File: coreg.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (1229 lines) | stat: -rw-r--r-- 46,852 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
# -*- coding: utf-8 -*-
"""Coregistration between different coordinate frames."""

# Authors: Christian Brodbeck <christianbrodbeck@nyu.edu>
#
# License: BSD (3-clause)

from .externals.six.moves import configparser
from .externals.six import string_types
import fnmatch
from glob import glob, iglob
import os
import os.path as op
import stat
import sys
import re
import shutil
from functools import reduce

import numpy as np
from numpy import dot

from .io import read_fiducials, write_fiducials, read_info
from .io.constants import FIFF
from .label import read_label, Label
from .source_space import (add_source_space_distances, read_source_spaces,
                           write_source_spaces, _get_mri_header)
from .surface import read_surface, write_surface, _normalize_vectors
from .bem import read_bem_surfaces, write_bem_surfaces
from .transforms import (rotation, rotation3d, scaling, translation, Transform,
                         _read_fs_xfm, _write_fs_xfm, invert_transform,
                         combine_transforms)
from .utils import (get_config, get_subjects_dir, logger, pformat, verbose,
                    warn, has_nibabel)
from .viz._3d import _fiducial_coords
from .externals.six.moves import zip

# some path templates
trans_fname = os.path.join('{raw_dir}', '{subject}-trans.fif')
subject_dirname = os.path.join('{subjects_dir}', '{subject}')
bem_dirname = os.path.join(subject_dirname, 'bem')
mri_dirname = os.path.join(subject_dirname, 'mri')
mri_transforms_dirname = os.path.join(subject_dirname, 'mri', 'transforms')
surf_dirname = os.path.join(subject_dirname, 'surf')
bem_fname = os.path.join(bem_dirname, "{subject}-{name}.fif")
head_bem_fname = pformat(bem_fname, name='head')
fid_fname = pformat(bem_fname, name='fiducials')
fid_fname_general = os.path.join(bem_dirname, "{head}-fiducials.fif")
src_fname = os.path.join(bem_dirname, '{subject}-{spacing}-src.fif')
_head_fnames = (os.path.join(bem_dirname, 'outer_skin.surf'),
                head_bem_fname)
_high_res_head_fnames = (os.path.join(bem_dirname, '{subject}-head-dense.fif'),
                         os.path.join(surf_dirname, 'lh.seghead'),
                         os.path.join(surf_dirname, 'lh.smseghead'))


def _make_writable(fname):
    """Make a file writable."""
    os.chmod(fname, stat.S_IMODE(os.lstat(fname)[stat.ST_MODE]) | 128)  # write


def _make_writable_recursive(path):
    """Recursively set writable."""
    if sys.platform.startswith('win'):
        return  # can't safely set perms
    for root, dirs, files in os.walk(path, topdown=False):
        for f in dirs + files:
            _make_writable(os.path.join(root, f))


def _find_head_bem(subject, subjects_dir, high_res=False):
    """Find a high resolution head."""
    # XXX this should be refactored with mne.surface.get_head_surf ...
    fnames = _high_res_head_fnames if high_res else _head_fnames
    for fname in fnames:
        path = fname.format(subjects_dir=subjects_dir, subject=subject)
        if os.path.exists(path):
            return path


def coregister_fiducials(info, fiducials, tol=0.01):
    """Create a head-MRI transform by aligning 3 fiducial points.

    Parameters
    ----------
    info : Info
        Measurement info object with fiducials in head coordinate space.
    fiducials : str | list of dict
        Fiducials in MRI coordinate space (either path to a ``*-fiducials.fif``
        file or list of fiducials as returned by :func:`read_fiducials`.

    Returns
    -------
    trans : Transform
        The device-MRI transform.
    """
    if isinstance(info, string_types):
        info = read_info(info)
    if isinstance(fiducials, string_types):
        fiducials, coord_frame_to = read_fiducials(fiducials)
    else:
        coord_frame_to = FIFF.FIFFV_COORD_MRI
    frames_from = {d['coord_frame'] for d in info['dig']}
    if len(frames_from) > 1:
        raise ValueError("info contains fiducials from different coordinate "
                         "frames")
    else:
        coord_frame_from = frames_from.pop()
    coords_from = _fiducial_coords(info['dig'])
    coords_to = _fiducial_coords(fiducials, coord_frame_to)
    trans = fit_matched_points(coords_from, coords_to, tol=tol)
    return Transform(coord_frame_from, coord_frame_to, trans)


@verbose
def create_default_subject(fs_home=None, update=False, subjects_dir=None,
                           verbose=None):
    """Create an average brain subject for subjects without structural MRI.

    Create a copy of fsaverage from the Freesurfer directory in subjects_dir
    and add auxiliary files from the mne package.

    Parameters
    ----------
    fs_home : None | str
        The freesurfer home directory (only needed if FREESURFER_HOME is not
        specified as environment variable).
    update : bool
        In cases where a copy of the fsaverage brain already exists in the
        subjects_dir, this option allows to only copy files that don't already
        exist in the fsaverage directory.
    subjects_dir : None | str
        Override the SUBJECTS_DIR environment variable
        (os.environ['SUBJECTS_DIR']) as destination for the new subject.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Notes
    -----
    When no structural MRI is available for a subject, an average brain can be
    substituted. Freesurfer comes with such an average brain model, and MNE
    comes with some auxiliary files which make coregistration easier (see
    :ref:`CACGEAFI`). :py:func:`create_default_subject` copies the relevant
    files from Freesurfer into the current subjects_dir, and also adds the
    auxiliary files provided by MNE.
    """
    subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
    if fs_home is None:
        fs_home = get_config('FREESURFER_HOME', fs_home)
        if fs_home is None:
            raise ValueError(
                "FREESURFER_HOME environment variable not found. Please "
                "specify the fs_home parameter in your call to "
                "create_default_subject().")

    # make sure freesurfer files exist
    fs_src = os.path.join(fs_home, 'subjects', 'fsaverage')
    if not os.path.exists(fs_src):
        raise IOError('fsaverage not found at %r. Is fs_home specified '
                      'correctly?' % fs_src)
    for name in ('label', 'mri', 'surf'):
        dirname = os.path.join(fs_src, name)
        if not os.path.isdir(dirname):
            raise IOError("Freesurfer fsaverage seems to be incomplete: No "
                          "directory named %s found in %s" % (name, fs_src))

    # make sure destination does not already exist
    dest = os.path.join(subjects_dir, 'fsaverage')
    if dest == fs_src:
        raise IOError(
            "Your subjects_dir points to the freesurfer subjects_dir (%r). "
            "The default subject can not be created in the freesurfer "
            "installation directory; please specify a different "
            "subjects_dir." % subjects_dir)
    elif (not update) and os.path.exists(dest):
        raise IOError(
            "Can not create fsaverage because %r already exists in "
            "subjects_dir %r. Delete or rename the existing fsaverage "
            "subject folder." % ('fsaverage', subjects_dir))

    # copy fsaverage from freesurfer
    logger.info("Copying fsaverage subject from freesurfer directory...")
    if (not update) or not os.path.exists(dest):
        shutil.copytree(fs_src, dest)
        _make_writable_recursive(dest)

    # copy files from mne
    source_fname = os.path.join(os.path.dirname(__file__), 'data', 'fsaverage',
                                'fsaverage-%s.fif')
    dest_bem = os.path.join(dest, 'bem')
    if not os.path.exists(dest_bem):
        os.mkdir(dest_bem)
    logger.info("Copying auxiliary fsaverage files from mne...")
    dest_fname = os.path.join(dest_bem, 'fsaverage-%s.fif')
    _make_writable_recursive(dest_bem)
    for name in ('fiducials', 'head', 'inner_skull-bem', 'trans'):
        if not os.path.exists(dest_fname % name):
            shutil.copy(source_fname % name, dest_bem)


def _decimate_points(pts, res=10):
    """Decimate the number of points using a voxel grid.

    Create a voxel grid with a specified resolution and retain at most one
    point per voxel. For each voxel, the point closest to its center is
    retained.

    Parameters
    ----------
    pts : array, shape (n_points, 3)
        The points making up the head shape.
    res : scalar
        The resolution of the voxel space (side length of each voxel).

    Returns
    -------
    pts : array, shape = (n_points, 3)
        The decimated points.
    """
    from scipy.spatial.distance import cdist
    pts = np.asarray(pts)

    # find the bin edges for the voxel space
    xmin, ymin, zmin = pts.min(0) - res / 2.
    xmax, ymax, zmax = pts.max(0) + res
    xax = np.arange(xmin, xmax, res)
    yax = np.arange(ymin, ymax, res)
    zax = np.arange(zmin, zmax, res)

    # find voxels containing one or more point
    H, _ = np.histogramdd(pts, bins=(xax, yax, zax), normed=False)

    # for each voxel, select one point
    X, Y, Z = pts.T
    out = np.empty((np.sum(H > 0), 3))
    for i, (xbin, ybin, zbin) in enumerate(zip(*np.nonzero(H))):
        x = xax[xbin]
        y = yax[ybin]
        z = zax[zbin]
        xi = np.logical_and(X >= x, X < x + res)
        yi = np.logical_and(Y >= y, Y < y + res)
        zi = np.logical_and(Z >= z, Z < z + res)
        idx = np.logical_and(zi, np.logical_and(yi, xi))
        ipts = pts[idx]

        mid = np.array([x, y, z]) + res / 2.
        dist = cdist(ipts, [mid])
        i_min = np.argmin(dist)
        ipt = ipts[i_min]
        out[i] = ipt

    return out


def _trans_from_params(param_info, params):
    """Convert transformation parameters into a transformation matrix.

    Parameters
    ----------
    param_info : tuple,  len = 3
        Tuple describing the parameters in x (do_translate, do_rotate,
        do_scale).
    params : tuple
        The transformation parameters.

    Returns
    -------
    trans : array, shape = (4, 4)
        Transformation matrix.
    """
    do_rotate, do_translate, do_scale = param_info
    i = 0
    trans = []

    if do_rotate:
        x, y, z = params[:3]
        trans.append(rotation(x, y, z))
        i += 3

    if do_translate:
        x, y, z = params[i:i + 3]
        trans.insert(0, translation(x, y, z))
        i += 3

    if do_scale == 1:
        s = params[i]
        trans.append(scaling(s, s, s))
    elif do_scale == 3:
        x, y, z = params[i:i + 3]
        trans.append(scaling(x, y, z))

    trans = reduce(dot, trans)
    return trans


def fit_matched_points(src_pts, tgt_pts, rotate=True, translate=True,
                       scale=False, tol=None, x0=None, out='trans',
                       weights=None):
    """Find a transform between matched sets of points.

    This minimizes the squared distance between two matching sets of points.

    Uses :func:`scipy.optimize.leastsq` to find a transformation involving
    a combination of rotation, translation, and scaling (in that order).

    Parameters
    ----------
    src_pts : array, shape = (n, 3)
        Points to which the transform should be applied.
    tgt_pts : array, shape = (n, 3)
        Points to which src_pts should be fitted. Each point in tgt_pts should
        correspond to the point in src_pts with the same index.
    rotate : bool
        Allow rotation of the ``src_pts``.
    translate : bool
        Allow translation of the ``src_pts``.
    scale : bool
        Number of scaling parameters. With False, points are not scaled. With
        True, points are scaled by the same factor along all axes.
    tol : scalar | None
        The error tolerance. If the distance between any of the matched points
        exceeds this value in the solution, a RuntimeError is raised. With
        None, no error check is performed.
    x0 : None | tuple
        Initial values for the fit parameters.
    out : 'params' | 'trans'
        In what format to return the estimate: 'params' returns a tuple with
        the fit parameters; 'trans' returns a transformation matrix of shape
        (4, 4).

    Returns
    -------
    trans : array, shape (4, 4)
        Transformation that, if applied to src_pts, minimizes the squared
        distance to tgt_pts. Only returned if out=='trans'.
    params : array, shape (n_params, )
        A single tuple containing the rotation, translation, and scaling
        parameters in that order (as applicable).
    """
    # XXX eventually this should be refactored with the cHPI fitting code,
    # which use fmin_cobyla with constraints
    from scipy.optimize import leastsq
    src_pts = np.atleast_2d(src_pts)
    tgt_pts = np.atleast_2d(tgt_pts)
    if src_pts.shape != tgt_pts.shape:
        raise ValueError("src_pts and tgt_pts must have same shape (got "
                         "{0}, {1})".format(src_pts.shape, tgt_pts.shape))
    if weights is not None:
        weights = np.array(weights, float)
        if weights.ndim != 1 or weights.size not in (src_pts.shape[0], 1):
            raise ValueError("weights (shape=%s) must be None or have shape "
                             "(%s,)" % (weights.shape, src_pts.shape[0],))
        weights = weights[:, np.newaxis]

    rotate = bool(rotate)
    translate = bool(translate)
    scale = int(scale)
    if translate:
        src_pts = np.hstack((src_pts, np.ones((len(src_pts), 1))))

    param_info = (rotate, translate, scale)
    if param_info == (True, False, 0):
        def error(x):
            rx, ry, rz = x
            trans = rotation3d(rx, ry, rz)
            est = dot(src_pts, trans.T)
            d = tgt_pts - est
            if weights is not None:
                d *= weights
            return d.ravel()
        if x0 is None:
            x0 = (0, 0, 0)
    elif param_info == (True, True, 0):
        def error(x):
            rx, ry, rz, tx, ty, tz = x
            trans = dot(translation(tx, ty, tz), rotation(rx, ry, rz))
            est = dot(src_pts, trans.T)[:, :3]
            d = tgt_pts - est
            if weights is not None:
                d *= weights
            return d.ravel()
        if x0 is None:
            x0 = (0, 0, 0, 0, 0, 0)
    elif param_info == (True, True, 1):
        def error(x):
            rx, ry, rz, tx, ty, tz, s = x
            trans = reduce(dot, (translation(tx, ty, tz), rotation(rx, ry, rz),
                                 scaling(s, s, s)))
            est = dot(src_pts, trans.T)[:, :3]
            d = tgt_pts - est
            if weights is not None:
                d *= weights
            return d.ravel()
        if x0 is None:
            x0 = (0, 0, 0, 0, 0, 0, 1)
    elif param_info == (True, True, 3):
        def error(x):
            rx, ry, rz, tx, ty, tz, sx, sy, sz = x
            trans = reduce(dot, (translation(tx, ty, tz), rotation(rx, ry, rz),
                                 scaling(sx, sy, sz)))
            est = dot(src_pts, trans.T)[:, :3]
            d = tgt_pts - est
            if weights is not None:
                d *= weights
            return d.ravel()
        if x0 is None:
            x0 = (0, 0, 0, 0, 0, 0, 1, 1, 1)
    else:
        raise NotImplementedError(
            "The specified parameter combination is not implemented: "
            "rotate=%r, translate=%r, scale=%r" % param_info)

    x, _, _, _, _ = leastsq(error, x0, full_output=True)

    # re-create the final transformation matrix
    if (tol is not None) or (out == 'trans'):
        trans = _trans_from_params(param_info, x)

    # assess the error of the solution
    if tol is not None:
        if not translate:
            src_pts = np.hstack((src_pts, np.ones((len(src_pts), 1))))
        est_pts = dot(src_pts, trans.T)[:, :3]
        err = np.sqrt(np.sum((est_pts - tgt_pts) ** 2, axis=1))
        if np.any(err > tol):
            raise RuntimeError("Error exceeds tolerance. Error = %r" % err)

    if out == 'params':
        return x
    elif out == 'trans':
        return trans
    else:
        raise ValueError("Invalid out parameter: %r. Needs to be 'params' or "
                         "'trans'." % out)


def _find_label_paths(subject='fsaverage', pattern=None, subjects_dir=None):
    """Find paths to label files in a subject's label directory.

    Parameters
    ----------
    subject : str
        Name of the mri subject.
    pattern : str | None
        Pattern for finding the labels relative to the label directory in the
        MRI subject directory (e.g., "aparc/*.label" will find all labels
        in the "subject/label/aparc" directory). With None, find all labels.
    subjects_dir : None | str
        Override the SUBJECTS_DIR environment variable
        (sys.environ['SUBJECTS_DIR'])

    Returns
    -------
    paths : list
        List of paths relative to the subject's label directory
    """
    subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
    subject_dir = os.path.join(subjects_dir, subject)
    lbl_dir = os.path.join(subject_dir, 'label')

    if pattern is None:
        paths = []
        for dirpath, _, filenames in os.walk(lbl_dir):
            rel_dir = os.path.relpath(dirpath, lbl_dir)
            for filename in fnmatch.filter(filenames, '*.label'):
                path = os.path.join(rel_dir, filename)
                paths.append(path)
    else:
        paths = [os.path.relpath(path, lbl_dir) for path in iglob(pattern)]

    return paths


def _find_mri_paths(subject, skip_fiducials, subjects_dir):
    """Find all files of an mri relevant for source transformation.

    Parameters
    ----------
    subject : str
        Name of the mri subject.
    skip_fiducials : bool
        Do not scale the MRI fiducials. If False, an IOError will be raised
        if no fiducials file can be found.
    subjects_dir : None | str
        Override the SUBJECTS_DIR environment variable
        (sys.environ['SUBJECTS_DIR'])

    Returns
    -------
    paths : dict
        Dictionary whose keys are relevant file type names (str), and whose
        values are lists of paths.
    """
    subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
    paths = {}

    # directories to create
    paths['dirs'] = [bem_dirname, surf_dirname]

    # surf/ files
    paths['surf'] = surf = []
    surf_fname = os.path.join(surf_dirname, '{name}')
    surf_names = ('inflated', 'white', 'orig', 'orig_avg', 'inflated_avg',
                  'inflated_pre', 'pial', 'pial_avg', 'smoothwm', 'white_avg',
                  'seghead', 'smseghead')
    if os.getenv('_MNE_FEW_SURFACES', '') == 'true':  # for testing
        surf_names = surf_names[:4]
    for surf_name in surf_names:
        for hemi in ('lh.', 'rh.'):
            name = hemi + surf_name
            path = surf_fname.format(subjects_dir=subjects_dir,
                                     subject=subject, name=name)
            if os.path.exists(path):
                surf.append(pformat(surf_fname, name=name))
    surf_fname = os.path.join(bem_dirname, '{name}')
    surf_names = ('inner_skull.surf', 'outer_skull.surf', 'outer_skin.surf')
    for surf_name in surf_names:
        path = surf_fname.format(subjects_dir=subjects_dir,
                                 subject=subject, name=surf_name)
        if os.path.exists(path):
            surf.append(pformat(surf_fname, name=surf_name))
    del surf_names, surf_name, path, surf, hemi

    # BEM files
    paths['bem'] = bem = []
    path = head_bem_fname.format(subjects_dir=subjects_dir, subject=subject)
    if os.path.exists(path):
        bem.append('head')
    bem_pattern = pformat(bem_fname, subjects_dir=subjects_dir,
                          subject=subject, name='*-bem')
    re_pattern = pformat(bem_fname, subjects_dir=subjects_dir, subject=subject,
                         name='(.+)').replace('\\', '\\\\')
    for path in iglob(bem_pattern):
        match = re.match(re_pattern, path)
        name = match.group(1)
        bem.append(name)
    del bem, path, bem_pattern, re_pattern

    # fiducials
    if skip_fiducials:
        paths['fid'] = []
    else:
        paths['fid'] = _find_fiducials_files(subject, subjects_dir)
        # check that we found at least one
        if len(paths['fid']) == 0:
            raise IOError("No fiducials file found for %s. The fiducials "
                          "file should be named "
                          "{subject}/bem/{subject}-fiducials.fif. In "
                          "order to scale an MRI without fiducials set "
                          "skip_fiducials=True." % subject)

    # duplicate files (curvature and some surfaces)
    paths['duplicate'] = dup = []
    path = os.path.join(surf_dirname, '{name}')
    surf_fname = os.path.join(surf_dirname, '{name}')
    for name in ['lh.curv', 'rh.curv']:
        fname = pformat(path, name=name)
        dup.append(fname)
    del path, name, fname
    surf_dup_names = ('sphere', 'sphere.reg', 'sphere.reg.avg')
    for surf_dup_name in surf_dup_names:
        for hemi in ('lh.', 'rh.'):
            name = hemi + surf_dup_name
            path = surf_fname.format(subjects_dir=subjects_dir,
                                     subject=subject, name=name)
            if os.path.exists(path):
                dup.append(pformat(surf_fname, name=name))
    del surf_dup_name, name, path, dup, hemi

    # transform files (talairach)
    paths['transforms'] = []
    transform_fname = os.path.join(mri_transforms_dirname, 'talairach.xfm')
    path = transform_fname.format(subjects_dir=subjects_dir, subject=subject)
    if os.path.exists(path):
        paths['transforms'].append(transform_fname)
    del transform_fname, path

    # check presence of required files
    for ftype in ['surf', 'duplicate']:
        for fname in paths[ftype]:
            path = fname.format(subjects_dir=subjects_dir, subject=subject)
            path = os.path.realpath(path)
            if not os.path.exists(path):
                raise IOError("Required file not found: %r" % path)

    # find source space files
    paths['src'] = src = []
    bem_dir = bem_dirname.format(subjects_dir=subjects_dir, subject=subject)
    fnames = fnmatch.filter(os.listdir(bem_dir), '*-src.fif')
    prefix = subject + '-'
    for fname in fnames:
        if fname.startswith(prefix):
            fname = "{subject}-%s" % fname[len(prefix):]
        path = os.path.join(bem_dirname, fname)
        src.append(path)

    # find MRIs
    mri_dir = mri_dirname.format(subjects_dir=subjects_dir, subject=subject)
    fnames = fnmatch.filter(os.listdir(mri_dir), '*.mgz')
    paths['mri'] = [os.path.join(mri_dir, f) for f in fnames]

    return paths


def _find_fiducials_files(subject, subjects_dir):
    """Find fiducial files."""
    fid = []
    # standard fiducials
    if os.path.exists(fid_fname.format(subjects_dir=subjects_dir,
                                       subject=subject)):
        fid.append(fid_fname)
    # fiducials with subject name
    pattern = pformat(fid_fname_general, subjects_dir=subjects_dir,
                      subject=subject, head='*')
    regex = pformat(fid_fname_general, subjects_dir=subjects_dir,
                    subject=subject, head='(.+)').replace('\\', '\\\\')
    for path in iglob(pattern):
        match = re.match(regex, path)
        head = match.group(1).replace(subject, '{subject}')
        fid.append(pformat(fid_fname_general, head=head))
    return fid


def _is_mri_subject(subject, subjects_dir=None):
    """Check whether a directory in subjects_dir is an mri subject directory.

    Parameters
    ----------
    subject : str
        Name of the potential subject/directory.
    subjects_dir : None | str
        Override the SUBJECTS_DIR environment variable.

    Returns
    -------
    is_mri_subject : bool
        Whether ``subject`` is an mri subject.
    """
    subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
    return bool(_find_head_bem(subject, subjects_dir) or
                _find_head_bem(subject, subjects_dir, high_res=True))


def _is_scaled_mri_subject(subject, subjects_dir=None):
    """Check whether a directory in subjects_dir is a scaled mri subject.

    Parameters
    ----------
    subject : str
        Name of the potential subject/directory.
    subjects_dir : None | str
        Override the SUBJECTS_DIR environment variable.

    Returns
    -------
    is_scaled_mri_subject : bool
        Whether ``subject`` is a scaled mri subject.
    """
    subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
    if not _is_mri_subject(subject, subjects_dir):
        return False
    fname = os.path.join(subjects_dir, subject, 'MRI scaling parameters.cfg')
    return os.path.exists(fname)


def _mri_subject_has_bem(subject, subjects_dir=None):
    """Check whether an mri subject has a file matching the bem pattern.

    Parameters
    ----------
    subject : str
        Name of the subject.
    subjects_dir : None | str
        Override the SUBJECTS_DIR environment variable.

    Returns
    -------
    has_bem_file : bool
        Whether ``subject`` has a bem file.
    """
    subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
    pattern = bem_fname.format(subjects_dir=subjects_dir, subject=subject,
                               name='*-bem')
    fnames = glob(pattern)
    return bool(len(fnames))


def read_mri_cfg(subject, subjects_dir=None):
    """Read information from the cfg file of a scaled MRI brain.

    Parameters
    ----------
    subject : str
        Name of the scaled MRI subject.
    subjects_dir : None | str
        Override the SUBJECTS_DIR environment variable.

    Returns
    -------
    cfg : dict
        Dictionary with entries from the MRI's cfg file.
    """
    subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
    fname = os.path.join(subjects_dir, subject, 'MRI scaling parameters.cfg')

    if not os.path.exists(fname):
        raise IOError("%r does not seem to be a scaled mri subject: %r does "
                      "not exist." % (subject, fname))

    logger.info("Reading MRI cfg file %s" % fname)
    config = configparser.RawConfigParser()
    config.read(fname)
    n_params = config.getint("MRI Scaling", 'n_params')
    if n_params == 1:
        scale = config.getfloat("MRI Scaling", 'scale')
    elif n_params == 3:
        scale_str = config.get("MRI Scaling", 'scale')
        scale = np.array([float(s) for s in scale_str.split()])
    else:
        raise ValueError("Invalid n_params value in MRI cfg: %i" % n_params)

    out = {'subject_from': config.get("MRI Scaling", 'subject_from'),
           'n_params': n_params, 'scale': scale}
    return out


def _write_mri_config(fname, subject_from, subject_to, scale):
    """Write the cfg file describing a scaled MRI subject.

    Parameters
    ----------
    fname : str
        Target file.
    subject_from : str
        Name of the source MRI subject.
    subject_to : str
        Name of the scaled MRI subject.
    scale : float | array_like, shape = (3,)
        The scaling parameter.
    """
    scale = np.asarray(scale)
    if np.isscalar(scale) or scale.shape == ():
        n_params = 1
    else:
        n_params = 3

    config = configparser.RawConfigParser()
    config.add_section("MRI Scaling")
    config.set("MRI Scaling", 'subject_from', subject_from)
    config.set("MRI Scaling", 'subject_to', subject_to)
    config.set("MRI Scaling", 'n_params', str(n_params))
    if n_params == 1:
        config.set("MRI Scaling", 'scale', str(scale))
    else:
        config.set("MRI Scaling", 'scale', ' '.join([str(s) for s in scale]))
    config.set("MRI Scaling", 'version', '1')
    with open(fname, 'w') as fid:
        config.write(fid)


def _scale_params(subject_to, subject_from, scale, subjects_dir):
    """Assemble parameters for scaling.

    Returns
    -------
    subjects_dir : str
        Subjects directory.
    subject_from : str
        Name of the source subject.
    scale : array
        Scaling factor, either shape=() for uniform scaling or shape=(3,) for
        non-uniform scaling.
    uniform : bool
        Whether scaling is uniform.
    """
    subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
    if (subject_from is None) != (scale is None):
        raise TypeError("Need to provide either both subject_from and scale "
                        "parameters, or neither.")

    if subject_from is None:
        cfg = read_mri_cfg(subject_to, subjects_dir)
        subject_from = cfg['subject_from']
        n_params = cfg['n_params']
        assert n_params in (1, 3)
        scale = cfg['scale']
    scale = np.atleast_1d(scale)
    if scale.ndim != 1 or scale.shape[0] not in (1, 3):
        raise ValueError("Invalid shape for scale parameer. Need scalar "
                         "or array of length 3. Got shape %s."
                         % (scale.shape,))
    n_params = len(scale)
    return subjects_dir, subject_from, scale, n_params == 1


@verbose
def scale_bem(subject_to, bem_name, subject_from=None, scale=None,
              subjects_dir=None, verbose=None):
    """Scale a bem file.

    Parameters
    ----------
    subject_to : str
        Name of the scaled MRI subject (the destination mri subject).
    bem_name : str
        Name of the bem file. For example, to scale
        ``fsaverage-inner_skull-bem.fif``, the bem_name would be
        "inner_skull-bem".
    subject_from : None | str
        The subject from which to read the source space. If None, subject_from
        is read from subject_to's config file.
    scale : None | float | array, shape = (3,)
        Scaling factor. Has to be specified if subjects_from is specified,
        otherwise it is read from subject_to's config file.
    subjects_dir : None | str
        Override the SUBJECTS_DIR environment variable.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).
    """
    subjects_dir, subject_from, scale, uniform = \
        _scale_params(subject_to, subject_from, scale, subjects_dir)

    src = bem_fname.format(subjects_dir=subjects_dir, subject=subject_from,
                           name=bem_name)
    dst = bem_fname.format(subjects_dir=subjects_dir, subject=subject_to,
                           name=bem_name)

    if os.path.exists(dst):
        raise IOError("File already exists: %s" % dst)

    surfs = read_bem_surfaces(src)
    for surf in surfs:
        surf['rr'] *= scale
        if not uniform:
            assert len(surf['nn']) > 0
            surf['nn'] /= scale
            _normalize_vectors(surf['nn'])
    write_bem_surfaces(dst, surfs)


def scale_labels(subject_to, pattern=None, overwrite=False, subject_from=None,
                 scale=None, subjects_dir=None):
    r"""Scale labels to match a brain that was previously created by scaling.

    Parameters
    ----------
    subject_to : str
        Name of the scaled MRI subject (the destination brain).
    pattern : str | None
        Pattern for finding the labels relative to the label directory in the
        MRI subject directory (e.g., "lh.BA3a.label" will scale
        "fsaverage/label/lh.BA3a.label"; "aparc/\*.label" will find all labels
        in the "fsaverage/label/aparc" directory). With None, scale all labels.
    overwrite : bool
        Overwrite any label file that already exists for subject_to (otherwise
        existing labels are skipped).
    subject_from : None | str
        Name of the original MRI subject (the brain that was scaled to create
        subject_to). If None, the value is read from subject_to's cfg file.
    scale : None | float | array_like, shape = (3,)
        Scaling parameter. If None, the value is read from subject_to's cfg
        file.
    subjects_dir : None | str
        Override the SUBJECTS_DIR environment variable.
    """
    subjects_dir, subject_from, scale, _ = _scale_params(
        subject_to, subject_from, scale, subjects_dir)

    # find labels
    paths = _find_label_paths(subject_from, pattern, subjects_dir)
    if not paths:
        return

    subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
    src_root = os.path.join(subjects_dir, subject_from, 'label')
    dst_root = os.path.join(subjects_dir, subject_to, 'label')

    # scale labels
    for fname in paths:
        dst = os.path.join(dst_root, fname)
        if not overwrite and os.path.exists(dst):
            continue

        dirname = os.path.dirname(dst)
        if not os.path.exists(dirname):
            os.makedirs(dirname)

        src = os.path.join(src_root, fname)
        l_old = read_label(src)
        pos = l_old.pos * scale
        l_new = Label(l_old.vertices, pos, l_old.values, l_old.hemi,
                      l_old.comment, subject=subject_to)
        l_new.save(dst)


@verbose
def scale_mri(subject_from, subject_to, scale, overwrite=False,
              subjects_dir=None, skip_fiducials=False, labels=True,
              annot=False, verbose=None):
    """Create a scaled copy of an MRI subject.

    Parameters
    ----------
    subject_from : str
        Name of the subject providing the MRI.
    subject_to : str
        New subject name for which to save the scaled MRI.
    scale : float | array_like, shape = (3,)
        The scaling factor (one or 3 parameters).
    overwrite : bool
        If an MRI already exists for subject_to, overwrite it.
    subjects_dir : None | str
        Override the SUBJECTS_DIR environment variable.
    skip_fiducials : bool
        Do not scale the MRI fiducials. If False (default), an IOError will be
        raised if no fiducials file can be found.
    labels : bool
        Also scale all labels (default True).
    annot : bool
        Copy ``*.annot`` files to the new location (default False).
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    See Also
    --------
    scale_labels : add labels to a scaled MRI
    scale_source_space : add a source space to a scaled MRI
    """
    subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
    paths = _find_mri_paths(subject_from, skip_fiducials, subjects_dir)
    scale = np.atleast_1d(scale)
    if scale.shape == (3,):
        if np.isclose(scale[1], scale[0]) and np.isclose(scale[2], scale[0]):
            scale = scale[0]  # speed up scaling conditionals using a singleton
    elif scale.shape != (1,):
        raise ValueError('scale must have shape (3,) or (1,), got %s'
                         % (scale.shape,))

    # make sure we have an empty target directory
    dest = subject_dirname.format(subject=subject_to,
                                  subjects_dir=subjects_dir)
    if os.path.exists(dest):
        if not overwrite:
            raise IOError("Subject directory for %s already exists: %r"
                          % (subject_to, dest))
        shutil.rmtree(dest)

    logger.debug('create empty directory structure')
    for dirname in paths['dirs']:
        dir_ = dirname.format(subject=subject_to, subjects_dir=subjects_dir)
        os.makedirs(dir_)

    logger.debug('save MRI scaling parameters')
    fname = os.path.join(dest, 'MRI scaling parameters.cfg')
    _write_mri_config(fname, subject_from, subject_to, scale)

    logger.debug('surf files [in mm]')
    for fname in paths['surf']:
        src = fname.format(subject=subject_from, subjects_dir=subjects_dir)
        src = os.path.realpath(src)
        dest = fname.format(subject=subject_to, subjects_dir=subjects_dir)
        pts, tri = read_surface(src)
        write_surface(dest, pts * scale, tri)

    logger.debug('BEM files [in m]')
    for bem_name in paths['bem']:
        scale_bem(subject_to, bem_name, subject_from, scale, subjects_dir,
                  verbose=False)

    logger.debug('fiducials [in m]')
    for fname in paths['fid']:
        src = fname.format(subject=subject_from, subjects_dir=subjects_dir)
        src = os.path.realpath(src)
        pts, cframe = read_fiducials(src, verbose=False)
        for pt in pts:
            pt['r'] = pt['r'] * scale
        dest = fname.format(subject=subject_to, subjects_dir=subjects_dir)
        write_fiducials(dest, pts, cframe, verbose=False)

    logger.debug('MRIs [nibabel]')
    os.mkdir(mri_dirname.format(subjects_dir=subjects_dir,
                                subject=subject_to))
    for fname in paths['mri']:
        mri_name = os.path.basename(fname)
        _scale_mri(subject_to, mri_name, subject_from, scale, subjects_dir)

    logger.debug('Transforms')
    for mri_name in paths['mri']:
        if mri_name.endswith('T1.mgz'):
            os.mkdir(mri_transforms_dirname.format(subjects_dir=subjects_dir,
                                                   subject=subject_to))
            for fname in paths['transforms']:
                xfm_name = os.path.basename(fname)
                _scale_xfm(subject_to, xfm_name, mri_name,
                           subject_from, scale, subjects_dir)
            break

    logger.debug('duplicate files')
    for fname in paths['duplicate']:
        src = fname.format(subject=subject_from, subjects_dir=subjects_dir)
        dest = fname.format(subject=subject_to, subjects_dir=subjects_dir)
        shutil.copyfile(src, dest)

    logger.debug('source spaces')
    for fname in paths['src']:
        src_name = os.path.basename(fname)
        scale_source_space(subject_to, src_name, subject_from, scale,
                           subjects_dir, verbose=False)

    logger.debug('labels [in m]')
    os.mkdir(os.path.join(subjects_dir, subject_to, 'label'))
    if labels:
        scale_labels(subject_to, subject_from=subject_from, scale=scale,
                     subjects_dir=subjects_dir)

    logger.debug('copy *.annot files')
    # they don't contain scale-dependent information
    if annot:
        src_pattern = os.path.join(subjects_dir, subject_from, 'label',
                                   '*.annot')
        dst_dir = os.path.join(subjects_dir, subject_to, 'label')
        for src_file in iglob(src_pattern):
            shutil.copy(src_file, dst_dir)


@verbose
def scale_source_space(subject_to, src_name, subject_from=None, scale=None,
                       subjects_dir=None, n_jobs=1, verbose=None):
    """Scale a source space for an mri created with scale_mri().

    Parameters
    ----------
    subject_to : str
        Name of the scaled MRI subject (the destination mri subject).
    src_name : str
        Source space name. Can be a spacing parameter (e.g., ``'7'``,
        ``'ico4'``, ``'oct6'``) or a file name of a source space file relative
        to the bem directory; if the file name contains the subject name, it
        should be indicated as "{subject}" in ``src_name`` (e.g.,
        ``"{subject}-my_source_space-src.fif"``).
    subject_from : None | str
        The subject from which to read the source space. If None, subject_from
        is read from subject_to's config file.
    scale : None | float | array, shape = (3,)
        Scaling factor. Has to be specified if subjects_from is specified,
        otherwise it is read from subject_to's config file.
    subjects_dir : None | str
        Override the SUBJECTS_DIR environment variable.
    n_jobs : int
        Number of jobs to run in parallel if recomputing distances (only
        applies if scale is an array of length 3, and will not use more cores
        than there are source spaces).
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Notes
    -----
    When scaling volume source spaces, the source (vertex) locations are
    scaled, but the reference to the MRI volume is left unchanged. Transforms
    are updated so that source estimates can be plotted on the original MRI
    volume.
    """
    subjects_dir, subject_from, scale, uniform = \
        _scale_params(subject_to, subject_from, scale, subjects_dir)
    # if n_params==1 scale is a scalar; if n_params==3 scale is a (3,) array

    # find the source space file names
    if src_name.isdigit():
        spacing = src_name  # spacing in mm
        src_pattern = src_fname
    else:
        match = re.match(r"(oct|ico|vol)-?(\d+)$", src_name)
        if match:
            spacing = '-'.join(match.groups())
            src_pattern = src_fname
        else:
            spacing = None
            src_pattern = os.path.join(bem_dirname, src_name)

    src = src_pattern.format(subjects_dir=subjects_dir, subject=subject_from,
                             spacing=spacing)
    dst = src_pattern.format(subjects_dir=subjects_dir, subject=subject_to,
                             spacing=spacing)

    # read and scale the source space [in m]
    sss = read_source_spaces(src)
    logger.info("scaling source space %s:  %s -> %s", spacing, subject_from,
                subject_to)
    logger.info("Scale factor: %s", scale)
    add_dist = False
    for ss in sss:
        ss['subject_his_id'] = subject_to
        ss['rr'] *= scale
        # additional tags for volume source spaces
        if 'vox_mri_t' in ss:
            # maintain transform to original MRI volume ss['mri_volume_name']
            ss['vox_mri_t']['trans'][:3, :3] /= scale
            ss['src_mri_t']['trans'][:3, :3] /= scale
        # distances and patch info
        if uniform:
            if ss['dist'] is not None:
                ss['dist'] *= scale[0]
                # Sometimes this is read-only due to how it's read
                ss['nearest_dist'] = ss['nearest_dist'] * scale
                ss['dist_limit'] = ss['dist_limit'] * scale
        else:  # non-uniform scaling
            ss['nn'] /= scale
            _normalize_vectors(ss['nn'])
            if ss['dist'] is not None:
                add_dist = True

    if add_dist:
        logger.info("Recomputing distances, this might take a while")
        dist_limit = np.asscalar(np.abs(sss[0]['dist_limit']))
        add_source_space_distances(sss, dist_limit, n_jobs)

    write_source_spaces(dst, sss)


def _scale_mri(subject_to, mri_fname, subject_from, scale, subjects_dir):
    """Scale an MRI by setting its affine."""
    subjects_dir, subject_from, scale, _ = _scale_params(
        subject_to, subject_from, scale, subjects_dir)

    if not has_nibabel():
        warn('Skipping MRI scaling for %s, please install nibabel')
        return

    import nibabel
    fname_from = op.join(mri_dirname.format(
        subjects_dir=subjects_dir, subject=subject_from), mri_fname)
    fname_to = op.join(mri_dirname.format(
        subjects_dir=subjects_dir, subject=subject_to), mri_fname)
    img = nibabel.load(fname_from)
    zooms = np.array(img.header.get_zooms())
    zooms[[0, 2, 1]] *= scale
    img.header.set_zooms(zooms)
    # Hack to fix nibabel problems, see
    # https://github.com/nipy/nibabel/issues/619
    img._affine = img.header.get_affine()  # or could use None
    nibabel.save(img, fname_to)


def _scale_xfm(subject_to, xfm_fname, mri_name, subject_from, scale,
               subjects_dir):
    """Scale a transform."""
    subjects_dir, subject_from, scale, _ = _scale_params(
        subject_to, subject_from, scale, subjects_dir)

    # The nibabel warning should already be there in MRI step, if applicable,
    # as we only get here if T1.mgz is present (and thus a scaling was
    # attempted) so we can silently return here.
    if not has_nibabel():
        return

    fname_from = os.path.join(
        mri_transforms_dirname.format(
            subjects_dir=subjects_dir, subject=subject_from), xfm_fname)
    fname_to = op.join(
        mri_transforms_dirname.format(
            subjects_dir=subjects_dir, subject=subject_to), xfm_fname)
    assert op.isfile(fname_from), fname_from
    assert op.isdir(op.dirname(fname_to)), op.dirname(fname_to)
    # The "talairach.xfm" file stores the ras_mni transform.
    #
    # For "from" subj F, "to" subj T, F->T scaling S, some equivalent vertex
    # positions F_x and T_x in MRI (Freesurfer RAS) coords, knowing that
    # we have T_x = S @ F_x, we want to have the same MNI coords computed
    # for these vertices:
    #
    #              T_mri_mni @ T_x = F_mri_mni @ F_x
    #
    # We need to find the correct T_ras_mni (talaraich.xfm file) that yields
    # this. So we derive (where † indicates inversion):
    #
    #          T_mri_mni @ S @ F_x = F_mri_mni @ F_x
    #                T_mri_mni @ S = F_mri_mni
    #    T_ras_mni @ T_mri_ras @ S = F_ras_mni @ F_mri_ras
    #        T_ras_mni @ T_mri_ras = F_ras_mni @ F_mri_ras @ S⁻¹
    #                    T_ras_mni = F_ras_mni @ F_mri_ras @ S⁻¹ @ T_ras_mri
    #

    # prepare the scale (S) transform
    scale = np.atleast_1d(scale)
    scale = np.tile(scale, 3) if len(scale) == 1 else scale
    S = Transform('mri', 'mri', scaling(*scale))  # F_mri->T_mri

    #
    # Get the necessary transforms of the "from" subject
    #
    xfm, kind = _read_fs_xfm(fname_from)
    assert kind == 'MNI Transform File', kind
    F_ras_mni = Transform('ras', 'mni_tal', xfm)
    hdr = _get_mri_header(mri_name)
    F_vox_ras = Transform('mri_voxel', 'ras', hdr.get_vox2ras())
    F_vox_mri = Transform('mri_voxel', 'mri', hdr.get_vox2ras_tkr())
    F_mri_ras = combine_transforms(
        invert_transform(F_vox_mri), F_vox_ras, 'mri', 'ras')
    del F_vox_ras, F_vox_mri, hdr, xfm

    #
    # Get the necessary transforms of the "to" subject
    #
    mri_name = op.join(mri_dirname.format(
        subjects_dir=subjects_dir, subject=subject_to), op.basename(mri_name))
    hdr = _get_mri_header(mri_name)
    T_vox_ras = Transform('mri_voxel', 'ras', hdr.get_vox2ras())
    T_vox_mri = Transform('mri_voxel', 'mri', hdr.get_vox2ras_tkr())
    T_ras_mri = combine_transforms(
        invert_transform(T_vox_ras), T_vox_mri, 'ras', 'mri')
    del mri_name, hdr, T_vox_ras, T_vox_mri

    # Finally we construct as above:
    #
    #    T_ras_mni = F_ras_mni @ F_mri_ras @ S⁻¹ @ T_ras_mri
    #
    # By moving right to left through the equation.
    T_ras_mni = \
        combine_transforms(
            combine_transforms(
                combine_transforms(
                    T_ras_mri, invert_transform(S), 'ras', 'mri'),
                F_mri_ras, 'ras', 'ras'),
            F_ras_mni, 'ras', 'mni_tal')
    _write_fs_xfm(fname_to, T_ras_mni['trans'], kind)