File: urls.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (179 lines) | stat: -rw-r--r-- 5,390 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Author: Eric Larson <larson.eric.d@gmail.com>
# License: BSD Style.

import numpy as np

url_root = 'http://cobre.mrn.org/megsim'

urls = ['/empdata/neuromag/visual/subject1_day1_vis_raw.fif',
        '/empdata/neuromag/visual/subject1_day2_vis_raw.fif',
        '/empdata/neuromag/visual/subject3_day1_vis_raw.fif',
        '/empdata/neuromag/visual/subject3_day2_vis_raw.fif',
        '/empdata/neuromag/aud/subject1_day1_aud_raw.fif',
        '/empdata/neuromag/aud/subject1_day2_aud_raw.fif',
        '/empdata/neuromag/aud/subject3_day1_aud_raw.fif',
        '/empdata/neuromag/aud/subject3_day2_aud_raw.fif',
        '/empdata/neuromag/somato/subject1_day1_median_raw.fif',
        '/empdata/neuromag/somato/subject1_day2_median_raw.fif',
        '/empdata/neuromag/somato/subject3_day1_median_raw.fif',
        '/empdata/neuromag/somato/subject3_day2_median_raw.fif',

        '/simdata/neuromag/visual/M87174545_vis_sim1A_4mm_30na_neuro_rn.fif',
        '/simdata/neuromag/visual/M87174545_vis_sim1B_20mm_50na_neuro_rn.fif',
        '/simdata/neuromag/visual/M87174545_vis_sim2_4mm_30na_neuro_rn.fif',
        '/simdata/neuromag/visual/M87174545_vis_sim3A_4mm_30na_neuro_rn.fif',
        '/simdata/neuromag/visual/M87174545_vis_sim3B_20mm_50na_neuro_rn.fif',
        '/simdata/neuromag/visual/M87174545_vis_sim4_4mm_30na_neuro_rn.fif',
        '/simdata/neuromag/visual/M87174545_vis_sim5_4mm_30na_neuro_rn.fif',

        '/simdata_singleTrials/subject1_singleTrials_VisWorkingMem_fif.zip',
        '/simdata_singleTrials/subject1_singleTrials_VisWorkingMem_withOsc_fif.zip',  # noqa: E501
        '/simdata_singleTrials/4545_sim_oscOnly_v1_IPS_ILOG_30hzAdded.fif',

        '/index.html',
        ]

data_formats = ['raw',
                'raw',
                'raw',
                'raw',
                'raw',
                'raw',
                'raw',
                'raw',
                'raw',
                'raw',
                'raw',
                'raw',

                'evoked',
                'evoked',
                'evoked',
                'evoked',
                'evoked',
                'evoked',
                'evoked',

                'single-trial',
                'single-trial',
                'single-trial',

                'text']

subjects = ['subject_1',
            'subject_1',
            'subject_3',
            'subject_3',
            'subject_1',
            'subject_1',
            'subject_3',
            'subject_3',
            'subject_1',
            'subject_1',
            'subject_3',
            'subject_3',

            'subject_1',
            'subject_1',
            'subject_1',
            'subject_1',
            'subject_1',
            'subject_1',
            'subject_1',

            'subject_1',
            'subject_1',
            'subject_1',

            '']

data_types = ['experimental',
              'experimental',
              'experimental',
              'experimental',
              'experimental',
              'experimental',
              'experimental',
              'experimental',
              'experimental',
              'experimental',
              'experimental',
              'experimental',

              'simulation',
              'simulation',
              'simulation',
              'simulation',
              'simulation',
              'simulation',
              'simulation',

              'simulation',
              'simulation',
              'simulation',

              'text']

conditions = ['visual',
              'visual',
              'visual',
              'visual',
              'auditory',
              'auditory',
              'auditory',
              'auditory',
              'somatosensory',
              'somatosensory',
              'somatosensory',
              'somatosensory',

              'visual',
              'visual',
              'visual',
              'visual',
              'visual',
              'visual',
              'visual',

              'visual',
              'visual',
              'visual',

              'index']

valid_data_types = list(set(data_types))
valid_data_formats = list(set(data_formats))
valid_conditions = list(set(conditions))

# turn them into arrays for ease of use
urls = np.atleast_1d(urls)
data_formats = np.atleast_1d(data_formats)
subjects = np.atleast_1d(subjects)
data_types = np.atleast_1d(data_types)
conditions = np.atleast_1d(conditions)

# Useful for testing
# assert len(conditions) == len(data_types) == len(subjects) \
#     == len(data_formats) == len(urls)


def url_match(condition, data_format, data_type):
    """Match MEGSIM data files."""
    inds = np.logical_and(conditions == condition, data_formats == data_format)
    inds = np.logical_and(inds, data_types == data_type)
    inds = np.logical_and(inds, data_formats == data_format)
    good_urls = list(urls[inds])
    for gi, g in enumerate(good_urls):
        good_urls[gi] = url_root + g
    if len(good_urls) == 0:
        raise ValueError('No MEGSIM dataset found with condition="%s",\n'
                         'data_format="%s", data_type="%s"'
                         % (condition, data_format, data_type))
    return good_urls


def _load_all_data():
    """Download all megsim datasets."""
    from .megsim import data_path
    for url in urls:
        data_path(url_root + url)