil_head_rrs)
x0 = x0.copy()
x0[3:] *= 10. # decimeters to get quats and head units close
x = fmin_cobyla(objective, x0, _unit_quat_constraint,
rhobeg=1e-3, rhoend=1e-5, disp=False)
result = objective(x)
x[3:] /= 10.
return x, 1. - result / denom
def _fit_coil_order_dev_head_trans(dev_pnts, head_pnts):
"""Compute Device to Head transform allowing for permutiatons of points."""
id_quat = np.concatenate([rot_to_quat(np.eye(3)), [0.0, 0.0, 0.0]])
best_order = None
best_g = -999
best_quat = id_quat
for this_order in itertools.permutations(np.arange(len(head_pnts))):
head_pnts_tmp = head_pnts[np.array(this_order)]
this_quat, g = _fit_chpi_quat(dev_pnts, head_pnts_tmp, id_quat)
if g > best_g:
best_g = g
best_order = np.array(this_order)
best_quat = this_quat
# Convert Quaterion to transform
dev_head_t = np.concatenate(
(quat_to_rot(best_quat[:3]),
best_quat[3:][:, np.newaxis]), axis=1)
dev_head_t = np.concatenate((dev_head_t, [[0, 0, 0, 1.]]))
return dev_head_t, best_order
@verbose
def _setup_hpi_struct(info, model_n_window,
method='forward',
exclude='bads',
remove_aliased=False, verbose=None):
"""Generate HPI structure for HPI localization.
Returns
-------
hpi : dict
Dictionary of parameters representing the cHPI system and needed to
perform head localization.
"""
from .preprocessing.maxwell import _prep_mf_coils
# grab basic info.
hpi_freqs, hpi_pick, hpi_ons = _get_hpi_info(info)
# worry about resampled/filtered data.
# What to do e.g. if Raw has been resampled and some of our
# HPI freqs would now be aliased
highest = info.get('lowpass')
highest = info['sfreq'] / 2. if highest is None else highest
keepers = np.array([h <= highest for h in hpi_freqs], bool)
if remove_aliased:
hpi_freqs = hpi_freqs[keepers]
hpi_ons = hpi_ons[keepers]
elif not keepers.all():
raise RuntimeError('Found HPI frequencies %s above the lowpass '
'(or Nyquist) frequency %0.1f'
% (hpi_freqs[~keepers].tolist(), highest))
if info['line_freq'] is not None:
line_freqs = np.arange(info['line_freq'], info['sfreq'] / 3.,
info['line_freq'])
else:
line_freqs = np.zeros([0])
logger.info('Line interference frequencies: %s Hz'
% ' '.join(['%d' % l for l in line_freqs]))
# build model to extract sinusoidal amplitudes.
slope = np.arange(model_n_window).astype(np.float64)[:, np.newaxis]
slope -= np.mean(slope)
rads = slope / info['sfreq']
rads *= 2 * np.pi
f_t = hpi_freqs[np.newaxis, :] * rads
l_t = line_freqs[np.newaxis, :] * rads
model = [np.sin(f_t), np.cos(f_t)] # hpi freqs
model += [np.sin(l_t), np.cos(l_t)] # line freqs
model += [slope, np.ones(slope.shape)]
model = np.concatenate(model, axis=1)
inv_model = linalg.pinv(model)
# Set up magnetic dipole fits
meg_picks = pick_types(info, meg=True, eeg=False, exclude=exclude)
if len(exclude) > 0:
if exclude == 'bads':
msg = info['bads']
else:
msg = exclude
logger.debug('Static bad channels (%d): %s'
% (len(msg), u' '.join(msg)))
megchs = [ch for ci, ch in enumerate(info['chs']) if ci in meg_picks]
coils = _create_meg_coils(megchs, 'accurate')
if method == 'forward':
coils = _concatenate_coils(coils)
else: # == 'multipole'
coils = _prep_mf_coils(info)
diag_cov = make_ad_hoc_cov(info, verbose=False)
diag_whitener, _ = compute_whitener(diag_cov, info, picks=meg_picks,
verbose=False)
hpi = dict(meg_picks=meg_picks, hpi_pick=hpi_pick,
model=model, inv_model=inv_model,
on=hpi_ons, n_window=model_n_window, method=method,
freqs=hpi_freqs, line_freqs=line_freqs, n_freqs=len(hpi_freqs),
scale=diag_whitener, coils=coils
)
return hpi
def _time_prefix(fit_time):
"""Format log messages."""
return (' t=%0.3f:' % fit_time).ljust(17)
@verbose
def _fit_cHPI_amplitudes(raw, time_sl, hpi, fit_time, verbose=None):
"""Fit amplitudes for each channel from each of the N cHPI sinusoids.
Returns
-------
sin_fit : ndarray, shape (n_freqs, n_channels)) or None :
The sin amplitudes matching each cHPI frequency
or None if this time window should be skipped
"""
# No need to detrend the data because our model has a DC term
with use_log_level(False):
# loads good channels
this_data = raw[hpi['meg_picks'], time_sl][0]
# which HPI coils to use
# other then erroring I don't see this getting used elsewhere?
if hpi['hpi_pick'] is not None:
with use_log_level(False):
# loads hpi_stim channel
chpi_data = raw[hpi['hpi_pick'], time_sl][0]
ons = (np.round(chpi_data).astype(np.int) &
hpi['on'][:, np.newaxis]).astype(bool)
n_on = np.sum(ons, axis=0)
if not (n_on >= 3).all():
logger.info(_time_prefix(fit_time) + '%s < 3 HPI coils turned on, '
'skipping fit' % (n_on.min(),))
return None
# #TODO REMOVE # ons = ons.all(axis=1) # which HPI coils to use
n_freqs = hpi['n_freqs']
this_len = time_sl.stop - time_sl.start
if this_len == hpi['n_window']:
model, inv_model = hpi['model'], hpi['inv_model']
else: # first or last window
model = hpi['model'][:this_len]
inv_model = linalg.pinv(model)
X = np.dot(inv_model, this_data.T)
X_sin, X_cos = X[:n_freqs], X[n_freqs:2 * n_freqs]
# use SVD across all sensors to estimate the sinusoid phase
sin_fit = np.zeros((n_freqs, X_sin.shape[1]))
for fi in range(n_freqs):
u, s, vt = np.linalg.svd(np.vstack((X_sin[fi, :], X_cos[fi, :])),
full_matrices=False)
# the first component holds the predominant phase direction
# (so ignore the second, effectively doing s[1] = 0):
sin_fit[fi, :] = vt[0]
# Do not modify X, however, because it will break the signal
# reconstruction step.
data_diff_sq = np.dot(model, X).T - this_data
data_diff_sq *= data_diff_sq
data_diff_sq = np.sum(data_diff_sq, axis=-1)
# compute amplitude correlation (for logging), protect against zero
norm = this_data
del this_data
norm *= norm
norm = np.sum(norm, axis=-1)
norm_sum = norm.sum()
norm_sum = np.inf if norm_sum == 0 else norm_sum
norm[norm == 0] = np.inf
g_sin = 1 - data_diff_sq.sum() / norm_sum
g_chan = 1 - data_diff_sq / norm
logger.debug(' HPI amplitude correlation %0.3f: %0.3f '
'(%s chnls > 0.95)' % (fit_time, g_sin,
(g_chan > 0.95).sum()))
return sin_fit
@verbose
def _fit_device_hpi_positions(raw, t_win=None, initial_dev_rrs=None,
too_close='raise', verbose=None):
"""Calculate location of HPI coils in device coords for 1 time window.
Parameters
----------
raw : instance of Raw
Raw data with cHPI information.
t_win : list, shape (2)
Time window to fit. If None entire data run is used.
initial_dev_rrs : ndarry, shape (n_CHPI, 3) || None
Initial guess on HPI locations. If None (0,0,0) is used for each hpi.
too_close : str
How to handle HPI positions too close to the sensors,
can be 'raise', 'warning', or 'info'.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
coil_dev_rrs : ndarray, shape (n_CHPI, 3)
Fit locations of each cHPI coil in device coordinates
"""
_check_too_close(too_close)
# 0. determine samples to fit.
if t_win is None: # use the whole window
i_win = [0, len(raw.times)]
else:
i_win = raw.time_as_index(t_win, use_rounding=True)
# clamp index windows
i_win = [max(i_win[0], 0), min(i_win[1], len(raw.times))]
time_sl = slice(i_win[0], i_win[1])
hpi = _setup_hpi_struct(raw.info, i_win[1] - i_win[0])
if initial_dev_rrs is None:
initial_dev_rrs = []
for i in range(hpi['n_freqs']):
initial_dev_rrs.append([0.0, 0.0, 0.0])
# 1. Fit amplitudes for each channel from each of the N cHPI sinusoids
sin_fit = _fit_cHPI_amplitudes(raw, time_sl, hpi, 0)
# skip this window if it bad.
# logging has already been done! Maybe turn this into an Exception
if sin_fit is None:
return None
# 2. fit each HPI coil if its turned on
outs = [_fit_magnetic_dipole(f, pos, hpi['coils'], hpi['scale'],
hpi['method'], too_close)
for f, pos, on in zip(sin_fit, initial_dev_rrs, hpi['on'])
if on > 0]
coil_dev_rrs = np.array([o[0] for o in outs])
coil_g = np.array([o[0] for o in outs])
return coil_dev_rrs, coil_g
def _check_too_close(too_close):
if not isinstance(too_close, string_types) or \
too_close not in ('raise', 'warning', 'info'):
raise ValueError('too_close must be "raise", "warning", or "info", '
'got %s (type %s)' % (too_close, type(too_close)))
@verbose
def _calculate_chpi_positions(raw, t_step_min=0.1, t_step_max=10.,
t_window=0.2, dist_limit=0.005, gof_limit=0.98,
use_distances=True, too_close='raise',
verbose=None):
"""Calculate head positions using cHPI coils.
Parameters
----------
raw : instance of Raw
Raw data with cHPI information.
t_step_min : float
Minimum time step to use. If correlations are sufficiently high,
t_step_max will be used.
t_step_max : float
Maximum time step to use.
t_window : float
Time window to use to estimate the head positions.
dist_limit : float
Minimum distance (m) to accept for coil position fitting.
gof_limit : float
Minimum goodness of fit to accept.
use_distances : bool
use dist_limit to choose 'good' coils based on pairwise distances.
too_close : str
How to handle HPI positions too close to the sensors,
can be 'raise', 'warning', or 'info'.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
quats : ndarray, shape (N, 10)
The ``[t, q1, q2, q3, x, y, z, gof, err, v]`` for each fit.
Notes
-----
The number of time points ``N`` will depend on the velocity of head
movements as well as ``t_step_max`` and ``t_step_min``.
See Also
--------
read_head_pos
write_head_pos
"""
from scipy.spatial.distance import cdist
# extract initial geometry from info['hpi_results']
hpi_dig_head_rrs = _get_hpi_initial_fit(raw.info)
_check_too_close(too_close)
# extract hpi system information
hpi = _setup_hpi_struct(raw.info, int(round(t_window * raw.info['sfreq'])))
# move to device coords
dev_head_t = raw.info['dev_head_t']['trans']
head_dev_t = invert_transform(raw.info['dev_head_t'])['trans']
hpi_dig_dev_rrs = apply_trans(head_dev_t, hpi_dig_head_rrs)
# compute initial coil to coil distances
hpi_coil_dists = cdist(hpi_dig_head_rrs, hpi_dig_head_rrs)
# setup last iteration structure
last = dict(sin_fit=None, fit_time=t_step_min,
coil_dev_rrs=hpi_dig_dev_rrs,
quat=np.concatenate([rot_to_quat(dev_head_t[:3, :3]),
dev_head_t[:3, 3]]))
t_begin = raw.times[0]
t_end = raw.times[-1]
fit_idxs = raw.time_as_index(np.arange(t_begin + t_window / 2., t_end,
t_step_min),
use_rounding=True)
quats = []
logger.info('Fitting up to %s time points (%0.1f sec duration)'
% (len(fit_idxs), t_end - t_begin))
pos_0 = None
hpi['n_freqs'] = len(hpi['freqs'])
for midpt in fit_idxs:
#
# 0. determine samples to fit.
#
fit_time = (midpt + raw.first_samp - hpi['n_window'] / 2.) /\
raw.info['sfreq']
time_sl = midpt - hpi['n_window'] // 2
time_sl = slice(max(time_sl, 0),
min(time_sl + hpi['n_window'], len(raw.times)))
#
# 1. Fit amplitudes for each channel from each of the N cHPI sinusoids
#
sin_fit = _fit_cHPI_amplitudes(raw, time_sl, hpi, fit_time)
# skip this window if bad
# logging has already been done! Maybe turn this into an Exception
if sin_fit is None:
continue
# check if data has sufficiently changed
if last['sin_fit'] is not None: # first iteration
# The sign of our fits is arbitrary
flips = np.sign((sin_fit * last['sin_fit']).sum(-1, keepdims=True))
sin_fit *= flips
corr = np.corrcoef(sin_fit.ravel(), last['sin_fit'].ravel())[0, 1]
# check to see if we need to continue
if fit_time - last['fit_time'] <= t_step_max - 1e-7 and \
corr * corr > 0.98:
# don't need to refit data
continue
# update 'last' sin_fit *before* inplace sign mult
last['sin_fit'] = sin_fit.copy()
#
# 2. Fit magnetic dipole for each coil to obtain coil positions
# in device coordinates
#
outs = [_fit_magnetic_dipole(f, pos, hpi['coils'], hpi['scale'],
hpi['method'], too_close)
for f, pos in zip(sin_fit, last['coil_dev_rrs'])]
this_coil_dev_rrs = np.array([o[0] for o in outs])
g_coils = [o[1] for o in outs]
# filter coil fits based on the correspodnace to digitization geometry
use_mask = np.ones(hpi['n_freqs'], bool)
if use_distances:
these_dists = cdist(this_coil_dev_rrs, this_coil_dev_rrs)
these_dists = np.abs(hpi_coil_dists - these_dists)
# there is probably a better algorithm for finding the bad ones...
good = False
while not good:
d = these_dists[use_mask][:, use_mask]
d_bad = (d > dist_limit)
good = not d_bad.any()
if not good:
if use_mask.sum() == 2:
use_mask[:] = False
break # failure
# exclude next worst point
badness = (d * d_bad).sum(axis=0)
exclude_coils = np.where(use_mask)[0][np.argmax(badness)]
use_mask[exclude_coils] = False
good = use_mask.sum() >= 3
if not good:
warn(_time_prefix(fit_time) + '%s/%s good HPI fits, '
'cannot determine the transformation!'
% (use_mask.sum(), hpi['n_freqs']))
continue
#
# 3. Fit the head translation and rotation params (minimize error
# between coil positions and the head coil digitization positions)
#
this_quat, g = _fit_chpi_quat(this_coil_dev_rrs[use_mask],
hpi_dig_head_rrs[use_mask],
last['quat'])
if g < gof_limit:
logger.info(_time_prefix(fit_time) +
'Bad coil fit! (g=%7.3f)' % (g,))
continue
# Convert quaterion to transform
this_dev_head_t = np.concatenate(
(quat_to_rot(this_quat[:3]),
this_quat[3:][:, np.newaxis]), axis=1)
this_dev_head_t = np.concatenate((this_dev_head_t, [[0, 0, 0, 1.]]))
# velocities, in device coords, of HPI coils
# dt = fit_time - last['fit_time'] #
dt = t_window
vs = tuple(1000. * np.sqrt(np.sum((last['coil_dev_rrs'] -
this_coil_dev_rrs) ** 2,
axis=1)) / dt)
logger.info(_time_prefix(fit_time) +
('%s/%s good HPI fits, movements [mm/s] = ' +
' / '.join(['% 6.1f'] * hpi['n_freqs']))
% ((use_mask.sum(), hpi['n_freqs']) + vs))
# resulting errors in head coil positions
est_coil_head_rrs = apply_trans(this_dev_head_t, this_coil_dev_rrs)
errs = 1000. * np.sqrt(((hpi_dig_head_rrs -
est_coil_head_rrs) ** 2).sum(axis=-1))
e = errs[use_mask].mean() / 1000. # mm -> m
d = 100 * np.sqrt(np.sum(last['quat'][3:] - this_quat[3:]) ** 2) # cm
r = _angle_between_quats(last['quat'][:3], this_quat[:3]) / dt
v = d / dt # cm/sec
if pos_0 is None:
pos_0 = this_quat[3:].copy()
d = 100 * np.sqrt(np.sum((this_quat[3:] - pos_0) ** 2)) # dis from 1st
# MaxFilter averages over a 200 ms window for display, but we don't
for ii in range(hpi['n_freqs']):
if use_mask[ii]:
start, end = ' ', '/'
else:
start, end = '(', ')'
log_str = (' ' + start +
'{0:6.1f} {1:6.1f} {2:6.1f} / ' +
'{3:6.1f} {4:6.1f} {5:6.1f} / ' +
'g = {6:0.3f} err = {7:4.1f} ' +
end)
if ii <= 2:
log_str += '{8:6.3f} {9:6.3f} {10:6.3f}'
elif ii == 3:
log_str += '{8:6.1f} {9:6.1f} {10:6.1f}'
vals = np.concatenate((1000 * hpi_dig_head_rrs[ii],
1000 * est_coil_head_rrs[ii],
[g_coils[ii], errs[ii]])) # errs in mm
if ii <= 2:
vals = np.concatenate((vals, this_dev_head_t[ii, :3]))
elif ii == 3:
vals = np.concatenate((vals, this_dev_head_t[:3, 3] * 1000.))
logger.debug(log_str.format(*vals))
logger.debug(' #t = %0.3f, #e = %0.2f cm, #g = %0.3f, '
'#v = %0.2f cm/s, #r = %0.2f rad/s, #d = %0.2f cm'
% (fit_time, 100 * e, g, v, r, d))
logger.debug(' #t = %0.3f, #q = %s '
% (fit_time, ' '.join(map('{:8.5f}'.format, this_quat))))
quats.append(np.concatenate(([fit_time], this_quat, [g],
[e * 100], [v]))) # e in centimeters
last['fit_time'] = fit_time
last['quat'] = this_quat
last['coil_dev_rrs'] = this_coil_dev_rrs
logger.info('[done]')
quats = np.array(quats, np.float64)
quats = np.zeros((0, 10)) if quats.size == 0 else quats
return quats
@verbose
def _calculate_chpi_coil_locs(raw, t_step_min=0.1, t_step_max=10.,
t_window=0.2, dist_limit=0.005, gof_limit=0.98,
too_close='raise', verbose=None):
"""Calculate locations of each cHPI coils over time.
Parameters
----------
raw : instance of Raw
Raw data with cHPI information.
t_step_min : float
Minimum time step to use. If correlations are sufficiently high,
t_step_max will be used.
t_step_max : float
Maximum time step to use.
t_window : float
Time window to use to estimate the head positions.
dist_limit : float
Minimum distance (m) to accept for coil position fitting.
gof_limit : float
Minimum goodness of fit to accept.
too_close : str
How to handle HPI positions too close to the sensors,
can be 'raise', 'warning', or 'info'.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
time : ndarray, shape (N, 1)
The start time of each fitting interval
chpi_digs :ndarray, shape (N, 1)
Array of dig structures containing the cHPI locations. Includes
goodness of fit for each cHPI.
Notes
-----
The number of time points ``N`` will depend on the velocity of head
movements as well as ``t_step_max`` and ``t_step_min``.
See Also
--------
read_head_pos
write_head_pos
"""
_check_too_close(too_close)
# extract initial geometry from info['hpi_results']
hpi_dig_head_rrs = _get_hpi_initial_fit(raw.info)
# extract hpi system information
hpi = _setup_hpi_struct(raw.info, int(round(t_window * raw.info['sfreq'])))
# move to device coords
head_dev_t = invert_transform(raw.info['dev_head_t'])['trans']
hpi_dig_dev_rrs = apply_trans(head_dev_t, hpi_dig_head_rrs)
# setup last iteration structure
last = dict(sin_fit=None, fit_time=t_step_min,
coil_dev_rrs=hpi_dig_dev_rrs)
t_begin = raw.times[0]
t_end = raw.times[-1]
fit_idxs = raw.time_as_index(np.arange(t_begin + t_window / 2., t_end,
t_step_min),
use_rounding=True)
times = []
chpi_digs = []
logger.info('Fitting up to %s time points (%0.1f sec duration)'
% (len(fit_idxs), t_end - t_begin))
hpi['n_freqs'] = len(hpi['freqs'])
for midpt in fit_idxs:
#
# 0. determine samples to fit.
#
fit_time = (midpt + raw.first_samp - hpi['n_window'] / 2.) /\
raw.info['sfreq']
time_sl = midpt - hpi['n_window'] // 2
time_sl = slice(max(time_sl, 0),
min(time_sl + hpi['n_window'], len(raw.times)))
#
# 1. Fit amplitudes for each channel from each of the N cHPI sinusoids
#
sin_fit = _fit_cHPI_amplitudes(raw, time_sl, hpi, fit_time)
# skip this window if bad
# logging has already been done! Maybe turn this into an Exception
if sin_fit is None:
continue
# check if data has sufficiently changed
if last['sin_fit'] is not None: # first iteration
corr = np.corrcoef(sin_fit.ravel(), last['sin_fit'].ravel())[0, 1]
# check to see if we need to continue
if fit_time - last['fit_time'] <= t_step_max - 1e-7 and \
corr * corr > 0.98:
# don't need to refit data
continue
# update 'last' sin_fit *before* inplace sign mult
last['sin_fit'] = sin_fit.copy()
#
# 2. Fit magnetic dipole for each coil to obtain coil positions
# in device coordinates
#
outs = [_fit_magnetic_dipole(f, pos, hpi['coils'], hpi['scale'],
hpi['method'], too_close)
for f, pos in zip(sin_fit, last['coil_dev_rrs'])]
dig = []
for idx, o in enumerate(outs):
dig.append({'r': o[0], 'ident': idx + 1,
'kind': FIFF.FIFFV_POINT_HPI,
'coord_frame': FIFF.FIFFV_COORD_DEVICE,
'gof': o[1]})
this_coil_dev_rrs = np.array([o[0] for o in outs])
times.append(fit_time)
chpi_digs.append(dig)
last['fit_time'] = fit_time
last['coil_dev_rrs'] = this_coil_dev_rrs
logger.info('[done]')
return times, chpi_digs
@verbose
def filter_chpi(raw, include_line=True, t_step=0.01, t_window=0.2,
verbose=None):
"""Remove cHPI and line noise from data.
.. note:: This function will only work properly if cHPI was on
during the recording.
Parameters
----------
raw : instance of Raw
Raw data with cHPI information. Must be preloaded. Operates in-place.
include_line : bool
If True, also filter line noise.
t_step : float
Time step to use for estimation, default is 0.01 (10 ms).
t_window : float
Time window to use to estimate the amplitudes, default is
0.2 (200 ms).
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
raw : instance of Raw
The raw data.
Notes
-----
cHPI signals are in general not stationary, because head movements act
like amplitude modulators on cHPI signals. Thus it is recommended to
to use this procedure, which uses an iterative fitting method, to
remove cHPI signals, as opposed to notch filtering.
.. versionadded:: 0.12
"""
if not raw.preload:
raise RuntimeError('raw data must be preloaded')
t_step = float(t_step)
t_window = float(t_window)
if not (t_step > 0 and t_window > 0):
raise ValueError('t_step (%s) and t_window (%s) must both be > 0.'
% (t_step, t_window))
n_step = int(np.ceil(t_step * raw.info['sfreq']))
hpi = _setup_hpi_struct(raw.info, int(round(t_window * raw.info['sfreq'])),
exclude='bads', remove_aliased=True,
verbose=False)
fit_idxs = np.arange(0, len(raw.times) + hpi['n_window'] // 2, n_step)
n_freqs = len(hpi['freqs'])
n_remove = 2 * n_freqs
meg_picks = pick_types(raw.info, meg=True, exclude=()) # filter all chs
n_times = len(raw.times)
msg = 'Removing %s cHPI' % n_freqs
if include_line:
n_remove += 2 * len(hpi['line_freqs'])
msg += ' and %s line harmonic' % len(hpi['line_freqs'])
msg += ' frequencies from %s MEG channels' % len(meg_picks)
proj = np.dot(hpi['model'][:, :n_remove], hpi['inv_model'][:n_remove]).T
logger.info(msg)
chunks = list() # the chunks to subtract
last_endpt = 0
last_done = 0.
next_done = 60.
for ii, midpt in enumerate(fit_idxs):
if midpt / raw.info['sfreq'] >= next_done or ii == len(fit_idxs) - 1:
logger.info(' Filtering % 5.1f - % 5.1f sec'
% (last_done, min(next_done, raw.times[-1])))
last_done = next_done
next_done += 60.
left_edge = midpt - hpi['n_window'] // 2
time_sl = slice(max(left_edge, 0),
min(left_edge + hpi['n_window'], len(raw.times)))
this_len = time_sl.stop - time_sl.start
if this_len == hpi['n_window']:
this_proj = proj
else: # first or last window
model = hpi['model'][:this_len]
inv_model = linalg.pinv(model)
this_proj = np.dot(model[:, :n_remove], inv_model[:n_remove]).T
this_data = raw._data[meg_picks, time_sl]
subt_pt = min(midpt + n_step, n_times)
if last_endpt != subt_pt:
fit_left_edge = left_edge - time_sl.start + hpi['n_window'] // 2
fit_sl = slice(fit_left_edge,
fit_left_edge + (subt_pt - last_endpt))
chunks.append((subt_pt, np.dot(this_data, this_proj[:, fit_sl])))
last_endpt = subt_pt
# Consume (trailing) chunks that are now safe to remove because
# our windows will no longer touch them
if ii < len(fit_idxs) - 1:
next_left_edge = fit_idxs[ii + 1] - hpi['n_window'] // 2
else:
next_left_edge = np.inf
while len(chunks) > 0 and chunks[0][0] <= next_left_edge:
right_edge, chunk = chunks.pop(0)
raw._data[meg_picks,
right_edge - chunk.shape[1]:right_edge] -= chunk
return raw
|