File: csp.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (835 lines) | stat: -rw-r--r-- 36,874 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
# -*- coding: utf-8 -*-
# Authors: Romain Trachel <trachelr@gmail.com>
#          Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Alexandre Barachant <alexandre.barachant@gmail.com>
#          Clemens Brunner <clemens.brunner@gmail.com>
#          Jean-Remi King <jeanremi.king@gmail.com>
#
# License: BSD (3-clause)

import copy as cp

import numpy as np
from scipy import linalg

from .mixin import TransformerMixin
from .base import BaseEstimator
from ..cov import _regularized_covariance


class CSP(TransformerMixin, BaseEstimator):
    u"""M/EEG signal decomposition using the Common Spatial Patterns (CSP).

    This object can be used as a supervised decomposition to estimate
    spatial filters for feature extraction in a 2 class decoding problem.
    CSP in the context of EEG was first described in [1]; a comprehensive
    tutorial on CSP can be found in [2]. Multiclass solving is implemented
    from [3].

    Parameters
    ----------
    n_components : int, defaults to 4
        The number of components to decompose M/EEG signals.
        This number should be set by cross-validation.
    reg : float | str | None (default None)
        If not None (same as ``'empirical'``, default), allow
        regularization for covariance estimation.
        If float, shrinkage is used (0 <= shrinkage <= 1).
        For str options, ``reg`` will be passed to ``method`` to
        :func:`mne.compute_covariance`.
    log : None | bool (default None)
        If transform_into == 'average_power' and log is None or True, then
        applies a log transform to standardize the features, else the features
        are z-scored. If transform_into == 'csp_space', then log must be None.
    cov_est : 'concat' | 'epoch', defaults to 'concat'
        If 'concat', covariance matrices are estimated on concatenated epochs
        for each class.
        If 'epoch', covariance matrices are estimated on each epoch separately
        and then averaged over each class.
    transform_into : {'average_power', 'csp_space'}
        If 'average_power' then self.transform will return the average power of
        each spatial filter. If 'csp_space' self.transform will return the data
        in CSP space. Defaults to 'average_power'.
    norm_trace : bool
        Normalize class covariance by its trace. Defaults to False. Trace
        normalization is a step of the original CSP algorithm [1]_ to eliminate
        magnitude variations in the EEG between individuals. It is not applied
        in more recent work [2]_, [3]_ and can have a negative impact on
        patterns ordering.
    cov_method_params : dict | None
        Parameters to pass to :func:`mne.compute_covariance`.

        .. versionadded:: 0.16
    rank : None | int | dict | 'full'
        See :func:`mne.compute_covariance`.

        .. versionadded:: 0.17

    Attributes
    ----------
    filters_ :  ndarray, shape (n_channels, n_channels)
        If fit, the CSP components used to decompose the data, else None.
    patterns_ : ndarray, shape (n_channels, n_channels)
        If fit, the CSP patterns used to restore M/EEG signals, else None.
    mean_ : ndarray, shape (n_components,)
        If fit, the mean squared power for each component.
    std_ : ndarray, shape (n_components,)
        If fit, the std squared power for each component.

    See Also
    --------
    mne.preprocessing.Xdawn, SPoC

    References
    ----------
    .. [1] Zoltan J. Koles, Michael S. Lazar, Steven Z. Zhou. Spatial Patterns
           Underlying Population Differences in the Background EEG. Brain
           Topography 2(4), 275-284, 1990.
    .. [2] Benjamin Blankertz, Ryota Tomioka, Steven Lemm, Motoaki Kawanabe,
           Klaus-Robert Müller. Optimizing Spatial Filters for Robust EEG
           Single-Trial Analysis. IEEE Signal Processing Magazine 25(1), 41-56,
           2008.
    .. [3] Grosse-Wentrup, Moritz, and Martin Buss. Multiclass common spatial
           patterns and information theoretic feature extraction. IEEE
           Transactions on Biomedical Engineering, Vol 55, no. 8, 2008.
    """

    def __init__(self, n_components=4, reg=None, log=None, cov_est="concat",
                 transform_into='average_power', norm_trace=False,
                 cov_method_params=None, rank=''):
        """Init of CSP."""
        # Init default CSP
        if not isinstance(n_components, int):
            raise ValueError('n_components must be an integer.')
        self.n_components = n_components
        self.rank = rank

        self.reg = reg

        # Init default cov_est
        if not (cov_est == "concat" or cov_est == "epoch"):
            raise ValueError("unknown covariance estimation method")
        self.cov_est = cov_est

        # Init default transform_into
        if transform_into not in ('average_power', 'csp_space'):
            raise ValueError('transform_into must be "average_power" or '
                             '"csp_space".')
        self.transform_into = transform_into

        # Init default log
        if transform_into == 'average_power':
            if log is not None and not isinstance(log, bool):
                raise ValueError('log must be a boolean if transform_into == '
                                 '"average_power".')
        else:
            if log is not None:
                raise ValueError('log must be a None if transform_into == '
                                 '"csp_space".')
        self.log = log

        if not isinstance(norm_trace, bool):
            raise ValueError('norm_trace must be a bool.')
        self.norm_trace = norm_trace
        self.cov_method_params = cov_method_params

    def _check_Xy(self, X, y=None):
        """Aux. function to check input data."""
        if y is not None:
            if len(X) != len(y) or len(y) < 1:
                raise ValueError('X and y must have the same length.')
        if X.ndim < 3:
            raise ValueError('X must have at least 3 dimensions.')

    def fit(self, X, y):
        """Estimate the CSP decomposition on epochs.

        Parameters
        ----------
        X : ndarray, shape (n_epochs, n_channels, n_times)
            The data on which to estimate the CSP.
        y : array, shape (n_epochs,)
            The class for each epoch.

        Returns
        -------
        self : instance of CSP
            Returns the modified instance.
        """
        if not isinstance(X, np.ndarray):
            raise ValueError("X should be of type ndarray (got %s)."
                             % type(X))
        self._check_Xy(X, y)
        n_channels = X.shape[1]

        self._classes = np.unique(y)
        n_classes = len(self._classes)
        if n_classes < 2:
            raise ValueError("n_classes must be >= 2.")

        covs = np.zeros((n_classes, n_channels, n_channels))
        sample_weights = list()
        for class_idx, this_class in enumerate(self._classes):
            if self.cov_est == "concat":  # concatenate epochs
                class_ = np.transpose(X[y == this_class], [1, 0, 2])
                class_ = class_.reshape(n_channels, -1)
                cov = _regularized_covariance(
                    class_, reg=self.reg, method_params=self.cov_method_params,
                    rank=self.rank)
                weight = sum(y == this_class)
            elif self.cov_est == "epoch":
                class_ = X[y == this_class]
                cov = np.zeros((n_channels, n_channels))
                for this_X in class_:
                    cov += _regularized_covariance(
                        this_X, reg=self.reg,
                        method_params=self.cov_method_params,
                        rank=self.rank)
                cov /= len(class_)
                weight = len(class_)

            covs[class_idx] = cov
            if self.norm_trace:
                # Append covariance matrix and weight. Prior to version 0.15,
                # trace normalization was applied, but was breaking results for
                # some usecases by changing the apparent ranking of patterns.
                # Trace normalization of the covariance matrix was removed
                # without signigificant effect on patterns or performances.
                # If the user interested in this feature, we suggest trace
                # normalization of the epochs prior to the CSP.
                covs[class_idx] /= np.trace(cov)

            sample_weights.append(weight)

        if n_classes == 2:
            eigen_values, eigen_vectors = linalg.eigh(covs[0], covs.sum(0))
            # sort eigenvectors
            ix = np.argsort(np.abs(eigen_values - 0.5))[::-1]
        else:
            # The multiclass case is adapted from
            # http://github.com/alexandrebarachant/pyRiemann
            eigen_vectors, D = _ajd_pham(covs)

            # Here we apply an euclidean mean. See pyRiemann for other metrics
            mean_cov = np.average(covs, axis=0, weights=sample_weights)
            eigen_vectors = eigen_vectors.T

            # normalize
            for ii in range(eigen_vectors.shape[1]):
                tmp = np.dot(np.dot(eigen_vectors[:, ii].T, mean_cov),
                             eigen_vectors[:, ii])
                eigen_vectors[:, ii] /= np.sqrt(tmp)

            # class probability
            class_probas = [np.mean(y == _class) for _class in self._classes]

            # mutual information
            mutual_info = []
            for jj in range(eigen_vectors.shape[1]):
                aa, bb = 0, 0
                for (cov, prob) in zip(covs, class_probas):
                    tmp = np.dot(np.dot(eigen_vectors[:, jj].T, cov),
                                 eigen_vectors[:, jj])
                    aa += prob * np.log(np.sqrt(tmp))
                    bb += prob * (tmp ** 2 - 1)
                mi = - (aa + (3.0 / 16) * (bb ** 2))
                mutual_info.append(mi)
            ix = np.argsort(mutual_info)[::-1]

        # sort eigenvectors
        eigen_vectors = eigen_vectors[:, ix]

        self.filters_ = eigen_vectors.T
        self.patterns_ = linalg.pinv2(eigen_vectors)

        pick_filters = self.filters_[:self.n_components]
        X = np.asarray([np.dot(pick_filters, epoch) for epoch in X])

        # compute features (mean band power)
        X = (X ** 2).mean(axis=2)

        # To standardize features
        self.mean_ = X.mean(axis=0)
        self.std_ = X.std(axis=0)

        return self

    def transform(self, X):
        """Estimate epochs sources given the CSP filters.

        Parameters
        ----------
        X : array, shape (n_epochs, n_channels, n_times)
            The data.

        Returns
        -------
        X : ndarray
            If self.transform_into == 'average_power' then returns the power of
            CSP features averaged over time and shape (n_epochs, n_sources)
            If self.transform_into == 'csp_space' then returns the data in CSP
            space and shape is (n_epochs, n_sources, n_times)
        """
        if not isinstance(X, np.ndarray):
            raise ValueError("X should be of type ndarray (got %s)." % type(X))
        if self.filters_ is None:
            raise RuntimeError('No filters available. Please first fit CSP '
                               'decomposition.')

        pick_filters = self.filters_[:self.n_components]
        X = np.asarray([np.dot(pick_filters, epoch) for epoch in X])

        # compute features (mean band power)
        if self.transform_into == 'average_power':
            X = (X ** 2).mean(axis=2)
            log = True if self.log is None else self.log
            if log:
                X = np.log(X)
            else:
                X -= self.mean_
                X /= self.std_
        return X

    def plot_patterns(self, info, components=None, ch_type=None, layout=None,
                      vmin=None, vmax=None, cmap='RdBu_r', sensors=True,
                      colorbar=True, scalings=None, units='a.u.', res=64,
                      size=1, cbar_fmt='%3.1f', name_format='CSP%01d',
                      show=True, show_names=False, title=None, mask=None,
                      mask_params=None, outlines='head', contours=6,
                      image_interp='bilinear', average=None, head_pos=None):
        """Plot topographic patterns of components.

        The patterns explain how the measured data was generated from the
        neural sources (a.k.a. the forward model).

        Parameters
        ----------
        info : instance of Info
            Info dictionary of the epochs used for fitting.
            If not possible, consider using ``create_info``.
        components : float | array of floats | None.
           The patterns to plot. If None, n_components will be shown.
        ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg' | None
            The channel type to plot. For 'grad', the gradiometers are
            collected in pairs and the RMS for each pair is plotted.
            If None, then first available channel type from order given
            above is used. Defaults to None.
        layout : None | Layout
            Layout instance specifying sensor positions (does not need to be
            specified for Neuromag data). If possible, the correct layout file
            is inferred from the data; if no appropriate layout file was found
            the layout is automatically generated from the sensor locations.
        vmin : float | callable
            The value specifying the lower bound of the color range.
            If None, and vmax is None, -vmax is used. Else np.min(data).
            If callable, the output equals vmin(data).
        vmax : float | callable
            The value specifying the upper bound of the color range.
            If None, the maximum absolute value is used. If vmin is None,
            but vmax is not, defaults to np.min(data).
            If callable, the output equals vmax(data).
        cmap : matplotlib colormap | (colormap, bool) | 'interactive' | None
            Colormap to use. If tuple, the first value indicates the colormap
            to use and the second value is a boolean defining interactivity. In
            interactive mode the colors are adjustable by clicking and dragging
            the colorbar with left and right mouse button. Left mouse button
            moves the scale up and down and right mouse button adjusts the
            range. Hitting space bar resets the range. Up and down arrows can
            be used to change the colormap. If None, 'Reds' is used for all
            positive data, otherwise defaults to 'RdBu_r'. If 'interactive',
            translates to (None, True). Defaults to 'RdBu_r'.

            .. warning::  Interactive mode works smoothly only for a small
                amount of topomaps.

        sensors : bool | str
            Add markers for sensor locations to the plot. Accepts matplotlib
            plot format string (e.g., 'r+' for red plusses). If True,
            a circle will be used (via .add_artist). Defaults to True.
        colorbar : bool
            Plot a colorbar.
        scalings : dict | float | None
            The scalings of the channel types to be applied for plotting.
            If None, defaults to ``dict(eeg=1e6, grad=1e13, mag=1e15)``.
        units : dict | str | None
            The unit of the channel type used for colorbar label. If
            scale is None the unit is automatically determined.
        res : int
            The resolution of the topomap image (n pixels along each side).
        size : float
            Side length per topomap in inches.
        cbar_fmt : str
            String format for colorbar values.
        name_format : str
            String format for topomap values. Defaults to "CSP%01d"
        show : bool
            Show figure if True.
        show_names : bool | callable
            If True, show channel names on top of the map. If a callable is
            passed, channel names will be formatted using the callable; e.g.,
            to delete the prefix 'MEG ' from all channel names, pass the
            function lambda x: x.replace('MEG ', ''). If `mask` is not None,
            only significant sensors will be shown.
        title : str | None
            Title. If None (default), no title is displayed.
        mask : ndarray of bool, shape (n_channels, n_times) | None
            The channels to be marked as significant at a given time point.
            Indices set to `True` will be considered. Defaults to None.
        mask_params : dict | None
            Additional plotting parameters for plotting significant sensors.
            Default (None) equals::

                dict(marker='o', markerfacecolor='w', markeredgecolor='k',
                     linewidth=0, markersize=4)

        outlines : 'head' | 'skirt' | dict | None
            The outlines to be drawn. If 'head', the default head scheme will
            be drawn. If 'skirt' the head scheme will be drawn, but sensors are
            allowed to be plotted outside of the head circle. If dict, each key
            refers to a tuple of x and y positions, the values in 'mask_pos'
            will serve as image mask, and the 'autoshrink' (bool) field will
            trigger automated shrinking of the positions due to points outside
            the outline. Alternatively, a matplotlib patch object can be passed
            for advanced masking options, either directly or as a function that
            returns patches (required for multi-axis plots). If None, nothing
            will be drawn. Defaults to 'head'.
        contours : int | array of float
            The number of contour lines to draw. If 0, no contours will be
            drawn. When an integer, matplotlib ticker locator is used to find
            suitable values for the contour thresholds (may sometimes be
            inaccurate, use array for accuracy). If an array, the values
            represent the levels for the contours. Defaults to 6.
        image_interp : str
            The image interpolation to be used.
            All matplotlib options are accepted.
        average : float | None
            The time window around a given time to be used for averaging
            (seconds). For example, 0.01 would translate into window that
            starts 5 ms before and ends 5 ms after a given time point.
            Defaults to None, which means no averaging.
        head_pos : dict | None
            If None (default), the sensors are positioned such that they span
            the head circle. If dict, can have entries 'center' (tuple) and
            'scale' (tuple) for what the center and scale of the head
            should be relative to the electrode locations.

        Returns
        -------
        fig : instance of matplotlib.figure.Figure
           The figure.
        """
        from .. import EvokedArray
        if components is None:
            components = np.arange(self.n_components)

        # set sampling frequency to have 1 component per time point
        info = cp.deepcopy(info)
        info['sfreq'] = 1.
        # create an evoked
        patterns = EvokedArray(self.patterns_.T, info, tmin=0)
        # the call plot_topomap
        return patterns.plot_topomap(
            times=components, ch_type=ch_type, layout=layout,
            vmin=vmin, vmax=vmax, cmap=cmap, colorbar=colorbar, res=res,
            cbar_fmt=cbar_fmt, sensors=sensors,
            scalings=scalings, units=units, time_unit='s',
            time_format=name_format, size=size, show_names=show_names,
            title=title, mask_params=mask_params, mask=mask, outlines=outlines,
            contours=contours, image_interp=image_interp, show=show,
            average=average, head_pos=head_pos)

    def plot_filters(self, info, components=None, ch_type=None, layout=None,
                     vmin=None, vmax=None, cmap='RdBu_r', sensors=True,
                     colorbar=True, scalings=None, units='a.u.', res=64,
                     size=1, cbar_fmt='%3.1f', name_format='CSP%01d',
                     show=True, show_names=False, title=None, mask=None,
                     mask_params=None, outlines='head', contours=6,
                     image_interp='bilinear', average=None, head_pos=None):
        """Plot topographic filters of components.

        The filters are used to extract discriminant neural sources from
        the measured data (a.k.a. the backward model).

        Parameters
        ----------
        info : instance of Info
            Info dictionary of the epochs used for fitting.
            If not possible, consider using ``create_info``.
        components : float | array of floats | None.
           The patterns to plot. If None, n_components will be shown.
        ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg' | None
            The channel type to plot. For 'grad', the gradiometers are
            collected in pairs and the RMS for each pair is plotted.
            If None, then first available channel type from order given
            above is used. Defaults to None.
        layout : None | Layout
            Layout instance specifying sensor positions (does not need to be
            specified for Neuromag data). If possible, the correct layout file
            is inferred from the data; if no appropriate layout file was found
            the layout is automatically generated from the sensor locations.
        vmin : float | callable
            The value specifying the lower bound of the color range.
            If None, and vmax is None, -vmax is used. Else np.min(data).
            If callable, the output equals vmin(data).
        vmax : float | callable
            The value specifying the upper bound of the color range.
            If None, the maximum absolute value is used. If vmin is None,
            but vmax is not, defaults to np.min(data).
            If callable, the output equals vmax(data).
        cmap : matplotlib colormap | (colormap, bool) | 'interactive' | None
            Colormap to use. If tuple, the first value indicates the colormap
            to use and the second value is a boolean defining interactivity. In
            interactive mode the colors are adjustable by clicking and dragging
            the colorbar with left and right mouse button. Left mouse button
            moves the scale up and down and right mouse button adjusts the
            range. Hitting space bar resets the range. Up and down arrows can
            be used to change the colormap. If None, 'Reds' is used for all
            positive data, otherwise defaults to 'RdBu_r'. If 'interactive',
            translates to (None, True). Defaults to 'RdBu_r'.

            .. warning::  Interactive mode works smoothly only for a small
                amount of topomaps.

        sensors : bool | str
            Add markers for sensor locations to the plot. Accepts matplotlib
            plot format string (e.g., 'r+' for red plusses). If True,
            a circle will be used (via .add_artist). Defaults to True.
        colorbar : bool
            Plot a colorbar.
        scalings : dict | float | None
            The scalings of the channel types to be applied for plotting.
            If None, defaults to ``dict(eeg=1e6, grad=1e13, mag=1e15)``.
        units : dict | str | None
            The unit of the channel type used for colorbar label. If
            scale is None the unit is automatically determined.
        res : int
            The resolution of the topomap image (n pixels along each side).
        size : float
            Side length per topomap in inches.
        cbar_fmt : str
            String format for colorbar values.
        name_format : str
            String format for topomap values. Defaults to "CSP%01d"
        show : bool
            Show figure if True.
        show_names : bool | callable
            If True, show channel names on top of the map. If a callable is
            passed, channel names will be formatted using the callable; e.g.,
            to delete the prefix 'MEG ' from all channel names, pass the
            function lambda x: x.replace('MEG ', ''). If `mask` is not None,
            only significant sensors will be shown.
        title : str | None
            Title. If None (default), no title is displayed.
        mask : ndarray of bool, shape (n_channels, n_times) | None
            The channels to be marked as significant at a given time point.
            Indices set to `True` will be considered. Defaults to None.
        mask_params : dict | None
            Additional plotting parameters for plotting significant sensors.
            Default (None) equals::

                dict(marker='o', markerfacecolor='w', markeredgecolor='k',
                     linewidth=0, markersize=4)

        outlines : 'head' | 'skirt' | dict | None
            The outlines to be drawn. If 'head', the default head scheme will
            be drawn. If 'skirt' the head scheme will be drawn, but sensors are
            allowed to be plotted outside of the head circle. If dict, each key
            refers to a tuple of x and y positions, the values in 'mask_pos'
            will serve as image mask, and the 'autoshrink' (bool) field will
            trigger automated shrinking of the positions due to points outside
            the outline. Alternatively, a matplotlib patch object can be passed
            for advanced masking options, either directly or as a function that
            returns patches (required for multi-axis plots). If None, nothing
            will be drawn. Defaults to 'head'.
        contours : int | array of float
            The number of contour lines to draw. If 0, no contours will be
            drawn. When an integer, matplotlib ticker locator is used to find
            suitable values for the contour thresholds (may sometimes be
            inaccurate, use array for accuracy). If an array, the values
            represent the levels for the contours. Defaults to 6.
        image_interp : str
            The image interpolation to be used.
            All matplotlib options are accepted.
        average : float | None
            The time window around a given time to be used for averaging
            (seconds). For example, 0.01 would translate into window that
            starts 5 ms before and ends 5 ms after a given time point.
            Defaults to None, which means no averaging.
        head_pos : dict | None
            If None (default), the sensors are positioned such that they span
            the head circle. If dict, can have entries 'center' (tuple) and
            'scale' (tuple) for what the center and scale of the head
            should be relative to the electrode locations.

        Returns
        -------
        fig : instance of matplotlib.figure.Figure
           The figure.
        """
        from .. import EvokedArray
        if components is None:
            components = np.arange(self.n_components)

        # set sampling frequency to have 1 component per time point
        info = cp.deepcopy(info)
        info['sfreq'] = 1.
        # create an evoked
        filters = EvokedArray(self.filters_, info, tmin=0)
        # the call plot_topomap
        return filters.plot_topomap(
            times=components, ch_type=ch_type, layout=layout, vmin=vmin,
            vmax=vmax, cmap=cmap, colorbar=colorbar, res=res,
            cbar_fmt=cbar_fmt, sensors=sensors, scalings=scalings, units=units,
            time_unit='s', time_format=name_format, size=size,
            show_names=show_names, title=title, mask_params=mask_params,
            mask=mask, outlines=outlines, contours=contours,
            image_interp=image_interp, show=show, average=average,
            head_pos=head_pos)


def _ajd_pham(X, eps=1e-6, max_iter=15):
    """Approximate joint diagonalization based on Pham's algorithm.

    This is a direct implementation of the PHAM's AJD algorithm [1].

    Parameters
    ----------
    X : ndarray, shape (n_epochs, n_channels, n_channels)
        A set of covariance matrices to diagonalize.
    eps : float, defaults to 1e-6
        The tolerance for stopping criterion.
    max_iter : int, defaults to 1000
        The maximum number of iteration to reach convergence.

    Returns
    -------
    V : ndarray, shape (n_channels, n_channels)
        The diagonalizer.
    D : ndarray, shape (n_epochs, n_channels, n_channels)
        The set of quasi diagonal matrices.

    References
    ----------
    .. [1] Pham, Dinh Tuan. "Joint approximate diagonalization of positive
           definite Hermitian matrices." SIAM Journal on Matrix Analysis and
           Applications 22, no. 4 (2001): 1136-1152.

    """
    # Adapted from http://github.com/alexandrebarachant/pyRiemann
    n_epochs = X.shape[0]

    # Reshape input matrix
    A = np.concatenate(X, axis=0).T

    # Init variables
    n_times, n_m = A.shape
    V = np.eye(n_times)
    epsilon = n_times * (n_times - 1) * eps

    for it in range(max_iter):
        decr = 0
        for ii in range(1, n_times):
            for jj in range(ii):
                Ii = np.arange(ii, n_m, n_times)
                Ij = np.arange(jj, n_m, n_times)

                c1 = A[ii, Ii]
                c2 = A[jj, Ij]

                g12 = np.mean(A[ii, Ij] / c1)
                g21 = np.mean(A[ii, Ij] / c2)

                omega21 = np.mean(c1 / c2)
                omega12 = np.mean(c2 / c1)
                omega = np.sqrt(omega12 * omega21)

                tmp = np.sqrt(omega21 / omega12)
                tmp1 = (tmp * g12 + g21) / (omega + 1)
                tmp2 = (tmp * g12 - g21) / max(omega - 1, 1e-9)

                h12 = tmp1 + tmp2
                h21 = np.conj((tmp1 - tmp2) / tmp)

                decr += n_epochs * (g12 * np.conj(h12) + g21 * h21) / 2.0

                tmp = 1 + 1.j * 0.5 * np.imag(h12 * h21)
                tmp = np.real(tmp + np.sqrt(tmp ** 2 - h12 * h21))
                tau = np.array([[1, -h12 / tmp], [-h21 / tmp, 1]])

                A[[ii, jj], :] = np.dot(tau, A[[ii, jj], :])
                tmp = np.c_[A[:, Ii], A[:, Ij]]
                tmp = np.reshape(tmp, (n_times * n_epochs, 2), order='F')
                tmp = np.dot(tmp, tau.T)

                tmp = np.reshape(tmp, (n_times, n_epochs * 2), order='F')
                A[:, Ii] = tmp[:, :n_epochs]
                A[:, Ij] = tmp[:, n_epochs:]
                V[[ii, jj], :] = np.dot(tau, V[[ii, jj], :])
        if decr < epsilon:
            break
    D = np.reshape(A, (n_times, -1, n_times)).transpose(1, 0, 2)
    return V, D


class SPoC(CSP):
    """Implementation of the SPoC spatial filtering.

    Source Power Comodulation (SPoC) [1]_ allows to extract spatial filters and
    patterns by using a target (continuous) variable in the decomposition
    process in order to give preference to components whose power correlates
    with the target variable.

    SPoC can be seen as an extension of the CSP driven by a continuous
    variable rather than a discrete variable. Typical applications include
    extraction of motor patterns using EMG power or audio patterns using sound
    envelope.

    Parameters
    ----------
    n_components : int
        The number of components to decompose M/EEG signals.
    reg : float | str | None (default None)
        If not None (same as ``'empirical'``, default), allow
        regularization for covariance estimation.
        If float, shrinkage is used (0 <= shrinkage <= 1).
        For str options, ``reg`` will be passed to ``method`` to
        :func:`mne.compute_covariance`.
    log : None | bool (default None)
        If transform_into == 'average_power' and log is None or True, then
        applies a log transform to standardize the features, else the features
        are z-scored. If transform_into == 'csp_space', then log must be None.
    transform_into : {'average_power', 'csp_space'}
        If 'average_power' then self.transform will return the average power of
        each spatial filter. If 'csp_space' self.transform will return the data
        in CSP space. Defaults to 'average_power'.
    cov_method_params : dict | None
        Parameters to pass to :func:`mne.compute_covariance`.

        .. versionadded:: 0.16
    rank : None | int | dict | 'full'
        See :func:`mne.compute_covariance`.

        .. versionadded:: 0.17

    Attributes
    ----------
    filters_ : ndarray, shape (n_channels, n_channels)
        If fit, the SPoC spatial filters, else None.
    patterns_ : ndarray, shape (n_channels, n_channels)
        If fit, the SPoC spatial patterns, else None.
    mean_ : ndarray, shape (n_components,)
        If fit, the mean squared power for each component.
    std_ : ndarray, shape (n_components,)
        If fit, the std squared power for each component.

    See Also
    --------
    mne.preprocessing.Xdawn, CSP

    References
    ----------
    .. [1] Dahne, S., Meinecke, F. C., Haufe, S., Hohne, J., Tangermann, M.,
           Muller, K. R., & Nikulin, V. V. (2014). SPoC: a novel framework for
           relating the amplitude of neuronal oscillations to behaviorally
           relevant parameters. NeuroImage, 86, 111-122.
    """

    def __init__(self, n_components=4, reg=None, log=None,
                 transform_into='average_power', cov_method_params=None,
                 rank=''):
        """Init of SPoC."""
        super(SPoC, self).__init__(n_components=n_components, reg=reg, log=log,
                                   cov_est="epoch", norm_trace=False,
                                   transform_into=transform_into, rank=rank,
                                   cov_method_params=cov_method_params)
        # Covariance estimation have to be done on the single epoch level,
        # unlike CSP where covariance estimation can also be achieved through
        # concatenation of all epochs from the same class.
        delattr(self, 'cov_est')
        delattr(self, 'norm_trace')

    def fit(self, X, y):
        """Estimate the SPoC decomposition on epochs.

        Parameters
        ----------
        X : ndarray, shape (n_epochs, n_channels, n_times)
            The data on which to estimate the SPoC.
        y : array, shape (n_epochs,)
            The class for each epoch.

        Returns
        -------
        self : instance of SPoC
            Returns the modified instance.
        """
        if not isinstance(X, np.ndarray):
            raise ValueError("X should be of type ndarray (got %s)."
                             % type(X))
        self._check_Xy(X, y)

        if len(np.unique(y)) < 2:
            raise ValueError("y must have at least two distinct values.")

        # The following code is direclty copied from pyRiemann

        # Normalize target variable
        target = y.astype(np.float64)
        target -= target.mean()
        target /= target.std()

        n_epochs, n_channels = X.shape[:2]

        # Estimate single trial covariance
        covs = np.empty((n_epochs, n_channels, n_channels))
        for ii, epoch in enumerate(X):
            covs[ii] = _regularized_covariance(
                epoch, reg=self.reg, method_params=self.cov_method_params,
                rank=self.rank)

        C = covs.mean(0)
        Cz = np.mean(covs * target[:, np.newaxis, np.newaxis], axis=0)

        # solve eigenvalue decomposition
        evals, evecs = linalg.eigh(Cz, C)
        evals = evals.real
        evecs = evecs.real
        # sort vectors
        ix = np.argsort(np.abs(evals))[::-1]

        # sort eigenvectors
        evecs = evecs[:, ix].T

        # spatial patterns
        self.patterns_ = linalg.pinv(evecs).T  # n_channels x n_channels
        self.filters_ = evecs  # n_channels x n_channels

        pick_filters = self.filters_[:self.n_components]
        X = np.asarray([np.dot(pick_filters, epoch) for epoch in X])

        # compute features (mean band power)
        X = (X ** 2).mean(axis=-1)

        # To standardize features
        self.mean_ = X.mean(axis=0)
        self.std_ = X.std(axis=0)

        return self

    def transform(self, X):
        """Estimate epochs sources given the SPoC filters.

        Parameters
        ----------
        X : array, shape (n_epochs, n_channels, n_times)
            The data.

        Returns
        -------
        X : ndarray
            If self.transform_into == 'average_power' then returns the power of
            CSP features averaged over time and shape (n_epochs, n_sources)
            If self.transform_into == 'csp_space' then returns the data in CSP
            space and shape is (n_epochs, n_sources, n_times)
        """
        return super(SPoC, self).transform(X)