1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
|
# -*- coding: utf-8 -*-
"""Coregistration between different coordinate frames."""
# Authors: Christian Brodbeck <christianbrodbeck@nyu.edu>
#
# License: BSD (3-clause)
from .externals.six.moves import configparser
from .externals.six import string_types
import fnmatch
from glob import glob, iglob
import os
import os.path as op
import stat
import sys
import re
import shutil
from functools import reduce
import numpy as np
from numpy import dot
from .io import read_fiducials, write_fiducials, read_info
from .io.constants import FIFF
from .label import read_label, Label
from .source_space import (add_source_space_distances, read_source_spaces,
write_source_spaces, _get_mri_header)
from .surface import read_surface, write_surface, _normalize_vectors
from .bem import read_bem_surfaces, write_bem_surfaces
from .transforms import (rotation, rotation3d, scaling, translation, Transform,
_read_fs_xfm, _write_fs_xfm, invert_transform,
combine_transforms)
from .utils import (get_config, get_subjects_dir, logger, pformat, verbose,
warn, has_nibabel)
from .viz._3d import _fiducial_coords
from .externals.six.moves import zip
# some path templates
trans_fname = os.path.join('{raw_dir}', '{subject}-trans.fif')
subject_dirname = os.path.join('{subjects_dir}', '{subject}')
bem_dirname = os.path.join(subject_dirname, 'bem')
mri_dirname = os.path.join(subject_dirname, 'mri')
mri_transforms_dirname = os.path.join(subject_dirname, 'mri', 'transforms')
surf_dirname = os.path.join(subject_dirname, 'surf')
bem_fname = os.path.join(bem_dirname, "{subject}-{name}.fif")
head_bem_fname = pformat(bem_fname, name='head')
fid_fname = pformat(bem_fname, name='fiducials')
fid_fname_general = os.path.join(bem_dirname, "{head}-fiducials.fif")
src_fname = os.path.join(bem_dirname, '{subject}-{spacing}-src.fif')
_head_fnames = (os.path.join(bem_dirname, 'outer_skin.surf'),
head_bem_fname)
_high_res_head_fnames = (os.path.join(bem_dirname, '{subject}-head-dense.fif'),
os.path.join(surf_dirname, 'lh.seghead'),
os.path.join(surf_dirname, 'lh.smseghead'))
def _make_writable(fname):
"""Make a file writable."""
os.chmod(fname, stat.S_IMODE(os.lstat(fname)[stat.ST_MODE]) | 128) # write
def _make_writable_recursive(path):
"""Recursively set writable."""
if sys.platform.startswith('win'):
return # can't safely set perms
for root, dirs, files in os.walk(path, topdown=False):
for f in dirs + files:
_make_writable(os.path.join(root, f))
def _find_head_bem(subject, subjects_dir, high_res=False):
"""Find a high resolution head."""
# XXX this should be refactored with mne.surface.get_head_surf ...
fnames = _high_res_head_fnames if high_res else _head_fnames
for fname in fnames:
path = fname.format(subjects_dir=subjects_dir, subject=subject)
if os.path.exists(path):
return path
def coregister_fiducials(info, fiducials, tol=0.01):
"""Create a head-MRI transform by aligning 3 fiducial points.
Parameters
----------
info : Info
Measurement info object with fiducials in head coordinate space.
fiducials : str | list of dict
Fiducials in MRI coordinate space (either path to a ``*-fiducials.fif``
file or list of fiducials as returned by :func:`read_fiducials`.
Returns
-------
trans : Transform
The device-MRI transform.
"""
if isinstance(info, string_types):
info = read_info(info)
if isinstance(fiducials, string_types):
fiducials, coord_frame_to = read_fiducials(fiducials)
else:
coord_frame_to = FIFF.FIFFV_COORD_MRI
frames_from = {d['coord_frame'] for d in info['dig']}
if len(frames_from) > 1:
raise ValueError("info contains fiducials from different coordinate "
"frames")
else:
coord_frame_from = frames_from.pop()
coords_from = _fiducial_coords(info['dig'])
coords_to = _fiducial_coords(fiducials, coord_frame_to)
trans = fit_matched_points(coords_from, coords_to, tol=tol)
return Transform(coord_frame_from, coord_frame_to, trans)
@verbose
def create_default_subject(fs_home=None, update=False, subjects_dir=None,
verbose=None):
"""Create an average brain subject for subjects without structural MRI.
Create a copy of fsaverage from the Freesurfer directory in subjects_dir
and add auxiliary files from the mne package.
Parameters
----------
fs_home : None | str
The freesurfer home directory (only needed if FREESURFER_HOME is not
specified as environment variable).
update : bool
In cases where a copy of the fsaverage brain already exists in the
subjects_dir, this option allows to only copy files that don't already
exist in the fsaverage directory.
subjects_dir : None | str
Override the SUBJECTS_DIR environment variable
(os.environ['SUBJECTS_DIR']) as destination for the new subject.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Notes
-----
When no structural MRI is available for a subject, an average brain can be
substituted. Freesurfer comes with such an average brain model, and MNE
comes with some auxiliary files which make coregistration easier (see
:ref:`CACGEAFI`). :py:func:`create_default_subject` copies the relevant
files from Freesurfer into the current subjects_dir, and also adds the
auxiliary files provided by MNE.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
if fs_home is None:
fs_home = get_config('FREESURFER_HOME', fs_home)
if fs_home is None:
raise ValueError(
"FREESURFER_HOME environment variable not found. Please "
"specify the fs_home parameter in your call to "
"create_default_subject().")
# make sure freesurfer files exist
fs_src = os.path.join(fs_home, 'subjects', 'fsaverage')
if not os.path.exists(fs_src):
raise IOError('fsaverage not found at %r. Is fs_home specified '
'correctly?' % fs_src)
for name in ('label', 'mri', 'surf'):
dirname = os.path.join(fs_src, name)
if not os.path.isdir(dirname):
raise IOError("Freesurfer fsaverage seems to be incomplete: No "
"directory named %s found in %s" % (name, fs_src))
# make sure destination does not already exist
dest = os.path.join(subjects_dir, 'fsaverage')
if dest == fs_src:
raise IOError(
"Your subjects_dir points to the freesurfer subjects_dir (%r). "
"The default subject can not be created in the freesurfer "
"installation directory; please specify a different "
"subjects_dir." % subjects_dir)
elif (not update) and os.path.exists(dest):
raise IOError(
"Can not create fsaverage because %r already exists in "
"subjects_dir %r. Delete or rename the existing fsaverage "
"subject folder." % ('fsaverage', subjects_dir))
# copy fsaverage from freesurfer
logger.info("Copying fsaverage subject from freesurfer directory...")
if (not update) or not os.path.exists(dest):
shutil.copytree(fs_src, dest)
_make_writable_recursive(dest)
# copy files from mne
source_fname = os.path.join(os.path.dirname(__file__), 'data', 'fsaverage',
'fsaverage-%s.fif')
dest_bem = os.path.join(dest, 'bem')
if not os.path.exists(dest_bem):
os.mkdir(dest_bem)
logger.info("Copying auxiliary fsaverage files from mne...")
dest_fname = os.path.join(dest_bem, 'fsaverage-%s.fif')
_make_writable_recursive(dest_bem)
for name in ('fiducials', 'head', 'inner_skull-bem', 'trans'):
if not os.path.exists(dest_fname % name):
shutil.copy(source_fname % name, dest_bem)
def _decimate_points(pts, res=10):
"""Decimate the number of points using a voxel grid.
Create a voxel grid with a specified resolution and retain at most one
point per voxel. For each voxel, the point closest to its center is
retained.
Parameters
----------
pts : array, shape (n_points, 3)
The points making up the head shape.
res : scalar
The resolution of the voxel space (side length of each voxel).
Returns
-------
pts : array, shape = (n_points, 3)
The decimated points.
"""
from scipy.spatial.distance import cdist
pts = np.asarray(pts)
# find the bin edges for the voxel space
xmin, ymin, zmin = pts.min(0) - res / 2.
xmax, ymax, zmax = pts.max(0) + res
xax = np.arange(xmin, xmax, res)
yax = np.arange(ymin, ymax, res)
zax = np.arange(zmin, zmax, res)
# find voxels containing one or more point
H, _ = np.histogramdd(pts, bins=(xax, yax, zax), normed=False)
# for each voxel, select one point
X, Y, Z = pts.T
out = np.empty((np.sum(H > 0), 3))
for i, (xbin, ybin, zbin) in enumerate(zip(*np.nonzero(H))):
x = xax[xbin]
y = yax[ybin]
z = zax[zbin]
xi = np.logical_and(X >= x, X < x + res)
yi = np.logical_and(Y >= y, Y < y + res)
zi = np.logical_and(Z >= z, Z < z + res)
idx = np.logical_and(zi, np.logical_and(yi, xi))
ipts = pts[idx]
mid = np.array([x, y, z]) + res / 2.
dist = cdist(ipts, [mid])
i_min = np.argmin(dist)
ipt = ipts[i_min]
out[i] = ipt
return out
def _trans_from_params(param_info, params):
"""Convert transformation parameters into a transformation matrix.
Parameters
----------
param_info : tuple, len = 3
Tuple describing the parameters in x (do_translate, do_rotate,
do_scale).
params : tuple
The transformation parameters.
Returns
-------
trans : array, shape = (4, 4)
Transformation matrix.
"""
do_rotate, do_translate, do_scale = param_info
i = 0
trans = []
if do_rotate:
x, y, z = params[:3]
trans.append(rotation(x, y, z))
i += 3
if do_translate:
x, y, z = params[i:i + 3]
trans.insert(0, translation(x, y, z))
i += 3
if do_scale == 1:
s = params[i]
trans.append(scaling(s, s, s))
elif do_scale == 3:
x, y, z = params[i:i + 3]
trans.append(scaling(x, y, z))
trans = reduce(dot, trans)
return trans
def fit_matched_points(src_pts, tgt_pts, rotate=True, translate=True,
scale=False, tol=None, x0=None, out='trans',
weights=None):
"""Find a transform between matched sets of points.
This minimizes the squared distance between two matching sets of points.
Uses :func:`scipy.optimize.leastsq` to find a transformation involving
a combination of rotation, translation, and scaling (in that order).
Parameters
----------
src_pts : array, shape = (n, 3)
Points to which the transform should be applied.
tgt_pts : array, shape = (n, 3)
Points to which src_pts should be fitted. Each point in tgt_pts should
correspond to the point in src_pts with the same index.
rotate : bool
Allow rotation of the ``src_pts``.
translate : bool
Allow translation of the ``src_pts``.
scale : bool
Number of scaling parameters. With False, points are not scaled. With
True, points are scaled by the same factor along all axes.
tol : scalar | None
The error tolerance. If the distance between any of the matched points
exceeds this value in the solution, a RuntimeError is raised. With
None, no error check is performed.
x0 : None | tuple
Initial values for the fit parameters.
out : 'params' | 'trans'
In what format to return the estimate: 'params' returns a tuple with
the fit parameters; 'trans' returns a transformation matrix of shape
(4, 4).
Returns
-------
trans : array, shape (4, 4)
Transformation that, if applied to src_pts, minimizes the squared
distance to tgt_pts. Only returned if out=='trans'.
params : array, shape (n_params, )
A single tuple containing the rotation, translation, and scaling
parameters in that order (as applicable).
"""
# XXX eventually this should be refactored with the cHPI fitting code,
# which use fmin_cobyla with constraints
from scipy.optimize import leastsq
src_pts = np.atleast_2d(src_pts)
tgt_pts = np.atleast_2d(tgt_pts)
if src_pts.shape != tgt_pts.shape:
raise ValueError("src_pts and tgt_pts must have same shape (got "
"{0}, {1})".format(src_pts.shape, tgt_pts.shape))
if weights is not None:
weights = np.array(weights, float)
if weights.ndim != 1 or weights.size not in (src_pts.shape[0], 1):
raise ValueError("weights (shape=%s) must be None or have shape "
"(%s,)" % (weights.shape, src_pts.shape[0],))
weights = weights[:, np.newaxis]
rotate = bool(rotate)
translate = bool(translate)
scale = int(scale)
if translate:
src_pts = np.hstack((src_pts, np.ones((len(src_pts), 1))))
param_info = (rotate, translate, scale)
if param_info == (True, False, 0):
def error(x):
rx, ry, rz = x
trans = rotation3d(rx, ry, rz)
est = dot(src_pts, trans.T)
d = tgt_pts - est
if weights is not None:
d *= weights
return d.ravel()
if x0 is None:
x0 = (0, 0, 0)
elif param_info == (True, True, 0):
def error(x):
rx, ry, rz, tx, ty, tz = x
trans = dot(translation(tx, ty, tz), rotation(rx, ry, rz))
est = dot(src_pts, trans.T)[:, :3]
d = tgt_pts - est
if weights is not None:
d *= weights
return d.ravel()
if x0 is None:
x0 = (0, 0, 0, 0, 0, 0)
elif param_info == (True, True, 1):
def error(x):
rx, ry, rz, tx, ty, tz, s = x
trans = reduce(dot, (translation(tx, ty, tz), rotation(rx, ry, rz),
scaling(s, s, s)))
est = dot(src_pts, trans.T)[:, :3]
d = tgt_pts - est
if weights is not None:
d *= weights
return d.ravel()
if x0 is None:
x0 = (0, 0, 0, 0, 0, 0, 1)
elif param_info == (True, True, 3):
def error(x):
rx, ry, rz, tx, ty, tz, sx, sy, sz = x
trans = reduce(dot, (translation(tx, ty, tz), rotation(rx, ry, rz),
scaling(sx, sy, sz)))
est = dot(src_pts, trans.T)[:, :3]
d = tgt_pts - est
if weights is not None:
d *= weights
return d.ravel()
if x0 is None:
x0 = (0, 0, 0, 0, 0, 0, 1, 1, 1)
else:
raise NotImplementedError(
"The specified parameter combination is not implemented: "
"rotate=%r, translate=%r, scale=%r" % param_info)
x, _, _, _, _ = leastsq(error, x0, full_output=True)
# re-create the final transformation matrix
if (tol is not None) or (out == 'trans'):
trans = _trans_from_params(param_info, x)
# assess the error of the solution
if tol is not None:
if not translate:
src_pts = np.hstack((src_pts, np.ones((len(src_pts), 1))))
est_pts = dot(src_pts, trans.T)[:, :3]
err = np.sqrt(np.sum((est_pts - tgt_pts) ** 2, axis=1))
if np.any(err > tol):
raise RuntimeError("Error exceeds tolerance. Error = %r" % err)
if out == 'params':
return x
elif out == 'trans':
return trans
else:
raise ValueError("Invalid out parameter: %r. Needs to be 'params' or "
"'trans'." % out)
def _find_label_paths(subject='fsaverage', pattern=None, subjects_dir=None):
"""Find paths to label files in a subject's label directory.
Parameters
----------
subject : str
Name of the mri subject.
pattern : str | None
Pattern for finding the labels relative to the label directory in the
MRI subject directory (e.g., "aparc/*.label" will find all labels
in the "subject/label/aparc" directory). With None, find all labels.
subjects_dir : None | str
Override the SUBJECTS_DIR environment variable
(sys.environ['SUBJECTS_DIR'])
Returns
-------
paths : list
List of paths relative to the subject's label directory
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
subject_dir = os.path.join(subjects_dir, subject)
lbl_dir = os.path.join(subject_dir, 'label')
if pattern is None:
paths = []
for dirpath, _, filenames in os.walk(lbl_dir):
rel_dir = os.path.relpath(dirpath, lbl_dir)
for filename in fnmatch.filter(filenames, '*.label'):
path = os.path.join(rel_dir, filename)
paths.append(path)
else:
paths = [os.path.relpath(path, lbl_dir) for path in iglob(pattern)]
return paths
def _find_mri_paths(subject, skip_fiducials, subjects_dir):
"""Find all files of an mri relevant for source transformation.
Parameters
----------
subject : str
Name of the mri subject.
skip_fiducials : bool
Do not scale the MRI fiducials. If False, an IOError will be raised
if no fiducials file can be found.
subjects_dir : None | str
Override the SUBJECTS_DIR environment variable
(sys.environ['SUBJECTS_DIR'])
Returns
-------
paths : dict
Dictionary whose keys are relevant file type names (str), and whose
values are lists of paths.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
paths = {}
# directories to create
paths['dirs'] = [bem_dirname, surf_dirname]
# surf/ files
paths['surf'] = surf = []
surf_fname = os.path.join(surf_dirname, '{name}')
surf_names = ('inflated', 'white', 'orig', 'orig_avg', 'inflated_avg',
'inflated_pre', 'pial', 'pial_avg', 'smoothwm', 'white_avg',
'seghead', 'smseghead')
if os.getenv('_MNE_FEW_SURFACES', '') == 'true': # for testing
surf_names = surf_names[:4]
for surf_name in surf_names:
for hemi in ('lh.', 'rh.'):
name = hemi + surf_name
path = surf_fname.format(subjects_dir=subjects_dir,
subject=subject, name=name)
if os.path.exists(path):
surf.append(pformat(surf_fname, name=name))
surf_fname = os.path.join(bem_dirname, '{name}')
surf_names = ('inner_skull.surf', 'outer_skull.surf', 'outer_skin.surf')
for surf_name in surf_names:
path = surf_fname.format(subjects_dir=subjects_dir,
subject=subject, name=surf_name)
if os.path.exists(path):
surf.append(pformat(surf_fname, name=surf_name))
del surf_names, surf_name, path, surf, hemi
# BEM files
paths['bem'] = bem = []
path = head_bem_fname.format(subjects_dir=subjects_dir, subject=subject)
if os.path.exists(path):
bem.append('head')
bem_pattern = pformat(bem_fname, subjects_dir=subjects_dir,
subject=subject, name='*-bem')
re_pattern = pformat(bem_fname, subjects_dir=subjects_dir, subject=subject,
name='(.+)').replace('\\', '\\\\')
for path in iglob(bem_pattern):
match = re.match(re_pattern, path)
name = match.group(1)
bem.append(name)
del bem, path, bem_pattern, re_pattern
# fiducials
if skip_fiducials:
paths['fid'] = []
else:
paths['fid'] = _find_fiducials_files(subject, subjects_dir)
# check that we found at least one
if len(paths['fid']) == 0:
raise IOError("No fiducials file found for %s. The fiducials "
"file should be named "
"{subject}/bem/{subject}-fiducials.fif. In "
"order to scale an MRI without fiducials set "
"skip_fiducials=True." % subject)
# duplicate files (curvature and some surfaces)
paths['duplicate'] = dup = []
path = os.path.join(surf_dirname, '{name}')
surf_fname = os.path.join(surf_dirname, '{name}')
for name in ['lh.curv', 'rh.curv']:
fname = pformat(path, name=name)
dup.append(fname)
del path, name, fname
surf_dup_names = ('sphere', 'sphere.reg', 'sphere.reg.avg')
for surf_dup_name in surf_dup_names:
for hemi in ('lh.', 'rh.'):
name = hemi + surf_dup_name
path = surf_fname.format(subjects_dir=subjects_dir,
subject=subject, name=name)
if os.path.exists(path):
dup.append(pformat(surf_fname, name=name))
del surf_dup_name, name, path, dup, hemi
# transform files (talairach)
paths['transforms'] = []
transform_fname = os.path.join(mri_transforms_dirname, 'talairach.xfm')
path = transform_fname.format(subjects_dir=subjects_dir, subject=subject)
if os.path.exists(path):
paths['transforms'].append(transform_fname)
del transform_fname, path
# check presence of required files
for ftype in ['surf', 'duplicate']:
for fname in paths[ftype]:
path = fname.format(subjects_dir=subjects_dir, subject=subject)
path = os.path.realpath(path)
if not os.path.exists(path):
raise IOError("Required file not found: %r" % path)
# find source space files
paths['src'] = src = []
bem_dir = bem_dirname.format(subjects_dir=subjects_dir, subject=subject)
fnames = fnmatch.filter(os.listdir(bem_dir), '*-src.fif')
prefix = subject + '-'
for fname in fnames:
if fname.startswith(prefix):
fname = "{subject}-%s" % fname[len(prefix):]
path = os.path.join(bem_dirname, fname)
src.append(path)
# find MRIs
mri_dir = mri_dirname.format(subjects_dir=subjects_dir, subject=subject)
fnames = fnmatch.filter(os.listdir(mri_dir), '*.mgz')
paths['mri'] = [os.path.join(mri_dir, f) for f in fnames]
return paths
def _find_fiducials_files(subject, subjects_dir):
"""Find fiducial files."""
fid = []
# standard fiducials
if os.path.exists(fid_fname.format(subjects_dir=subjects_dir,
subject=subject)):
fid.append(fid_fname)
# fiducials with subject name
pattern = pformat(fid_fname_general, subjects_dir=subjects_dir,
subject=subject, head='*')
regex = pformat(fid_fname_general, subjects_dir=subjects_dir,
subject=subject, head='(.+)').replace('\\', '\\\\')
for path in iglob(pattern):
match = re.match(regex, path)
head = match.group(1).replace(subject, '{subject}')
fid.append(pformat(fid_fname_general, head=head))
return fid
def _is_mri_subject(subject, subjects_dir=None):
"""Check whether a directory in subjects_dir is an mri subject directory.
Parameters
----------
subject : str
Name of the potential subject/directory.
subjects_dir : None | str
Override the SUBJECTS_DIR environment variable.
Returns
-------
is_mri_subject : bool
Whether ``subject`` is an mri subject.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
return bool(_find_head_bem(subject, subjects_dir) or
_find_head_bem(subject, subjects_dir, high_res=True))
def _is_scaled_mri_subject(subject, subjects_dir=None):
"""Check whether a directory in subjects_dir is a scaled mri subject.
Parameters
----------
subject : str
Name of the potential subject/directory.
subjects_dir : None | str
Override the SUBJECTS_DIR environment variable.
Returns
-------
is_scaled_mri_subject : bool
Whether ``subject`` is a scaled mri subject.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
if not _is_mri_subject(subject, subjects_dir):
return False
fname = os.path.join(subjects_dir, subject, 'MRI scaling parameters.cfg')
return os.path.exists(fname)
def _mri_subject_has_bem(subject, subjects_dir=None):
"""Check whether an mri subject has a file matching the bem pattern.
Parameters
----------
subject : str
Name of the subject.
subjects_dir : None | str
Override the SUBJECTS_DIR environment variable.
Returns
-------
has_bem_file : bool
Whether ``subject`` has a bem file.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
pattern = bem_fname.format(subjects_dir=subjects_dir, subject=subject,
name='*-bem')
fnames = glob(pattern)
return bool(len(fnames))
def read_mri_cfg(subject, subjects_dir=None):
"""Read information from the cfg file of a scaled MRI brain.
Parameters
----------
subject : str
Name of the scaled MRI subject.
subjects_dir : None | str
Override the SUBJECTS_DIR environment variable.
Returns
-------
cfg : dict
Dictionary with entries from the MRI's cfg file.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
fname = os.path.join(subjects_dir, subject, 'MRI scaling parameters.cfg')
if not os.path.exists(fname):
raise IOError("%r does not seem to be a scaled mri subject: %r does "
"not exist." % (subject, fname))
logger.info("Reading MRI cfg file %s" % fname)
config = configparser.RawConfigParser()
config.read(fname)
n_params = config.getint("MRI Scaling", 'n_params')
if n_params == 1:
scale = config.getfloat("MRI Scaling", 'scale')
elif n_params == 3:
scale_str = config.get("MRI Scaling", 'scale')
scale = np.array([float(s) for s in scale_str.split()])
else:
raise ValueError("Invalid n_params value in MRI cfg: %i" % n_params)
out = {'subject_from': config.get("MRI Scaling", 'subject_from'),
'n_params': n_params, 'scale': scale}
return out
def _write_mri_config(fname, subject_from, subject_to, scale):
"""Write the cfg file describing a scaled MRI subject.
Parameters
----------
fname : str
Target file.
subject_from : str
Name of the source MRI subject.
subject_to : str
Name of the scaled MRI subject.
scale : float | array_like, shape = (3,)
The scaling parameter.
"""
scale = np.asarray(scale)
if np.isscalar(scale) or scale.shape == ():
n_params = 1
else:
n_params = 3
config = configparser.RawConfigParser()
config.add_section("MRI Scaling")
config.set("MRI Scaling", 'subject_from', subject_from)
config.set("MRI Scaling", 'subject_to', subject_to)
config.set("MRI Scaling", 'n_params', str(n_params))
if n_params == 1:
config.set("MRI Scaling", 'scale', str(scale))
else:
config.set("MRI Scaling", 'scale', ' '.join([str(s) for s in scale]))
config.set("MRI Scaling", 'version', '1')
with open(fname, 'w') as fid:
config.write(fid)
def _scale_params(subject_to, subject_from, scale, subjects_dir):
"""Assemble parameters for scaling.
Returns
-------
subjects_dir : str
Subjects directory.
subject_from : str
Name of the source subject.
scale : array
Scaling factor, either shape=() for uniform scaling or shape=(3,) for
non-uniform scaling.
uniform : bool
Whether scaling is uniform.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
if (subject_from is None) != (scale is None):
raise TypeError("Need to provide either both subject_from and scale "
"parameters, or neither.")
if subject_from is None:
cfg = read_mri_cfg(subject_to, subjects_dir)
subject_from = cfg['subject_from']
n_params = cfg['n_params']
assert n_params in (1, 3)
scale = cfg['scale']
scale = np.atleast_1d(scale)
if scale.ndim != 1 or scale.shape[0] not in (1, 3):
raise ValueError("Invalid shape for scale parameer. Need scalar "
"or array of length 3. Got shape %s."
% (scale.shape,))
n_params = len(scale)
return subjects_dir, subject_from, scale, n_params == 1
@verbose
def scale_bem(subject_to, bem_name, subject_from=None, scale=None,
subjects_dir=None, verbose=None):
"""Scale a bem file.
Parameters
----------
subject_to : str
Name of the scaled MRI subject (the destination mri subject).
bem_name : str
Name of the bem file. For example, to scale
``fsaverage-inner_skull-bem.fif``, the bem_name would be
"inner_skull-bem".
subject_from : None | str
The subject from which to read the source space. If None, subject_from
is read from subject_to's config file.
scale : None | float | array, shape = (3,)
Scaling factor. Has to be specified if subjects_from is specified,
otherwise it is read from subject_to's config file.
subjects_dir : None | str
Override the SUBJECTS_DIR environment variable.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
"""
subjects_dir, subject_from, scale, uniform = \
_scale_params(subject_to, subject_from, scale, subjects_dir)
src = bem_fname.format(subjects_dir=subjects_dir, subject=subject_from,
name=bem_name)
dst = bem_fname.format(subjects_dir=subjects_dir, subject=subject_to,
name=bem_name)
if os.path.exists(dst):
raise IOError("File already exists: %s" % dst)
surfs = read_bem_surfaces(src)
for surf in surfs:
surf['rr'] *= scale
if not uniform:
assert len(surf['nn']) > 0
surf['nn'] /= scale
_normalize_vectors(surf['nn'])
write_bem_surfaces(dst, surfs)
def scale_labels(subject_to, pattern=None, overwrite=False, subject_from=None,
scale=None, subjects_dir=None):
r"""Scale labels to match a brain that was previously created by scaling.
Parameters
----------
subject_to : str
Name of the scaled MRI subject (the destination brain).
pattern : str | None
Pattern for finding the labels relative to the label directory in the
MRI subject directory (e.g., "lh.BA3a.label" will scale
"fsaverage/label/lh.BA3a.label"; "aparc/\*.label" will find all labels
in the "fsaverage/label/aparc" directory). With None, scale all labels.
overwrite : bool
Overwrite any label file that already exists for subject_to (otherwise
existing labels are skipped).
subject_from : None | str
Name of the original MRI subject (the brain that was scaled to create
subject_to). If None, the value is read from subject_to's cfg file.
scale : None | float | array_like, shape = (3,)
Scaling parameter. If None, the value is read from subject_to's cfg
file.
subjects_dir : None | str
Override the SUBJECTS_DIR environment variable.
"""
subjects_dir, subject_from, scale, _ = _scale_params(
subject_to, subject_from, scale, subjects_dir)
# find labels
paths = _find_label_paths(subject_from, pattern, subjects_dir)
if not paths:
return
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
src_root = os.path.join(subjects_dir, subject_from, 'label')
dst_root = os.path.join(subjects_dir, subject_to, 'label')
# scale labels
for fname in paths:
dst = os.path.join(dst_root, fname)
if not overwrite and os.path.exists(dst):
continue
dirname = os.path.dirname(dst)
if not os.path.exists(dirname):
os.makedirs(dirname)
src = os.path.join(src_root, fname)
l_old = read_label(src)
pos = l_old.pos * scale
l_new = Label(l_old.vertices, pos, l_old.values, l_old.hemi,
l_old.comment, subject=subject_to)
l_new.save(dst)
@verbose
def scale_mri(subject_from, subject_to, scale, overwrite=False,
subjects_dir=None, skip_fiducials=False, labels=True,
annot=False, verbose=None):
"""Create a scaled copy of an MRI subject.
Parameters
----------
subject_from : str
Name of the subject providing the MRI.
subject_to : str
New subject name for which to save the scaled MRI.
scale : float | array_like, shape = (3,)
The scaling factor (one or 3 parameters).
overwrite : bool
If an MRI already exists for subject_to, overwrite it.
subjects_dir : None | str
Override the SUBJECTS_DIR environment variable.
skip_fiducials : bool
Do not scale the MRI fiducials. If False (default), an IOError will be
raised if no fiducials file can be found.
labels : bool
Also scale all labels (default True).
annot : bool
Copy ``*.annot`` files to the new location (default False).
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
See Also
--------
scale_labels : add labels to a scaled MRI
scale_source_space : add a source space to a scaled MRI
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
paths = _find_mri_paths(subject_from, skip_fiducials, subjects_dir)
scale = np.atleast_1d(scale)
if scale.shape == (3,):
if np.isclose(scale[1], scale[0]) and np.isclose(scale[2], scale[0]):
scale = scale[0] # speed up scaling conditionals using a singleton
elif scale.shape != (1,):
raise ValueError('scale must have shape (3,) or (1,), got %s'
% (scale.shape,))
# make sure we have an empty target directory
dest = subject_dirname.format(subject=subject_to,
subjects_dir=subjects_dir)
if os.path.exists(dest):
if not overwrite:
raise IOError("Subject directory for %s already exists: %r"
% (subject_to, dest))
shutil.rmtree(dest)
logger.debug('create empty directory structure')
for dirname in paths['dirs']:
dir_ = dirname.format(subject=subject_to, subjects_dir=subjects_dir)
os.makedirs(dir_)
logger.debug('save MRI scaling parameters')
fname = os.path.join(dest, 'MRI scaling parameters.cfg')
_write_mri_config(fname, subject_from, subject_to, scale)
logger.debug('surf files [in mm]')
for fname in paths['surf']:
src = fname.format(subject=subject_from, subjects_dir=subjects_dir)
src = os.path.realpath(src)
dest = fname.format(subject=subject_to, subjects_dir=subjects_dir)
pts, tri = read_surface(src)
write_surface(dest, pts * scale, tri)
logger.debug('BEM files [in m]')
for bem_name in paths['bem']:
scale_bem(subject_to, bem_name, subject_from, scale, subjects_dir,
verbose=False)
logger.debug('fiducials [in m]')
for fname in paths['fid']:
src = fname.format(subject=subject_from, subjects_dir=subjects_dir)
src = os.path.realpath(src)
pts, cframe = read_fiducials(src, verbose=False)
for pt in pts:
pt['r'] = pt['r'] * scale
dest = fname.format(subject=subject_to, subjects_dir=subjects_dir)
write_fiducials(dest, pts, cframe, verbose=False)
logger.debug('MRIs [nibabel]')
os.mkdir(mri_dirname.format(subjects_dir=subjects_dir,
subject=subject_to))
for fname in paths['mri']:
mri_name = os.path.basename(fname)
_scale_mri(subject_to, mri_name, subject_from, scale, subjects_dir)
logger.debug('Transforms')
for mri_name in paths['mri']:
if mri_name.endswith('T1.mgz'):
os.mkdir(mri_transforms_dirname.format(subjects_dir=subjects_dir,
subject=subject_to))
for fname in paths['transforms']:
xfm_name = os.path.basename(fname)
_scale_xfm(subject_to, xfm_name, mri_name,
subject_from, scale, subjects_dir)
break
logger.debug('duplicate files')
for fname in paths['duplicate']:
src = fname.format(subject=subject_from, subjects_dir=subjects_dir)
dest = fname.format(subject=subject_to, subjects_dir=subjects_dir)
shutil.copyfile(src, dest)
logger.debug('source spaces')
for fname in paths['src']:
src_name = os.path.basename(fname)
scale_source_space(subject_to, src_name, subject_from, scale,
subjects_dir, verbose=False)
logger.debug('labels [in m]')
os.mkdir(os.path.join(subjects_dir, subject_to, 'label'))
if labels:
scale_labels(subject_to, subject_from=subject_from, scale=scale,
subjects_dir=subjects_dir)
logger.debug('copy *.annot files')
# they don't contain scale-dependent information
if annot:
src_pattern = os.path.join(subjects_dir, subject_from, 'label',
'*.annot')
dst_dir = os.path.join(subjects_dir, subject_to, 'label')
for src_file in iglob(src_pattern):
shutil.copy(src_file, dst_dir)
@verbose
def scale_source_space(subject_to, src_name, subject_from=None, scale=None,
subjects_dir=None, n_jobs=1, verbose=None):
"""Scale a source space for an mri created with scale_mri().
Parameters
----------
subject_to : str
Name of the scaled MRI subject (the destination mri subject).
src_name : str
Source space name. Can be a spacing parameter (e.g., ``'7'``,
``'ico4'``, ``'oct6'``) or a file name of a source space file relative
to the bem directory; if the file name contains the subject name, it
should be indicated as "{subject}" in ``src_name`` (e.g.,
``"{subject}-my_source_space-src.fif"``).
subject_from : None | str
The subject from which to read the source space. If None, subject_from
is read from subject_to's config file.
scale : None | float | array, shape = (3,)
Scaling factor. Has to be specified if subjects_from is specified,
otherwise it is read from subject_to's config file.
subjects_dir : None | str
Override the SUBJECTS_DIR environment variable.
n_jobs : int
Number of jobs to run in parallel if recomputing distances (only
applies if scale is an array of length 3, and will not use more cores
than there are source spaces).
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Notes
-----
When scaling volume source spaces, the source (vertex) locations are
scaled, but the reference to the MRI volume is left unchanged. Transforms
are updated so that source estimates can be plotted on the original MRI
volume.
"""
subjects_dir, subject_from, scale, uniform = \
_scale_params(subject_to, subject_from, scale, subjects_dir)
# if n_params==1 scale is a scalar; if n_params==3 scale is a (3,) array
# find the source space file names
if src_name.isdigit():
spacing = src_name # spacing in mm
src_pattern = src_fname
else:
match = re.match(r"(oct|ico|vol)-?(\d+)$", src_name)
if match:
spacing = '-'.join(match.groups())
src_pattern = src_fname
else:
spacing = None
src_pattern = os.path.join(bem_dirname, src_name)
src = src_pattern.format(subjects_dir=subjects_dir, subject=subject_from,
spacing=spacing)
dst = src_pattern.format(subjects_dir=subjects_dir, subject=subject_to,
spacing=spacing)
# read and scale the source space [in m]
sss = read_source_spaces(src)
logger.info("scaling source space %s: %s -> %s", spacing, subject_from,
subject_to)
logger.info("Scale factor: %s", scale)
add_dist = False
for ss in sss:
ss['subject_his_id'] = subject_to
ss['rr'] *= scale
# additional tags for volume source spaces
if 'vox_mri_t' in ss:
# maintain transform to original MRI volume ss['mri_volume_name']
ss['vox_mri_t']['trans'][:3, :3] /= scale
ss['src_mri_t']['trans'][:3, :3] /= scale
# distances and patch info
if uniform:
if ss['dist'] is not None:
ss['dist'] *= scale[0]
# Sometimes this is read-only due to how it's read
ss['nearest_dist'] = ss['nearest_dist'] * scale
ss['dist_limit'] = ss['dist_limit'] * scale
else: # non-uniform scaling
ss['nn'] /= scale
_normalize_vectors(ss['nn'])
if ss['dist'] is not None:
add_dist = True
if add_dist:
logger.info("Recomputing distances, this might take a while")
dist_limit = np.asscalar(np.abs(sss[0]['dist_limit']))
add_source_space_distances(sss, dist_limit, n_jobs)
write_source_spaces(dst, sss)
def _scale_mri(subject_to, mri_fname, subject_from, scale, subjects_dir):
"""Scale an MRI by setting its affine."""
subjects_dir, subject_from, scale, _ = _scale_params(
subject_to, subject_from, scale, subjects_dir)
if not has_nibabel():
warn('Skipping MRI scaling for %s, please install nibabel')
return
import nibabel
fname_from = op.join(mri_dirname.format(
subjects_dir=subjects_dir, subject=subject_from), mri_fname)
fname_to = op.join(mri_dirname.format(
subjects_dir=subjects_dir, subject=subject_to), mri_fname)
img = nibabel.load(fname_from)
zooms = np.array(img.header.get_zooms())
zooms[[0, 2, 1]] *= scale
img.header.set_zooms(zooms)
# Hack to fix nibabel problems, see
# https://github.com/nipy/nibabel/issues/619
img._affine = img.header.get_affine() # or could use None
nibabel.save(img, fname_to)
def _scale_xfm(subject_to, xfm_fname, mri_name, subject_from, scale,
subjects_dir):
"""Scale a transform."""
subjects_dir, subject_from, scale, _ = _scale_params(
subject_to, subject_from, scale, subjects_dir)
# The nibabel warning should already be there in MRI step, if applicable,
# as we only get here if T1.mgz is present (and thus a scaling was
# attempted) so we can silently return here.
if not has_nibabel():
return
fname_from = os.path.join(
mri_transforms_dirname.format(
subjects_dir=subjects_dir, subject=subject_from), xfm_fname)
fname_to = op.join(
mri_transforms_dirname.format(
subjects_dir=subjects_dir, subject=subject_to), xfm_fname)
assert op.isfile(fname_from), fname_from
assert op.isdir(op.dirname(fname_to)), op.dirname(fname_to)
# The "talairach.xfm" file stores the ras_mni transform.
#
# For "from" subj F, "to" subj T, F->T scaling S, some equivalent vertex
# positions F_x and T_x in MRI (Freesurfer RAS) coords, knowing that
# we have T_x = S @ F_x, we want to have the same MNI coords computed
# for these vertices:
#
# T_mri_mni @ T_x = F_mri_mni @ F_x
#
# We need to find the correct T_ras_mni (talaraich.xfm file) that yields
# this. So we derive (where † indicates inversion):
#
# T_mri_mni @ S @ F_x = F_mri_mni @ F_x
# T_mri_mni @ S = F_mri_mni
# T_ras_mni @ T_mri_ras @ S = F_ras_mni @ F_mri_ras
# T_ras_mni @ T_mri_ras = F_ras_mni @ F_mri_ras @ S⁻¹
# T_ras_mni = F_ras_mni @ F_mri_ras @ S⁻¹ @ T_ras_mri
#
# prepare the scale (S) transform
scale = np.atleast_1d(scale)
scale = np.tile(scale, 3) if len(scale) == 1 else scale
S = Transform('mri', 'mri', scaling(*scale)) # F_mri->T_mri
#
# Get the necessary transforms of the "from" subject
#
xfm, kind = _read_fs_xfm(fname_from)
assert kind == 'MNI Transform File', kind
F_ras_mni = Transform('ras', 'mni_tal', xfm)
hdr = _get_mri_header(mri_name)
F_vox_ras = Transform('mri_voxel', 'ras', hdr.get_vox2ras())
F_vox_mri = Transform('mri_voxel', 'mri', hdr.get_vox2ras_tkr())
F_mri_ras = combine_transforms(
invert_transform(F_vox_mri), F_vox_ras, 'mri', 'ras')
del F_vox_ras, F_vox_mri, hdr, xfm
#
# Get the necessary transforms of the "to" subject
#
mri_name = op.join(mri_dirname.format(
subjects_dir=subjects_dir, subject=subject_to), op.basename(mri_name))
hdr = _get_mri_header(mri_name)
T_vox_ras = Transform('mri_voxel', 'ras', hdr.get_vox2ras())
T_vox_mri = Transform('mri_voxel', 'mri', hdr.get_vox2ras_tkr())
T_ras_mri = combine_transforms(
invert_transform(T_vox_ras), T_vox_mri, 'ras', 'mri')
del mri_name, hdr, T_vox_ras, T_vox_mri
# Finally we construct as above:
#
# T_ras_mni = F_ras_mni @ F_mri_ras @ S⁻¹ @ T_ras_mri
#
# By moving right to left through the equation.
T_ras_mni = \
combine_transforms(
combine_transforms(
combine_transforms(
T_ras_mri, invert_transform(S), 'ras', 'mri'),
F_mri_ras, 'ras', 'ras'),
F_ras_mni, 'ras', 'mni_tal')
_write_fs_xfm(fname_to, T_ras_mni['trans'], kind)
|