1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
|
# Authors: Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Denis A. Engemann <denis.engemann@gmail.com>
#
# License: BSD (3-clause)
from functools import partial
from inspect import getmembers
import numpy as np
from .utils import check_indices
from ..fixes import _get_args
from ..parallel import parallel_func
from ..source_estimate import _BaseSourceEstimate
from ..epochs import BaseEpochs
from ..time_frequency.multitaper import (_mt_spectra, _compute_mt_params,
_psd_from_mt, _csd_from_mt,
_psd_from_mt_adaptive)
from ..time_frequency.tfr import morlet, cwt
from ..utils import logger, verbose, _time_mask, warn
from ..externals.six import string_types
########################################################################
# Various connectivity estimators
class _AbstractConEstBase(object):
"""ABC for connectivity estimators."""
def start_epoch(self):
raise NotImplementedError('start_epoch method not implemented')
def accumulate(self, con_idx, csd_xy):
raise NotImplementedError('accumulate method not implemented')
def combine(self, other):
raise NotImplementedError('combine method not implemented')
def compute_con(self, con_idx, n_epochs):
raise NotImplementedError('compute_con method not implemented')
class _EpochMeanConEstBase(_AbstractConEstBase):
"""Base class for methods that estimate connectivity as mean epoch-wise."""
def __init__(self, n_cons, n_freqs, n_times):
self.n_cons = n_cons
self.n_freqs = n_freqs
self.n_times = n_times
if n_times == 0:
self.csd_shape = (n_cons, n_freqs)
else:
self.csd_shape = (n_cons, n_freqs, n_times)
self.con_scores = None
def start_epoch(self): # noqa: D401
"""Called at the start of each epoch."""
pass # for this type of con. method we don't do anything
def combine(self, other):
"""Include con. accumated for some epochs in this estimate."""
self._acc += other._acc
class _CohEstBase(_EpochMeanConEstBase):
"""Base Estimator for Coherence, Coherency, Imag. Coherence."""
def __init__(self, n_cons, n_freqs, n_times):
super(_CohEstBase, self).__init__(n_cons, n_freqs, n_times)
# allocate space for accumulation of CSD
self._acc = np.zeros(self.csd_shape, dtype=np.complex128)
def accumulate(self, con_idx, csd_xy):
"""Accumulate CSD for some connections."""
self._acc[con_idx] += csd_xy
class _CohEst(_CohEstBase):
"""Coherence Estimator."""
name = 'Coherence'
def compute_con(self, con_idx, n_epochs, psd_xx, psd_yy):
"""Compute final con. score for some connections."""
if self.con_scores is None:
self.con_scores = np.zeros(self.csd_shape)
csd_mean = self._acc[con_idx] / n_epochs
self.con_scores[con_idx] = np.abs(csd_mean) / np.sqrt(psd_xx * psd_yy)
class _CohyEst(_CohEstBase):
"""Coherency Estimator."""
name = 'Coherency'
def compute_con(self, con_idx, n_epochs, psd_xx, psd_yy):
"""Compute final con. score for some connections."""
if self.con_scores is None:
self.con_scores = np.zeros(self.csd_shape,
dtype=np.complex128)
csd_mean = self._acc[con_idx] / n_epochs
self.con_scores[con_idx] = csd_mean / np.sqrt(psd_xx * psd_yy)
class _ImCohEst(_CohEstBase):
"""Imaginary Coherence Estimator."""
name = 'Imaginary Coherence'
def compute_con(self, con_idx, n_epochs, psd_xx, psd_yy):
"""Compute final con. score for some connections."""
if self.con_scores is None:
self.con_scores = np.zeros(self.csd_shape)
csd_mean = self._acc[con_idx] / n_epochs
self.con_scores[con_idx] = np.imag(csd_mean) / np.sqrt(psd_xx * psd_yy)
class _PLVEst(_EpochMeanConEstBase):
"""PLV Estimator."""
name = 'PLV'
def __init__(self, n_cons, n_freqs, n_times):
super(_PLVEst, self).__init__(n_cons, n_freqs, n_times)
# allocate accumulator
self._acc = np.zeros(self.csd_shape, dtype=np.complex128)
def accumulate(self, con_idx, csd_xy):
"""Accumulate some connections."""
self._acc[con_idx] += csd_xy / np.abs(csd_xy)
def compute_con(self, con_idx, n_epochs):
"""Compute final con. score for some connections."""
if self.con_scores is None:
self.con_scores = np.zeros(self.csd_shape)
plv = np.abs(self._acc / n_epochs)
self.con_scores[con_idx] = plv
class _PLIEst(_EpochMeanConEstBase):
"""PLI Estimator."""
name = 'PLI'
def __init__(self, n_cons, n_freqs, n_times):
super(_PLIEst, self).__init__(n_cons, n_freqs, n_times)
# allocate accumulator
self._acc = np.zeros(self.csd_shape)
def accumulate(self, con_idx, csd_xy):
"""Accumulate some connections."""
self._acc[con_idx] += np.sign(np.imag(csd_xy))
def compute_con(self, con_idx, n_epochs):
"""Compute final con. score for some connections."""
if self.con_scores is None:
self.con_scores = np.zeros(self.csd_shape)
pli_mean = self._acc[con_idx] / n_epochs
self.con_scores[con_idx] = np.abs(pli_mean)
class _PLIUnbiasedEst(_PLIEst):
"""Unbiased PLI Square Estimator."""
name = 'Unbiased PLI Square'
def compute_con(self, con_idx, n_epochs):
"""Compute final con. score for some connections."""
if self.con_scores is None:
self.con_scores = np.zeros(self.csd_shape)
pli_mean = self._acc[con_idx] / n_epochs
# See Vinck paper Eq. (30)
con = (n_epochs * pli_mean ** 2 - 1) / (n_epochs - 1)
self.con_scores[con_idx] = con
class _WPLIEst(_EpochMeanConEstBase):
"""WPLI Estimator."""
name = 'WPLI'
def __init__(self, n_cons, n_freqs, n_times):
super(_WPLIEst, self).__init__(n_cons, n_freqs, n_times)
# store both imag(csd) and abs(imag(csd))
acc_shape = (2,) + self.csd_shape
self._acc = np.zeros(acc_shape)
def accumulate(self, con_idx, csd_xy):
"""Accumulate some connections."""
im_csd = np.imag(csd_xy)
self._acc[0, con_idx] += im_csd
self._acc[1, con_idx] += np.abs(im_csd)
def compute_con(self, con_idx, n_epochs):
"""Compute final con. score for some connections."""
if self.con_scores is None:
self.con_scores = np.zeros(self.csd_shape)
num = np.abs(self._acc[0, con_idx])
denom = self._acc[1, con_idx]
# handle zeros in denominator
z_denom = np.where(denom == 0.)
denom[z_denom] = 1.
con = num / denom
# where we had zeros in denominator, we set con to zero
con[z_denom] = 0.
self.con_scores[con_idx] = con
class _WPLIDebiasedEst(_EpochMeanConEstBase):
"""Debiased WPLI Square Estimator."""
name = 'Debiased WPLI Square'
def __init__(self, n_cons, n_freqs, n_times):
super(_WPLIDebiasedEst, self).__init__(n_cons, n_freqs, n_times)
# store imag(csd), abs(imag(csd)), imag(csd)^2
acc_shape = (3,) + self.csd_shape
self._acc = np.zeros(acc_shape)
def accumulate(self, con_idx, csd_xy):
"""Accumulate some connections."""
im_csd = np.imag(csd_xy)
self._acc[0, con_idx] += im_csd
self._acc[1, con_idx] += np.abs(im_csd)
self._acc[2, con_idx] += im_csd ** 2
def compute_con(self, con_idx, n_epochs):
"""Compute final con. score for some connections."""
if self.con_scores is None:
self.con_scores = np.zeros(self.csd_shape)
# note: we use the trick from fieldtrip to compute the
# the estimate over all pairwise epoch combinations
sum_im_csd = self._acc[0, con_idx]
sum_abs_im_csd = self._acc[1, con_idx]
sum_sq_im_csd = self._acc[2, con_idx]
denom = sum_abs_im_csd ** 2 - sum_sq_im_csd
# handle zeros in denominator
z_denom = np.where(denom == 0.)
denom[z_denom] = 1.
con = (sum_im_csd ** 2 - sum_sq_im_csd) / denom
# where we had zeros in denominator, we set con to zero
con[z_denom] = 0.
self.con_scores[con_idx] = con
class _PPCEst(_EpochMeanConEstBase):
"""Pairwise Phase Consistency (PPC) Estimator."""
name = 'PPC'
def __init__(self, n_cons, n_freqs, n_times):
super(_PPCEst, self).__init__(n_cons, n_freqs, n_times)
# store csd / abs(csd)
self._acc = np.zeros(self.csd_shape, dtype=np.complex128)
def accumulate(self, con_idx, csd_xy):
"""Accumulate some connections."""
denom = np.abs(csd_xy)
z_denom = np.where(denom == 0.)
denom[z_denom] = 1.
this_acc = csd_xy / denom
this_acc[z_denom] = 0. # handle division by zero
self._acc[con_idx] += this_acc
def compute_con(self, con_idx, n_epochs):
"""Compute final con. score for some connections."""
if self.con_scores is None:
self.con_scores = np.zeros(self.csd_shape)
# note: we use the trick from fieldtrip to compute the
# the estimate over all pairwise epoch combinations
con = ((self._acc[con_idx] * np.conj(self._acc[con_idx]) - n_epochs) /
(n_epochs * (n_epochs - 1.)))
self.con_scores[con_idx] = np.real(con)
###############################################################################
def _epoch_spectral_connectivity(data, sig_idx, tmin_idx, tmax_idx, sfreq,
mode, window_fun, eigvals, wavelets,
freq_mask, mt_adaptive, idx_map, block_size,
psd, accumulate_psd, con_method_types,
con_methods, n_signals, n_times,
accumulate_inplace=True):
"""Estimate connectivity for one epoch (see spectral_connectivity)."""
n_cons = len(idx_map[0])
if wavelets is not None:
n_times_spectrum = n_times
n_freqs = len(wavelets)
else:
n_times_spectrum = 0
n_freqs = np.sum(freq_mask)
if not accumulate_inplace:
# instantiate methods only for this epoch (used in parallel mode)
con_methods = [mtype(n_cons, n_freqs, n_times_spectrum)
for mtype in con_method_types]
if len(sig_idx) == n_signals:
# we use all signals: use a slice for faster indexing
sig_idx = slice(None, None)
# compute tapered spectra
if mode in ('multitaper', 'fourier'):
x_mt = list()
this_psd = list()
sig_pos_start = 0
for this_data in data:
this_n_sig = this_data.shape[0]
sig_pos_end = sig_pos_start + this_n_sig
if not isinstance(sig_idx, slice):
this_sig_idx = sig_idx[(sig_idx >= sig_pos_start) &
(sig_idx < sig_pos_end)] - sig_pos_start
else:
this_sig_idx = sig_idx
if isinstance(this_data, _BaseSourceEstimate):
_mt_spectra_partial = partial(_mt_spectra, dpss=window_fun,
sfreq=sfreq)
this_x_mt = this_data.transform_data(
_mt_spectra_partial, idx=this_sig_idx, tmin_idx=tmin_idx,
tmax_idx=tmax_idx)
else:
this_x_mt, _ = _mt_spectra(this_data[this_sig_idx,
tmin_idx:tmax_idx],
window_fun, sfreq)
if mt_adaptive:
# compute PSD and adaptive weights
_this_psd, weights = _psd_from_mt_adaptive(
this_x_mt, eigvals, freq_mask, return_weights=True)
# only keep freqs of interest
this_x_mt = this_x_mt[:, :, freq_mask]
else:
# do not use adaptive weights
this_x_mt = this_x_mt[:, :, freq_mask]
if mode == 'multitaper':
weights = np.sqrt(eigvals)[np.newaxis, :, np.newaxis]
else:
# hack to so we can sum over axis=-2
weights = np.array([1.])[:, None, None]
if accumulate_psd:
_this_psd = _psd_from_mt(this_x_mt, weights)
x_mt.append(this_x_mt)
if accumulate_psd:
this_psd.append(_this_psd)
x_mt = np.concatenate(x_mt, axis=0)
if accumulate_psd:
this_psd = np.concatenate(this_psd, axis=0)
# advance position
sig_pos_start = sig_pos_end
elif mode == 'cwt_morlet':
# estimate spectra using CWT
x_cwt = list()
this_psd = list()
sig_pos_start = 0
for this_data in data:
this_n_sig = this_data.shape[0]
sig_pos_end = sig_pos_start + this_n_sig
if not isinstance(sig_idx, slice):
this_sig_idx = sig_idx[(sig_idx >= sig_pos_start) &
(sig_idx < sig_pos_end)] - sig_pos_start
else:
this_sig_idx = sig_idx
if isinstance(this_data, _BaseSourceEstimate):
cwt_partial = partial(cwt, Ws=wavelets, use_fft=True,
mode='same')
this_x_cwt = this_data.transform_data(
cwt_partial, idx=this_sig_idx, tmin_idx=tmin_idx,
tmax_idx=tmax_idx)
else:
this_x_cwt = cwt(this_data[this_sig_idx, tmin_idx:tmax_idx],
wavelets, use_fft=True, mode='same')
if accumulate_psd:
this_psd.append((this_x_cwt * this_x_cwt.conj()).real)
x_cwt.append(this_x_cwt)
# advance position
sig_pos_start = sig_pos_end
x_cwt = np.concatenate(x_cwt, axis=0)
if accumulate_psd:
this_psd = np.concatenate(this_psd, axis=0)
else:
raise RuntimeError('invalid mode')
# accumulate or return psd
if accumulate_psd:
if accumulate_inplace:
psd += this_psd
else:
psd = this_psd
else:
psd = None
# tell the methods that a new epoch starts
for method in con_methods:
method.start_epoch()
# accumulate connectivity scores
if mode in ['multitaper', 'fourier']:
for i in range(0, n_cons, block_size):
con_idx = slice(i, i + block_size)
if mt_adaptive:
csd = _csd_from_mt(x_mt[idx_map[0][con_idx]],
x_mt[idx_map[1][con_idx]],
weights[idx_map[0][con_idx]],
weights[idx_map[1][con_idx]])
else:
csd = _csd_from_mt(x_mt[idx_map[0][con_idx]],
x_mt[idx_map[1][con_idx]],
weights, weights)
for method in con_methods:
method.accumulate(con_idx, csd)
elif mode in ('cwt_morlet',): # reminder to add alternative TFR methods
for i_block, i in enumerate(range(0, n_cons, block_size)):
con_idx = slice(i, i + block_size)
# this codes can be very slow
csd = (x_cwt[idx_map[0][con_idx]] *
x_cwt[idx_map[1][con_idx]].conjugate())
for method in con_methods:
method.accumulate(con_idx, csd)
# future estimator types need to be explicitly handled here
else:
raise RuntimeError('This should never happen')
return con_methods, psd
def _get_n_epochs(epochs, n):
"""Generate lists with at most n epochs."""
epochs_out = list()
for epoch in epochs:
if not isinstance(epoch, (list, tuple)):
epoch = (epoch,)
epochs_out.append(epoch)
if len(epochs_out) >= n:
yield epochs_out
epochs_out = list()
if 0 < len(epochs_out) < n:
yield epochs_out
def _check_method(method):
"""Test if a method implements the required interface."""
interface_members = [m[0] for m in getmembers(_AbstractConEstBase)
if not m[0].startswith('_')]
method_members = [m[0] for m in getmembers(method)
if not m[0].startswith('_')]
for member in interface_members:
if member not in method_members:
return False, member
return True, None
def _get_and_verify_data_sizes(data, n_signals=None, n_times=None, times=None):
"""Get and/or verify the data sizes and time scales."""
if not isinstance(data, (list, tuple)):
raise ValueError('data has to be a list or tuple')
n_signals_tot = 0
for this_data in data:
this_n_signals, this_n_times = this_data.shape
if n_times is not None:
if this_n_times != n_times:
raise ValueError('all input time series must have the same '
'number of time points')
else:
n_times = this_n_times
n_signals_tot += this_n_signals
if hasattr(this_data, 'times'):
this_times = this_data.times
if times is not None:
if np.any(times != this_times):
warn('time scales of input time series do not match')
else:
times = this_times
if n_signals is not None:
if n_signals != n_signals_tot:
raise ValueError('the number of time series has to be the same in '
'each epoch')
n_signals = n_signals_tot
return n_signals, n_times, times
# map names to estimator types
_CON_METHOD_MAP = {'coh': _CohEst, 'cohy': _CohyEst, 'imcoh': _ImCohEst,
'plv': _PLVEst, 'ppc': _PPCEst, 'pli': _PLIEst,
'pli2_unbiased': _PLIUnbiasedEst, 'wpli': _WPLIEst,
'wpli2_debiased': _WPLIDebiasedEst}
def _check_estimators(method, mode):
"""Check construction of connectivity estimators."""
n_methods = len(method)
con_method_types = list()
for this_method in method:
if this_method in _CON_METHOD_MAP:
con_method_types.append(_CON_METHOD_MAP[this_method])
elif isinstance(this_method, string_types):
raise ValueError('%s is not a valid connectivity method' %
this_method)
else:
# support for custom class
method_valid, msg = _check_method(this_method)
if not method_valid:
raise ValueError('The supplied connectivity method does '
'not have the method %s' % msg)
con_method_types.append(this_method)
# determine how many arguments the compute_con_function needs
n_comp_args = [len(_get_args(mtype.compute_con))
for mtype in con_method_types]
# we currently only support 3 arguments
if any(n not in (3, 5) for n in n_comp_args):
raise ValueError('The .compute_con method needs to have either '
'3 or 5 arguments')
# if none of the comp_con functions needs the PSD, we don't estimate it
accumulate_psd = any(n == 5 for n in n_comp_args)
return con_method_types, n_methods, accumulate_psd, n_comp_args
@verbose
def spectral_connectivity(data, method='coh', indices=None, sfreq=2 * np.pi,
mode='multitaper', fmin=None, fmax=np.inf,
fskip=0, faverage=False, tmin=None, tmax=None,
mt_bandwidth=None, mt_adaptive=False,
mt_low_bias=True, cwt_freqs=None,
cwt_n_cycles=7, block_size=1000, n_jobs=1,
verbose=None):
"""Compute frequency- and time-frequency-domain connectivity measures.
The connectivity method(s) are specified using the "method" parameter.
All methods are based on estimates of the cross- and power spectral
densities (CSD/PSD) Sxy and Sxx, Syy.
The spectral densities can be estimated using a multitaper method with
digital prolate spheroidal sequence (DPSS) windows, a discrete Fourier
transform with Hanning windows, or a continuous wavelet transform using
Morlet wavelets. The spectral estimation mode is specified using the
"mode" parameter.
By default, the connectivity between all signals is computed (only
connections corresponding to the lower-triangular part of the
connectivity matrix). If one is only interested in the connectivity
between some signals, the "indices" parameter can be used. For example,
to compute the connectivity between the signal with index 0 and signals
"2, 3, 4" (a total of 3 connections) one can use the following::
indices = (np.array([0, 0, 0]), # row indices
np.array([2, 3, 4])) # col indices
con_flat = spectral_connectivity(data, method='coh',
indices=indices, ...)
In this case con_flat.shape = (3, n_freqs). The connectivity scores are
in the same order as defined indices.
**Supported Connectivity Measures**
The connectivity method(s) is specified using the "method" parameter. The
following methods are supported (note: ``E[]`` denotes average over
epochs). Multiple measures can be computed at once by using a list/tuple,
e.g., ``['coh', 'pli']`` to compute coherence and PLI.
'coh' : Coherence given by::
| E[Sxy] |
C = ---------------------
sqrt(E[Sxx] * E[Syy])
'cohy' : Coherency given by::
E[Sxy]
C = ---------------------
sqrt(E[Sxx] * E[Syy])
'imcoh' : Imaginary coherence [1]_ given by::
Im(E[Sxy])
C = ----------------------
sqrt(E[Sxx] * E[Syy])
'plv' : Phase-Locking Value (PLV) [2]_ given by::
PLV = |E[Sxy/|Sxy|]|
'ppc' : Pairwise Phase Consistency (PPC), an unbiased estimator
of squared PLV [3]_.
'pli' : Phase Lag Index (PLI) [4]_ given by::
PLI = |E[sign(Im(Sxy))]|
'pli2_unbiased' : Unbiased estimator of squared PLI [5]_.
'wpli' : Weighted Phase Lag Index (WPLI) [5]_ given by::
|E[Im(Sxy)]|
WPLI = ------------------
E[|Im(Sxy)|]
'wpli2_debiased' : Debiased estimator of squared WPLI [5]_.
Parameters
----------
data : array-like, shape=(n_epochs, n_signals, n_times) | Epochs
The data from which to compute connectivity. Note that it is also
possible to combine multiple signals by providing a list of tuples,
e.g., data = [(arr_0, stc_0), (arr_1, stc_1), (arr_2, stc_2)],
corresponds to 3 epochs, and arr_* could be an array with the same
number of time points as stc_*. The array-like object can also
be a list/generator of array, shape =(n_signals, n_times),
or a list/generator of SourceEstimate or VolSourceEstimate objects.
method : string | list of string
Connectivity measure(s) to compute.
indices : tuple of arrays | None
Two arrays with indices of connections for which to compute
connectivity. If None, all connections are computed.
sfreq : float
The sampling frequency.
mode : str
Spectrum estimation mode can be either: 'multitaper', 'fourier', or
'cwt_morlet'.
fmin : float | tuple of floats
The lower frequency of interest. Multiple bands are defined using
a tuple, e.g., (8., 20.) for two bands with 8Hz and 20Hz lower freq.
If None the frequency corresponding to an epoch length of 5 cycles
is used.
fmax : float | tuple of floats
The upper frequency of interest. Multiple bands are dedined using
a tuple, e.g. (13., 30.) for two band with 13Hz and 30Hz upper freq.
fskip : int
Omit every "(fskip + 1)-th" frequency bin to decimate in frequency
domain.
faverage : boolean
Average connectivity scores for each frequency band. If True,
the output freqs will be a list with arrays of the frequencies
that were averaged.
tmin : float | None
Time to start connectivity estimation. Note: when "data" is an array,
the first sample is assumed to be at time 0. For other types
(Epochs, etc.), the time information contained in the object is used
to compute the time indices.
tmax : float | None
Time to end connectivity estimation. Note: when "data" is an array,
the first sample is assumed to be at time 0. For other types
(Epochs, etc.), the time information contained in the object is used
to compute the time indices.
mt_bandwidth : float | None
The bandwidth of the multitaper windowing function in Hz.
Only used in 'multitaper' mode.
mt_adaptive : bool
Use adaptive weights to combine the tapered spectra into PSD.
Only used in 'multitaper' mode.
mt_low_bias : bool
Only use tapers with more than 90% spectral concentration within
bandwidth. Only used in 'multitaper' mode.
cwt_freqs : array
Array of frequencies of interest. Only used in 'cwt_morlet' mode.
cwt_n_cycles: float | array of float
Number of cycles. Fixed number or one per frequency. Only used in
'cwt_morlet' mode.
block_size : int
How many connections to compute at once (higher numbers are faster
but require more memory).
n_jobs : int
How many epochs to process in parallel.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
con : array | list of arrays
Computed connectivity measure(s). The shape of each array is either
(n_signals, n_signals, n_freqs) mode: 'multitaper' or 'fourier'
(n_signals, n_signals, n_freqs, n_times) mode: 'cwt_morlet'
when "indices" is None, or
(n_con, n_freqs) mode: 'multitaper' or 'fourier'
(n_con, n_freqs, n_times) mode: 'cwt_morlet'
when "indices" is specified and "n_con = len(indices[0])".
freqs : array
Frequency points at which the connectivity was computed.
times : array
Time points for which the connectivity was computed.
n_epochs : int
Number of epochs used for computation.
n_tapers : int
The number of DPSS tapers used. Only defined in 'multitaper' mode.
Otherwise None is returned.
References
----------
.. [1] Nolte et al. "Identifying true brain interaction from EEG data using
the imaginary part of coherency" Clinical neurophysiology, vol. 115,
no. 10, pp. 2292-2307, Oct. 2004.
.. [2] Lachaux et al. "Measuring phase synchrony in brain signals" Human
brain mapping, vol. 8, no. 4, pp. 194-208, Jan. 1999.
.. [3] Vinck et al. "The pairwise phase consistency: a bias-free measure of
rhythmic neuronal synchronization" NeuroImage, vol. 51, no. 1,
pp. 112-122, May 2010.
.. [4] Stam et al. "Phase lag index: assessment of functional connectivity
from multi channel EEG and MEG with diminished bias from common
sources" Human brain mapping, vol. 28, no. 11, pp. 1178-1193,
Nov. 2007.
.. [5] Vinck et al. "An improved index of phase-synchronization for
electro-physiological data in the presence of volume-conduction,
noise and sample-size bias" NeuroImage, vol. 55, no. 4,
pp. 1548-1565, Apr. 2011.
"""
if n_jobs != 1:
parallel, my_epoch_spectral_connectivity, _ = \
parallel_func(_epoch_spectral_connectivity, n_jobs,
verbose=verbose)
# format fmin and fmax and check inputs
if fmin is None:
fmin = -np.inf # set it to -inf, so we can adjust it later
fmin = np.array((fmin,), dtype=float).ravel()
fmax = np.array((fmax,), dtype=float).ravel()
if len(fmin) != len(fmax):
raise ValueError('fmin and fmax must have the same length')
if np.any(fmin > fmax):
raise ValueError('fmax must be larger than fmin')
n_bands = len(fmin)
# assign names to connectivity methods
if not isinstance(method, (list, tuple)):
method = [method] # make it a list so we can iterate over it
# handle connectivity estimators
(con_method_types, n_methods, accumulate_psd,
n_comp_args) = _check_estimators(method=method, mode=mode)
if isinstance(data, BaseEpochs):
times_in = data.times # input times for Epochs input type
sfreq = data.info['sfreq']
# loop over data; it could be a generator that returns
# (n_signals x n_times) arrays or SourceEstimates
epoch_idx = 0
logger.info('Connectivity computation...')
for epoch_block in _get_n_epochs(data, n_jobs):
if epoch_idx == 0:
# initialize everything times and frequencies
(n_cons, times, n_times, times_in, n_times_in, tmin_idx,
tmax_idx, n_freqs, freq_mask, freqs, freqs_bands, freq_idx_bands,
n_signals, indices_use) = _prepare_connectivity(
epoch_block=epoch_block, tmin=tmin, tmax=tmax, fmin=fmin,
fmax=fmax, sfreq=sfreq, indices=indices, mode=mode,
fskip=fskip, n_bands=n_bands,
cwt_freqs=cwt_freqs, faverage=faverage)
# get the window function, wavelets, etc for different modes
(spectral_params, mt_adaptive, n_times_spectrum,
n_tapers) = _assemble_spectral_params(
mode=mode, n_times=n_times, mt_adaptive=mt_adaptive,
mt_bandwidth=mt_bandwidth, sfreq=sfreq,
mt_low_bias=mt_low_bias, cwt_n_cycles=cwt_n_cycles,
cwt_freqs=cwt_freqs, freqs=freqs, freq_mask=freq_mask)
# unique signals for which we actually need to compute PSD etc.
sig_idx = np.unique(np.r_[indices_use[0], indices_use[1]])
# map indices to unique indices
idx_map = [np.searchsorted(sig_idx, ind) for ind in indices_use]
# allocate space to accumulate PSD
if accumulate_psd:
if n_times_spectrum == 0:
psd_shape = (len(sig_idx), n_freqs)
else:
psd_shape = (len(sig_idx), n_freqs, n_times_spectrum)
psd = np.zeros(psd_shape)
else:
psd = None
# create instances of the connectivity estimators
con_methods = [mtype(n_cons, n_freqs, n_times_spectrum)
for mtype in con_method_types]
sep = ', '
metrics_str = sep.join([meth.name for meth in con_methods])
logger.info(' the following metrics will be computed: %s'
% metrics_str)
# check dimensions and time scale
for this_epoch in epoch_block:
_get_and_verify_data_sizes(this_epoch, n_signals, n_times_in,
times_in)
call_params = dict(
sig_idx=sig_idx, tmin_idx=tmin_idx,
tmax_idx=tmax_idx, sfreq=sfreq, mode=mode,
freq_mask=freq_mask, idx_map=idx_map, block_size=block_size,
psd=psd, accumulate_psd=accumulate_psd,
mt_adaptive=mt_adaptive,
con_method_types=con_method_types,
con_methods=con_methods if n_jobs == 1 else None,
n_signals=n_signals, n_times=n_times,
accumulate_inplace=True if n_jobs == 1 else False)
call_params.update(**spectral_params)
if n_jobs == 1:
# no parallel processing
for this_epoch in epoch_block:
logger.info(' computing connectivity for epoch %d'
% (epoch_idx + 1))
# con methods and psd are updated inplace
_epoch_spectral_connectivity(data=this_epoch, **call_params)
epoch_idx += 1
else:
# process epochs in parallel
logger.info(' computing connectivity for epochs %d..%d'
% (epoch_idx + 1, epoch_idx + len(epoch_block)))
out = parallel(my_epoch_spectral_connectivity(
data=this_epoch, **call_params)
for this_epoch in epoch_block)
# do the accumulation
for this_out in out:
for method, parallel_method in zip(con_methods, this_out[0]):
method.combine(parallel_method)
if accumulate_psd:
psd += this_out[1]
epoch_idx += len(epoch_block)
# normalize
n_epochs = epoch_idx
if accumulate_psd:
psd /= n_epochs
# compute final connectivity scores
con = list()
for method, n_args in zip(con_methods, n_comp_args):
# future estimators will need to be handled here
if n_args == 3:
# compute all scores at once
method.compute_con(slice(0, n_cons), n_epochs)
elif n_args == 5:
# compute scores block-wise to save memory
for i in range(0, n_cons, block_size):
con_idx = slice(i, i + block_size)
psd_xx = psd[idx_map[0][con_idx]]
psd_yy = psd[idx_map[1][con_idx]]
method.compute_con(con_idx, n_epochs, psd_xx, psd_yy)
else:
raise RuntimeError('This should never happen.')
# get the connectivity scores
this_con = method.con_scores
if this_con.shape[0] != n_cons:
raise ValueError('First dimension of connectivity scores must be '
'the same as the number of connections')
if faverage:
if this_con.shape[1] != n_freqs:
raise ValueError('2nd dimension of connectivity scores must '
'be the same as the number of frequencies')
con_shape = (n_cons, n_bands) + this_con.shape[2:]
this_con_bands = np.empty(con_shape, dtype=this_con.dtype)
for band_idx in range(n_bands):
this_con_bands[:, band_idx] =\
np.mean(this_con[:, freq_idx_bands[band_idx]], axis=1)
this_con = this_con_bands
con.append(this_con)
if indices is None:
# return all-to-all connectivity matrices
logger.info(' assembling connectivity matrix '
'(filling the upper triangular region of the matrix)')
con_flat = con
con = list()
for this_con_flat in con_flat:
this_con = np.zeros((n_signals, n_signals) +
this_con_flat.shape[1:],
dtype=this_con_flat.dtype)
this_con[indices_use] = this_con_flat
con.append(this_con)
logger.info('[Connectivity computation done]')
if n_methods == 1:
# for a single method return connectivity directly
con = con[0]
if faverage:
# for each band we return the frequencies that were averaged
freqs = freqs_bands
return con, freqs, times, n_epochs, n_tapers
def _prepare_connectivity(epoch_block, tmin, tmax, fmin, fmax, sfreq, indices,
mode, fskip, n_bands,
cwt_freqs, faverage):
"""Check and precompute dimensions of results data."""
first_epoch = epoch_block[0]
# get the data size and time scale
n_signals, n_times_in, times_in = _get_and_verify_data_sizes(first_epoch)
if times_in is None:
# we are not using Epochs or SourceEstimate(s) as input
times_in = np.linspace(0.0, n_times_in / sfreq, n_times_in,
endpoint=False)
n_times_in = len(times_in)
mask = _time_mask(times_in, tmin, tmax, sfreq=sfreq)
tmin_idx, tmax_idx = np.where(mask)[0][[0, -1]]
tmax_idx += 1
tmin_true = times_in[tmin_idx]
tmax_true = times_in[tmax_idx - 1] # time of last point used
times = times_in[tmin_idx:tmax_idx]
n_times = len(times)
if indices is None:
logger.info('only using indices for lower-triangular matrix')
# only compute r for lower-triangular region
indices_use = np.tril_indices(n_signals, -1)
else:
indices_use = check_indices(indices)
# number of connectivities to compute
n_cons = len(indices_use[0])
logger.info(' computing connectivity for %d connections'
% n_cons)
logger.info(' using t=%0.3fs..%0.3fs for estimation (%d points)'
% (tmin_true, tmax_true, n_times))
# get frequencies of interest for the different modes
if mode in ('multitaper', 'fourier'):
# fmin fmax etc is only supported for these modes
# decide which frequencies to keep
freqs_all = np.fft.rfftfreq(n_times, 1. / sfreq)
elif mode == 'cwt_morlet':
# cwt_morlet mode
if cwt_freqs is None:
raise ValueError('define frequencies of interest using '
'cwt_freqs')
else:
cwt_freqs = cwt_freqs.astype(np.float)
if any(cwt_freqs > (sfreq / 2.)):
raise ValueError('entries in cwt_freqs cannot be '
'larger than Nyquist (sfreq / 2)')
freqs_all = cwt_freqs
else:
raise ValueError('mode has an invalid value')
# check that fmin corresponds to at least 5 cycles
dur = float(n_times) / sfreq
five_cycle_freq = 5. / dur
if len(fmin) == 1 and fmin[0] == -np.inf:
# we use the 5 cycle freq. as default
fmin = np.array([five_cycle_freq])
else:
if np.any(fmin < five_cycle_freq):
warn('fmin=%0.3f Hz corresponds to %0.3f < 5 cycles '
'based on the epoch length %0.3f sec, need at least %0.3f '
'sec epochs or fmin=%0.3f. Spectrum estimate will be '
'unreliable.' % (np.min(fmin), dur * np.min(fmin), dur,
5. / np.min(fmin), five_cycle_freq))
# create a frequency mask for all bands
freq_mask = np.zeros(len(freqs_all), dtype=np.bool)
for f_lower, f_upper in zip(fmin, fmax):
freq_mask |= ((freqs_all >= f_lower) & (freqs_all <= f_upper))
# possibly skip frequency points
for pos in range(fskip):
freq_mask[pos + 1::fskip + 1] = False
# the frequency points where we compute connectivity
freqs = freqs_all[freq_mask]
n_freqs = len(freqs)
# get the freq. indices and points for each band
freq_idx_bands = [np.where((freqs >= fl) & (freqs <= fu))[0]
for fl, fu in zip(fmin, fmax)]
freqs_bands = [freqs[freq_idx] for freq_idx in freq_idx_bands]
# make sure we don't have empty bands
for i, n_f_band in enumerate([len(f) for f in freqs_bands]):
if n_f_band == 0:
raise ValueError('There are no frequency points between '
'%0.1fHz and %0.1fHz. Change the band '
'specification (fmin, fmax) or the '
'frequency resolution.'
% (fmin[i], fmax[i]))
if n_bands == 1:
logger.info(' frequencies: %0.1fHz..%0.1fHz (%d points)'
% (freqs_bands[0][0], freqs_bands[0][-1],
n_freqs))
else:
logger.info(' computing connectivity for the bands:')
for i, bfreqs in enumerate(freqs_bands):
logger.info(' band %d: %0.1fHz..%0.1fHz '
'(%d points)' % (i + 1, bfreqs[0],
bfreqs[-1], len(bfreqs)))
if faverage:
logger.info(' connectivity scores will be averaged for '
'each band')
return (n_cons, times, n_times, times_in, n_times_in, tmin_idx,
tmax_idx, n_freqs, freq_mask, freqs, freqs_bands, freq_idx_bands,
n_signals, indices_use)
def _assemble_spectral_params(mode, n_times, mt_adaptive, mt_bandwidth, sfreq,
mt_low_bias, cwt_n_cycles, cwt_freqs,
freqs, freq_mask):
"""Prepare time-frequency decomposition."""
spectral_params = dict(
eigvals=None, window_fun=None, wavelets=None)
n_tapers = None
n_times_spectrum = 0
if mode == 'multitaper':
window_fun, eigvals, mt_adaptive = _compute_mt_params(
n_times, sfreq, mt_bandwidth, mt_low_bias, mt_adaptive)
spectral_params.update(window_fun=window_fun, eigvals=eigvals)
elif mode == 'fourier':
logger.info(' using FFT with a Hanning window to estimate '
'spectra')
spectral_params.update(window_fun=np.hanning(n_times), eigvals=1.)
elif mode == 'cwt_morlet':
logger.info(' using CWT with Morlet wavelets to estimate '
'spectra')
# reformat cwt_n_cycles if we have removed some frequencies
# using fmin, fmax, fskip
cwt_n_cycles = np.array((cwt_n_cycles,), dtype=float).ravel()
if len(cwt_n_cycles) > 1:
if len(cwt_n_cycles) != len(cwt_freqs):
raise ValueError('cwt_n_cycles must be float or an '
'array with the same size as cwt_freqs')
cwt_n_cycles = cwt_n_cycles[freq_mask]
# get the Morlet wavelets
spectral_params.update(
wavelets=morlet(sfreq, freqs,
n_cycles=cwt_n_cycles, zero_mean=True))
n_times_spectrum = n_times
else:
raise ValueError('mode has an invalid value')
return spectral_params, mt_adaptive, n_times_spectrum, n_tapers
|