1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
|
# -*- coding: utf-8 -*-
# Authors: Chris Holdgraf <choldgraf@gmail.com>
# Eric Larson <larson.eric.d@gmail.com>
# License: BSD (3-clause)
import numbers
import numpy as np
from scipy import linalg
from .base import get_coef, BaseEstimator, _check_estimator
from .time_delaying_ridge import TimeDelayingRidge
from ..fixes import is_regressor
from ..externals.six import string_types
from ..utils import _validate_type
class ReceptiveField(BaseEstimator):
"""Fit a receptive field model.
This allows you to fit an encoding model (stimulus to brain) or a decoding
model (brain to stimulus) using time-lagged input features (for example, a
spectro- or spatio-temporal receptive field, or STRF).
Parameters
----------
tmin : float
The starting lag, in seconds (or samples if ``sfreq`` == 1).
tmax : float
The ending lag, in seconds (or samples if ``sfreq`` == 1).
Must be >= tmin.
sfreq : float
The sampling frequency used to convert times into samples.
feature_names : array, shape (n_features,) | None
Names for input features to the model. If None, feature names will
be auto-generated from the shape of input data after running `fit`.
estimator : instance of sklearn estimator | float | None
The model used in fitting inputs and outputs. This can be any
scikit-learn-style model that contains a fit and predict method. If a
float is passed, it will be interpreted as the `alpha` parameter
to be passed to a Ridge regression model. If `None`, then a Ridge
regression model with an alpha of 0 will be used.
fit_intercept : bool | None
If True (default), the sample mean is removed before fitting.
If ``estimator`` is a :class:`sklearn.base.BaseEstimator`,
this must be None or match ``estimator.fit_intercept``.
scoring : ['r2', 'corrcoef']
Defines how predictions will be scored. Currently must be one of
'r2' (coefficient of determination) or 'corrcoef' (the correlation
coefficient).
patterns : bool
If True, inverse coefficients will be computed upon fitting using the
covariance matrix of the inputs, and the cross-covariance of the
inputs/outputs, according to [5]_. Defaults to False.
Attributes
----------
coef_ : array, shape ([n_outputs, ]n_features, n_delays)
The coefficients from the model fit, reshaped for easy visualization.
During :meth:`mne.decoding.ReceptiveField.fit`, if ``y`` has one
dimension (time), the ``n_outputs`` dimension here is omitted.
patterns_ : array, shape ([n_outputs, ]n_features, n_delays)
If fit, the inverted coefficients from the model.
delays_ : array, shape (n_delays,), dtype int
The delays used to fit the model, in indices. To return the delays
in seconds, use ``self.delays_ / self.sfreq``
valid_samples_ : slice
The rows to keep during model fitting after removing rows with
missing values due to time delaying. This can be used to get an
output equivalent to using :func:`numpy.convolve` or
:func:`numpy.correlate` with ``mode='valid'``.
See Also
--------
mne.decoding.TimeDelayingRidge
Notes
-----
For a causal system, the encoding model will have significant
non-zero values only at positive lags. In other words, lags point
backward in time relative to the input, so positive lags correspond
to previous input time samples, while negative lags correspond to
future input time samples.
References
----------
.. [1] Theunissen, F. E. et al. Estimating spatio-temporal receptive
fields of auditory and visual neurons from their responses to
natural stimuli. Network 12, 289-316 (2001).
.. [2] Willmore, B. & Smyth, D. Methods for first-order kernel
estimation: simple-cell receptive fields from responses to
natural scenes. Network 14, 553-77 (2003).
.. [3] Crosse, M. J., Di Liberto, G. M., Bednar, A. & Lalor, E. C. (2016).
The Multivariate Temporal Response Function (mTRF) Toolbox:
A MATLAB Toolbox for Relating Neural Signals to Continuous Stimuli.
Frontiers in Human Neuroscience 10, 604.
doi:10.3389/fnhum.2016.00604
.. [4] Holdgraf, C. R. et al. Rapid tuning shifts in human auditory cortex
enhance speech intelligibility. Nature Communications,
7, 13654 (2016). doi:10.1038/ncomms13654
.. [5] Haufe, S., Meinecke, F., Goergen, K., Daehne, S., Haynes, J.-D.,
Blankertz, B., & Biessmann, F. (2014). On the interpretation of
weight vectors of linear models in multivariate neuroimaging.
NeuroImage, 87, 96-110. doi:10.1016/j.neuroimage.2013.10.067
"""
def __init__(self, tmin, tmax, sfreq, feature_names=None, estimator=None,
fit_intercept=None, scoring='r2',
patterns=False): # noqa: D102
self.feature_names = feature_names
self.sfreq = float(sfreq)
self.tmin = tmin
self.tmax = tmax
self.estimator = 0. if estimator is None else estimator
self.fit_intercept = fit_intercept
self.scoring = scoring
self.patterns = patterns
def __repr__(self): # noqa: D105
s = "tmin, tmax : (%.3f, %.3f), " % (self.tmin, self.tmax)
estimator = self.estimator
if not isinstance(estimator, string_types):
estimator = type(self.estimator)
s += "estimator : %s, " % (estimator,)
if hasattr(self, 'coef_'):
feats = self.feature_names
if len(feats) == 1:
s += "feature: %s, " % feats[0]
else:
s += "features : [%s, ..., %s], " % (feats[0], feats[-1])
s += "fit: True"
else:
s += "fit: False"
if hasattr(self, 'scores_'):
s += "scored (%s)" % self.scoring
return "<ReceptiveField | %s>" % s
def _delay_and_reshape(self, X, y=None):
"""Delay and reshape the variables."""
if not isinstance(self.estimator_, TimeDelayingRidge):
# X is now shape (n_times, n_epochs, n_feats, n_delays)
X = _delay_time_series(X, self.tmin, self.tmax, self.sfreq,
fill_mean=self.fit_intercept)
X = _reshape_for_est(X)
# Concat times + epochs
if y is not None:
y = y.reshape(-1, y.shape[-1], order='F')
return X, y
def fit(self, X, y):
"""Fit a receptive field model.
Parameters
----------
X : array, shape (n_times[, n_epochs], n_features)
The input features for the model.
y : array, shape (n_times[, n_epochs][, n_outputs])
The output features for the model.
Returns
-------
self : instance
The instance so you can chain operations.
"""
if self.scoring not in _SCORERS.keys():
raise ValueError('scoring must be one of %s, got'
'%s ' % (sorted(_SCORERS.keys()), self.scoring))
from sklearn.base import clone
X, y, _, self._y_dim = self._check_dimensions(X, y)
if self.tmin > self.tmax:
raise ValueError('tmin (%s) must be at most tmax (%s)'
% (self.tmin, self.tmax))
# Initialize delays
self.delays_ = _times_to_delays(self.tmin, self.tmax, self.sfreq)
# Define the slice that we should use in the middle
self.valid_samples_ = _delays_to_slice(self.delays_)
if isinstance(self.estimator, numbers.Real):
if self.fit_intercept is None:
self.fit_intercept = True
estimator = TimeDelayingRidge(self.tmin, self.tmax, self.sfreq,
alpha=self.estimator,
fit_intercept=self.fit_intercept)
elif is_regressor(self.estimator):
estimator = clone(self.estimator)
if self.fit_intercept is not None and \
estimator.fit_intercept != self.fit_intercept:
raise ValueError(
'Estimator fit_intercept (%s) != initialization '
'fit_intercept (%s), initialize ReceptiveField with the '
'same fit_intercept value or use fit_intercept=None'
% (estimator.fit_intercept, self.fit_itercept))
self.fit_intercept = estimator.fit_intercept
else:
raise ValueError('`estimator` must be a float or an instance'
' of `BaseEstimator`,'
' got type %s.' % type(self.estimator))
self.estimator_ = estimator
del estimator
_check_estimator(self.estimator_)
# Create input features
n_times, n_epochs, n_feats = X.shape
n_outputs = y.shape[-1]
n_delays = len(self.delays_)
# Update feature names if we have none
if self.feature_names is None:
self.feature_names = ['feature_%s' % ii for ii in range(n_feats)]
if len(self.feature_names) != n_feats:
raise ValueError('n_features in X does not match feature names '
'(%s != %s)' % (n_feats, len(self.feature_names)))
# Create input features
X, y = self._delay_and_reshape(X, y)
self.estimator_.fit(X, y)
coef = get_coef(self.estimator_, 'coef_') # (n_targets, n_features)
shape = [n_feats, n_delays]
if self._y_dim > 1:
shape.insert(0, -1)
self.coef_ = coef.reshape(shape)
# Inverse-transform model weights
if self.patterns:
if isinstance(self.estimator_, TimeDelayingRidge):
cov_ = self.estimator_.cov_ / float(n_times * n_epochs - 1)
y = y.reshape(-1, y.shape[-1], order='F')
else:
X = X - X.mean(0, keepdims=True)
cov_ = np.cov(X.T)
del X
# Inverse output covariance
if y.ndim == 2 and y.shape[1] != 1:
y = y - y.mean(0, keepdims=True)
inv_Y = linalg.pinv(np.cov(y.T))
else:
inv_Y = 1. / float(n_times * n_epochs - 1)
del y
# Inverse coef according to Haufe's method
# patterns has shape (n_feats * n_delays, n_outputs)
coef = np.reshape(self.coef_, (n_feats * n_delays, n_outputs))
patterns = cov_.dot(coef.dot(inv_Y))
self.patterns_ = patterns.reshape(shape)
return self
def predict(self, X):
"""Generate predictions with a receptive field.
Parameters
----------
X : array, shape (n_times[, n_epochs], n_channels)
The input features for the model.
Returns
-------
y_pred : array, shape (n_times[, n_epochs][, n_outputs])
The output predictions. "Note that valid samples (those
unaffected by edge artifacts during the time delaying step) can
be obtained using ``y_pred[rf.valid_samples_]``.
"""
if not hasattr(self, 'delays_'):
raise ValueError('Estimator has not been fit yet.')
X, _, X_dim = self._check_dimensions(X, None, predict=True)[:3]
del _
# convert to sklearn and back
pred_shape = X.shape[:-1]
if self._y_dim > 1:
pred_shape = pred_shape + (self.coef_.shape[0],)
X, _ = self._delay_and_reshape(X)
y_pred = self.estimator_.predict(X)
y_pred = y_pred.reshape(pred_shape, order='F')
shape = list(y_pred.shape)
if X_dim <= 2:
shape.pop(1) # epochs
extra = 0
else:
extra = 1
shape = shape[:self._y_dim + extra]
y_pred.shape = shape
return y_pred
def score(self, X, y):
"""Score predictions generated with a receptive field.
This calls ``self.predict``, then masks the output of this
and ``y` with ``self.mask_prediction_``. Finally, it passes
this to a :mod:`sklearn.metrics` scorer.
Parameters
----------
X : array, shape (n_times[, n_epochs], n_channels)
The input features for the model.
y : array, shape (n_times[, n_epochs][, n_outputs])
Used for scikit-learn compatibility.
Returns
-------
scores : list of float, shape (n_outputs,)
The scores estimated by the model for each output (e.g. mean
R2 of ``predict(X)``).
"""
# Create our scoring object
scorer_ = _SCORERS[self.scoring]
# Generate predictions, then reshape so we can mask time
X, y = self._check_dimensions(X, y, predict=True)[:2]
n_times, n_epochs, n_outputs = y.shape
y_pred = self.predict(X)
y_pred = y_pred[self.valid_samples_]
y = y[self.valid_samples_]
# Re-vectorize and call scorer
y = y.reshape([-1, n_outputs], order='F')
y_pred = y_pred.reshape([-1, n_outputs], order='F')
assert y.shape == y_pred.shape
scores = scorer_(y, y_pred, multioutput='raw_values')
return scores
def _check_dimensions(self, X, y, predict=False):
X_dim = X.ndim
y_dim = y.ndim if y is not None else 0
if X_dim == 2:
# Ensure we have a 3D input by adding singleton epochs dimension
X = X[:, np.newaxis, :]
if y is not None:
if y_dim == 1:
y = y[:, np.newaxis, np.newaxis] # epochs, outputs
elif y_dim == 2:
y = y[:, np.newaxis, :] # epochs
else:
raise ValueError('y must be shape (n_times[, n_epochs]'
'[,n_outputs], got %s' % (y.shape,))
elif X.ndim == 3:
if y is not None:
if y.ndim == 2:
y = y[:, :, np.newaxis] # Add an outputs dim
elif y.ndim != 3:
raise ValueError('If X has 3 dimensions, '
'y must have 2 or 3 dimensions')
else:
raise ValueError('X must be shape (n_times[, n_epochs],'
' n_features), got %s' % (X.shape,))
if y is not None:
if X.shape[0] != y.shape[0]:
raise ValueError('X any y do not have the same n_times\n'
'%s != %s' % (X.shape[0], y.shape[0]))
if X.shape[1] != y.shape[1]:
raise ValueError('X any y do not have the same n_epochs\n'
'%s != %s' % (X.shape[1], y.shape[1]))
if predict and y.shape[-1] != len(self.estimator_.coef_):
raise ValueError('Number of outputs does not match'
' estimator coefficients dimensions')
return X, y, X_dim, y_dim
def _delay_time_series(X, tmin, tmax, sfreq, fill_mean=False):
"""Return a time-lagged input time series.
Parameters
----------
X : array, shape (n_times[, n_epochs], n_features)
The time series to delay. Must be 2D or 3D.
tmin : int | float
The starting lag.
tmax : int | float
The ending lag.
Must be >= tmin.
sfreq : int | float
The sampling frequency of the series. Defaults to 1.0.
fill_mean : bool
If True, the fill value will be the mean along the time dimension
of the feature, and each cropped and delayed segment of data
will be shifted to have the same mean value (ensuring that mean
subtraction works properly). If False, the fill value will be zero.
Returns
-------
delayed : array, shape(n_times[, n_epochs][, n_features], n_delays)
The delayed data. It has the same shape as X, with an extra dimension
appended to the end.
Examples
--------
>>> tmin, tmax = -0.1, 0.2
>>> sfreq = 10.
>>> x = np.arange(1, 6)
>>> x_del = _delay_time_series(x, tmin, tmax, sfreq)
>>> print(x_del) # doctest:+SKIP
[[2. 1. 0. 0.]
[3. 2. 1. 0.]
[4. 3. 2. 1.]
[5. 4. 3. 2.]
[0. 5. 4. 3.]]
"""
_check_delayer_params(tmin, tmax, sfreq)
delays = _times_to_delays(tmin, tmax, sfreq)
# Iterate through indices and append
delayed = np.zeros(X.shape + (len(delays),))
if fill_mean:
mean_value = X.mean(axis=0)
if X.ndim == 3:
mean_value = np.mean(mean_value, axis=0)
delayed[:] = mean_value[:, np.newaxis]
for ii, ix_delay in enumerate(delays):
# Create zeros to populate w/ delays
if ix_delay < 0:
out = delayed[:ix_delay, ..., ii]
use_X = X[-ix_delay:]
elif ix_delay > 0:
out = delayed[ix_delay:, ..., ii]
use_X = X[:-ix_delay]
else: # == 0
out = delayed[..., ii]
use_X = X
out[:] = use_X
if fill_mean:
out[:] += (mean_value - use_X.mean(axis=0))
return delayed
def _times_to_delays(tmin, tmax, sfreq):
"""Convert a tmin/tmax in seconds to delays."""
# Convert seconds to samples
delays = np.arange(int(np.round(tmin * sfreq)),
int(np.round(tmax * sfreq) + 1))
return delays
def _delays_to_slice(delays):
"""Find the slice to be taken in order to remove missing values."""
# Negative values == cut off rows at the end
min_delay = None if delays[-1] <= 0 else delays[-1]
# Positive values == cut off rows at the end
max_delay = None if delays[0] >= 0 else delays[0]
return slice(min_delay, max_delay)
def _check_delayer_params(tmin, tmax, sfreq):
"""Check delayer input parameters. For future custom delay support."""
_validate_type(sfreq, 'numeric', '`sfreq`')
sfreq = float(sfreq)
for tlim in (tmin, tmax):
_validate_type(tlim, 'numeric', 'tmin/tmax')
if not tmin <= tmax:
raise ValueError('tmin must be <= tmax')
def _reshape_for_est(X_del):
"""Convert X_del to a sklearn-compatible shape."""
n_times, n_epochs, n_feats, n_delays = X_del.shape
X_del = X_del.reshape(n_times, n_epochs, -1) # concatenate feats
X_del = X_del.reshape(n_times * n_epochs, -1, order='F')
return X_del
# Create a correlation scikit-learn-style scorer
def _corr_score(y_true, y, multioutput=None):
from scipy.stats import pearsonr
assert multioutput == 'raw_values'
for this_y in (y_true, y):
if this_y.ndim != 2:
raise ValueError('inputs must shape (samples, outputs), got %s'
% (this_y.shape,))
return np.array([pearsonr(y_true[:, ii], y[:, ii])[0]
for ii in range(y.shape[-1])])
def _r2_score(y_true, y, multioutput=None):
from sklearn.metrics import r2_score
return r2_score(y_true, y, multioutput=multioutput)
_SCORERS = {'r2': _r2_score, 'corrcoef': _corr_score}
|