File: search_light.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (700 lines) | stat: -rw-r--r-- 27,898 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
# Author: Jean-Remi King <jeanremi.king@gmail.com>
#
# License: BSD (3-clause)

import numpy as np

from .mixin import TransformerMixin
from .base import BaseEstimator, _check_estimator
from ..parallel import parallel_func
from ..utils import (_validate_type, array_split_idx, ProgressBar,
                     verbose)


class SlidingEstimator(BaseEstimator, TransformerMixin):
    """Search Light.

    Fit, predict and score a series of models to each subset of the dataset
    along the last dimension. Each entry in the last dimension is referred
    to as a task.

    Parameters
    ----------
    base_estimator : object
        The base estimator to iteratively fit on a subset of the dataset.
    scoring : callable, string, defaults to None
        Score function (or loss function) with signature
        ``score_func(y, y_pred, **kwargs)``.
        Note that the predict_method is automatically identified if scoring is
        a string (e.g. scoring="roc_auc" calls predict_proba) but is not
        automatically set if scoring is a callable (e.g.
        scoring=sklearn.metrics.roc_auc_score).
    n_jobs : int, optional (default=1)
        The number of jobs to run in parallel for both `fit` and `predict`.
        If -1, then the number of jobs is set to the number of cores.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see
        :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
        for more).

    Attributes
    ----------
    estimators_ : array-like, shape (n_tasks,)
        List of fitted scikit-learn estimators (one per task).
    """

    def __init__(self, base_estimator, scoring=None, n_jobs=1,
                 verbose=None):  # noqa: D102
        _check_estimator(base_estimator)
        self._estimator_type = getattr(base_estimator, "_estimator_type", None)
        self.base_estimator = base_estimator
        self.n_jobs = n_jobs
        self.scoring = scoring
        self.verbose = verbose

        _validate_type(self.n_jobs, 'int', 'n_jobs')

    def __repr__(self):  # noqa: D105
        repr_str = '<' + super(SlidingEstimator, self).__repr__()
        if hasattr(self, 'estimators_'):
            repr_str = repr_str[:-1]
            repr_str += ', fitted with %i estimators' % len(self.estimators_)
        return repr_str + '>'

    @verbose  # to use class value
    def fit(self, X, y, **fit_params):
        """Fit a series of independent estimators to the dataset.

        Parameters
        ----------
        X : array, shape (n_samples, nd_features, n_tasks)
            The training input samples. For each data slice, a clone estimator
            is fitted independently. The feature dimension can be
            multidimensional e.g.
            X.shape = (n_samples, n_features_1, n_features_2, n_tasks)
        y : array, shape (n_samples,) | (n_samples, n_targets)
            The target values.
        **fit_params : dict of string -> object
            Parameters to pass to the fit method of the estimator.

        Returns
        -------
        self : object
            Return self.
        """
        self._check_Xy(X, y)
        self.estimators_ = list()
        self.fit_params = fit_params
        # For fitting, the parallelization is across estimators.
        parallel, p_func, n_jobs = parallel_func(_sl_fit, self.n_jobs,
                                                 verbose=False)
        n_jobs = min(n_jobs, X.shape[-1])
        mesg = 'Fitting %s' % (self.__class__.__name__,)
        with ProgressBar(X.shape[-1], verbose_bool='auto',
                         mesg=mesg) as pb:
            estimators = parallel(
                p_func(self.base_estimator, split, y, pb.subset(pb_idx),
                       **fit_params)
                for pb_idx, split in array_split_idx(X, n_jobs, axis=-1))

        # Each parallel job can have a different number of training estimators
        # We can't directly concatenate them because of sklearn's Bagging API
        # (see scikit-learn #9720)
        self.estimators_ = np.empty(X.shape[-1], dtype=object)
        idx = 0
        for job_estimators in estimators:
            for est in job_estimators:
                self.estimators_[idx] = est
                idx += 1
        return self

    def fit_transform(self, X, y, **fit_params):
        """Fit and transform a series of independent estimators to the dataset.

        Parameters
        ----------
        X : array, shape (n_samples, nd_features, n_tasks)
            The training input samples. For each task, a clone estimator
            is fitted independently. The feature dimension can be
            multidimensional e.g.
            X.shape = (n_samples, n_features_1, n_features_2, n_estimators)
        y : array, shape (n_samples,) | (n_samples, n_targets)
            The target values.
        **fit_params : dict of string -> object
            Parameters to pass to the fit method of the estimator.

        Returns
        -------
        y_pred : array, shape (n_samples, n_tasks) | (n_samples, n_tasks, n_targets)
            The predicted values for each estimator.
        """  # noqa: E501
        return self.fit(X, y, **fit_params).transform(X)

    @verbose  # to use the class value
    def _transform(self, X, method):
        """Aux. function to make parallel predictions/transformation."""
        self._check_Xy(X)
        method = _check_method(self.base_estimator, method)
        if X.shape[-1] != len(self.estimators_):
            raise ValueError('The number of estimators does not match '
                             'X.shape[-1]')
        # For predictions/transforms the parallelization is across the data and
        # not across the estimators to avoid memory load.
        mesg = 'Transforming %s' % (self.__class__.__name__,)
        parallel, p_func, n_jobs = parallel_func(
            _sl_transform, self.n_jobs, verbose=False)
        n_jobs = min(n_jobs, X.shape[-1])
        X_splits = np.array_split(X, n_jobs, axis=-1)
        idx, est_splits = zip(*array_split_idx(self.estimators_, n_jobs))
        with ProgressBar(X.shape[-1], verbose_bool='auto', mesg=mesg) as pb:
            y_pred = parallel(p_func(est, x, method, pb.subset(pb_idx))
                              for pb_idx, est, x in zip(
                                  idx, est_splits, X_splits))

        y_pred = np.concatenate(y_pred, axis=1)
        return y_pred

    def transform(self, X):
        """Transform each data slice/task with a series of independent estimators.

        The number of tasks in X should match the number of tasks/estimators
        given at fit time.

        Parameters
        ----------
        X : array, shape (n_samples, nd_features, n_tasks)
            The input samples. For each data slice/task, the corresponding
            estimator makes a transformation of the data, e.g.
            ``[estimators[ii].transform(X[..., ii]) for ii in range(n_estimators)]``.
            The feature dimension can be multidimensional e.g.
            X.shape = (n_samples, n_features_1, n_features_2, n_tasks)

        Returns
        -------
        Xt : array, shape (n_samples, n_estimators)
            The transformed values generated by each estimator.
        """  # noqa: E501
        return self._transform(X, 'transform')

    def predict(self, X):
        """Predict each data slice/task with a series of independent estimators.

        The number of tasks in X should match the number of tasks/estimators
        given at fit time.

        Parameters
        ----------
        X : array, shape (n_samples, nd_features, n_tasks)
            The input samples. For each data slice, the corresponding estimator
            makes the sample predictions, e.g.:
            ``[estimators[ii].predict(X[..., ii]) for ii in range(n_estimators)]``.
            The feature dimension can be multidimensional e.g.
            X.shape = (n_samples, n_features_1, n_features_2, n_tasks)

        Returns
        -------
        y_pred : array, shape (n_samples, n_estimators) | (n_samples, n_tasks, n_targets)
            Predicted values for each estimator/data slice.
        """  # noqa: E501
        return self._transform(X, 'predict')

    def predict_proba(self, X):
        """Predict each data slice with a series of independent estimators.

        The number of tasks in X should match the number of tasks/estimators
        given at fit time.

        Parameters
        ----------
        X : array, shape (n_samples, nd_features, n_tasks)
            The input samples. For each data slice, the corresponding estimator
            makes the sample probabilistic predictions, e.g.:
            ``[estimators[ii].predict_proba(X[..., ii]) for ii in range(n_estimators)]``.
            The feature dimension can be multidimensional e.g.
            X.shape = (n_samples, n_features_1, n_features_2, n_tasks)

        Returns
        -------
        y_pred : array, shape (n_samples, n_tasks, n_classes)
            Predicted probabilities for each estimator/data slice/task.
        """  # noqa: E501
        return self._transform(X, 'predict_proba')

    def decision_function(self, X):
        """Estimate distances of each data slice to the hyperplanes.

        Parameters
        ----------
        X : array, shape (n_samples, nd_features, n_tasks)
            The input samples. For each data slice, the corresponding estimator
            outputs the distance to the hyperplane, e.g.:
            ``[estimators[ii].decision_function(X[..., ii]) for ii in range(n_estimators)]``.
            The feature dimension can be multidimensional e.g.
            X.shape = (n_samples, n_features_1, n_features_2, n_estimators)

        Returns
        -------
        y_pred : array, shape (n_samples, n_estimators, n_classes * (n_classes-1) // 2)
            Predicted distances for each estimator/data slice.

        Notes
        -----
        This requires base_estimator to have a ``decision_function`` method.
        """  # noqa: E501
        return self._transform(X, 'decision_function')

    def _check_Xy(self, X, y=None):
        """Aux. function to check input data."""
        if y is not None:
            if len(X) != len(y) or len(y) < 1:
                raise ValueError('X and y must have the same length.')
        if X.ndim < 3:
            raise ValueError('X must have at least 3 dimensions.')

    def score(self, X, y):
        """Score each estimator on each task.

        The number of tasks in X should match the number of tasks/estimators
        given at fit time, i.e. we need
        ``X.shape[-1] == len(self.estimators_)``.

        Parameters
        ----------
        X : array, shape (n_samples, nd_features, n_tasks)
            The input samples. For each data slice, the corresponding estimator
            scores the prediction, e.g.:
            ``[estimators[ii].score(X[..., ii], y) for ii in range(n_estimators)]``.
            The feature dimension can be multidimensional e.g.
            X.shape = (n_samples, n_features_1, n_features_2, n_tasks)

        y : array, shape (n_samples,) | (n_samples, n_targets)
            The target values.

        Returns
        -------
        score : array, shape (n_samples, n_estimators)
            Score for each estimator/task.
        """  # noqa: E501
        from sklearn.metrics.scorer import check_scoring

        self._check_Xy(X)
        if X.shape[-1] != len(self.estimators_):
            raise ValueError('The number of estimators does not match '
                             'X.shape[-1]')

        scoring = check_scoring(self.base_estimator, self.scoring)
        y = _fix_auc(scoring, y)

        # For predictions/transforms the parallelization is across the data and
        # not across the estimators to avoid memory load.
        parallel, p_func, n_jobs = parallel_func(_sl_score, self.n_jobs)
        n_jobs = min(n_jobs, X.shape[-1])
        X_splits = np.array_split(X, n_jobs, axis=-1)
        est_splits = np.array_split(self.estimators_, n_jobs)
        score = parallel(p_func(est, scoring, x, y)
                         for (est, x) in zip(est_splits, X_splits))

        score = np.concatenate(score, axis=0)
        return score

    @property
    def classes_(self):
        if not hasattr(self.estimators_[0], 'classes_'):
            raise AttributeError('classes_ attribute available only if '
                                 'base_estimator has it, and estimator %s does'
                                 ' not' % (self.estimators_[0],))
        return self.estimators_[0].classes_


def _sl_fit(estimator, X, y, pb, **fit_params):
    """Aux. function to fit SlidingEstimator in parallel.

    Fit a clone estimator to each slice of data.

    Parameters
    ----------
    base_estimator : object
        The base estimator to iteratively fit on a subset of the dataset.
    X : array, shape (n_samples, nd_features, n_estimators)
        The target data. The feature dimension can be multidimensional e.g.
        X.shape = (n_samples, n_features_1, n_features_2, n_estimators)
    y : array, shape (n_sample, )
        The target values.
    fit_params : dict | None
        Parameters to pass to the fit method of the estimator.

    Returns
    -------
    estimators_ : list of estimators
        The fitted estimators.
    """
    from sklearn.base import clone
    estimators_ = list()
    for ii in range(X.shape[-1]):
        est = clone(estimator)
        est.fit(X[..., ii], y, **fit_params)
        estimators_.append(est)
        pb.update(ii + 1)
    return estimators_


def _sl_transform(estimators, X, method, pb):
    """Aux. function to transform SlidingEstimator in parallel.

    Applies transform/predict/decision_function etc for each slice of data.

    Parameters
    ----------
    estimators : list of estimators
        The fitted estimators.
    X : array, shape (n_samples, nd_features, n_estimators)
        The target data. The feature dimension can be multidimensional e.g.
        X.shape = (n_samples, n_features_1, n_features_2, n_estimators)
    method : str
        The estimator method to use (e.g. 'predict', 'transform').

    Returns
    -------
    y_pred : array, shape (n_samples, n_estimators, n_classes * (n_classes-1) // 2)
        The transformations for each slice of data.
    """  # noqa: E501
    for ii, est in enumerate(estimators):
        transform = getattr(est, method)
        _y_pred = transform(X[..., ii])
        # Initialize array of predictions on the first transform iteration
        if ii == 0:
            y_pred = _sl_init_pred(_y_pred, X)
        y_pred[:, ii, ...] = _y_pred
        pb.update(ii + 1)
    return y_pred


def _sl_init_pred(y_pred, X):
    """Aux. function to SlidingEstimator to initialize y_pred."""
    n_sample, n_tasks = X.shape[0], X.shape[-1]
    y_pred = np.zeros((n_sample, n_tasks) + y_pred.shape[1:], y_pred.dtype)
    return y_pred


def _sl_score(estimators, scoring, X, y):
    """Aux. function to score SlidingEstimator in parallel.

    Predict and score each slice of data.

    Parameters
    ----------
    estimators : list, shape (n_tasks,)
        The fitted estimators.
    X : array, shape (n_samples, nd_features, n_tasks)
        The target data. The feature dimension can be multidimensional e.g.
        X.shape = (n_samples, n_features_1, n_features_2, n_tasks)
    scoring : callable, string or None
        If scoring is None (default), the predictions are internally
        generated by estimator.score(). Else, we must first get the
        predictions to pass them to ad-hoc scorer.
    y : array, shape (n_samples,) | (n_samples, n_targets)
        The target values.

    Returns
    -------
    score : array, shape (n_tasks,)
        The score for each task / slice of data.
    """
    n_tasks = X.shape[-1]
    score = np.zeros(n_tasks)
    for ii, est in enumerate(estimators):
        score[ii] = scoring(est, X[..., ii], y)
    return score


def _check_method(estimator, method):
    """Check that an estimator has the method attribute.

    If method == 'transform'  and estimator does not have 'transform', use
    'predict' instead.
    """
    if method == 'transform' and not hasattr(estimator, 'transform'):
        method = 'predict'
    if not hasattr(estimator, method):
        ValueError('base_estimator does not have `%s` method.' % method)
    return method


class GeneralizingEstimator(SlidingEstimator):
    """Generalization Light.

    Fit a search-light along the last dimension and use them to apply a
    systematic cross-tasks generalization.

    Parameters
    ----------
    base_estimator : object
        The base estimator to iteratively fit on a subset of the dataset.
    scoring : callable | string | None
        Score function (or loss function) with signature
        ``score_func(y, y_pred, **kwargs)``.
        Note that the predict_method is automatically identified if scoring is
        a string (e.g. scoring="roc_auc" calls predict_proba) but is not
        automatically set if scoring is a callable (e.g.
        scoring=sklearn.metrics.roc_auc_score).
    n_jobs : int, optional (default=1)
        The number of jobs to run in parallel for both `fit` and `predict`.
        If -1, then the number of jobs is set to the number of cores.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see
        :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
        for more).
    """

    def __repr__(self):  # noqa: D105
        repr_str = super(GeneralizingEstimator, self).__repr__()
        if hasattr(self, 'estimators_'):
            repr_str = repr_str[:-1]
            repr_str += ', fitted with %i estimators>' % len(self.estimators_)
        return repr_str

    @verbose  # use class value
    def _transform(self, X, method):
        """Aux. function to make parallel predictions/transformation."""
        self._check_Xy(X)
        method = _check_method(self.base_estimator, method)
        mesg = 'Transforming %s' % (self.__class__.__name__,)
        parallel, p_func, n_jobs = parallel_func(
            _gl_transform, self.n_jobs, verbose=False)
        n_jobs = min(n_jobs, X.shape[-1])
        with ProgressBar(X.shape[-1] * len(self.estimators_),
                         verbose_bool='auto', mesg=mesg) as pb:
            y_pred = parallel(
                p_func(self.estimators_, x_split, method, pb.subset(pb_idx))
                for pb_idx, x_split in array_split_idx(
                    X, n_jobs, axis=-1, n_per_split=len(self.estimators_)))

        y_pred = np.concatenate(y_pred, axis=2)
        return y_pred

    def transform(self, X):
        """Transform each data slice with all possible estimators.

        Parameters
        ----------
        X : array, shape (n_samples, nd_features, n_slices)
            The input samples. For estimator the corresponding data slice is
            used to make a transformation. The feature dimension can be
            multidimensional e.g.
            X.shape = (n_samples, n_features_1, n_features_2, n_estimators)

        Returns
        -------
        Xt : array, shape (n_samples, n_estimators, n_slices)
            The transformed values generated by each estimator.
        """
        return self._transform(X, 'transform')

    def predict(self, X):
        """Predict each data slice with all possible estimators.

        Parameters
        ----------
        X : array, shape (n_samples, nd_features, n_slices)
            The training input samples. For each data slice, a fitted estimator
            predicts each slice of the data independently. The feature
            dimension can be multidimensional e.g.
            X.shape = (n_samples, n_features_1, n_features_2, n_estimators)

        Returns
        -------
        y_pred : array, shape (n_samples, n_estimators, n_slices) | (n_samples, n_estimators, n_slices, n_targets)
            The predicted values for each estimator.
        """  # noqa: E501
        return self._transform(X, 'predict')

    def predict_proba(self, X):
        """Estimate probabilistic estimates of each data slice with all possible estimators.

        Parameters
        ----------
        X : array, shape (n_samples, nd_features, n_slices)
            The training input samples. For each data slice, a fitted estimator
            predicts a slice of the data. The feature dimension can be
            multidimensional e.g.
            ``X.shape = (n_samples, n_features_1, n_features_2, n_estimators)``.

        Returns
        -------
        y_pred : array, shape (n_samples, n_estimators, n_slices, n_classes)
            The predicted values for each estimator.

        Notes
        -----
        This requires base_estimator to have a `predict_proba` method.
        """  # noqa: E501
        return self._transform(X, 'predict_proba')

    def decision_function(self, X):
        """Estimate distances of each data slice to all hyperplanes.

        Parameters
        ----------
        X : array, shape (n_samples, nd_features, n_slices)
            The training input samples. Each estimator outputs the distance to
            its hyperplane, e.g.:
            ``[estimators[ii].decision_function(X[..., ii]) for ii in range(n_estimators)]``.
            The feature dimension can be multidimensional e.g.
            ``X.shape = (n_samples, n_features_1, n_features_2, n_estimators)``.

        Returns
        -------
        y_pred : array, shape (n_samples, n_estimators, n_slices, n_classes * (n_classes-1) // 2)
            The predicted values for each estimator.

        Notes
        -----
        This requires base_estimator to have a ``decision_function`` method.
        """  # noqa: E501
        return self._transform(X, 'decision_function')

    @verbose  # to use class value
    def score(self, X, y):
        """Score each of the estimators on the tested dimensions.

        Parameters
        ----------
        X : array, shape (n_samples, nd_features, n_slices)
            The input samples. For each data slice, the corresponding estimator
            scores the prediction, e.g.:
            ``[estimators[ii].score(X[..., ii], y) for ii in range(n_slices)]``.
            The feature dimension can be multidimensional e.g.
            ``X.shape = (n_samples, n_features_1, n_features_2, n_estimators)``.
        y : array, shape (n_samples,) | (n_samples, n_targets)
            The target values.

        Returns
        -------
        score : array, shape (n_samples, n_estimators, n_slices)
            Score for each estimator / data slice couple.
        """  # noqa: E501
        from sklearn.metrics.scorer import check_scoring
        self._check_Xy(X)
        # For predictions/transforms the parallelization is across the data and
        # not across the estimators to avoid memory load.
        mesg = 'Scoring %s' % (self.__class__.__name__,)
        parallel, p_func, n_jobs = parallel_func(_gl_score, self.n_jobs,
                                                 verbose=False)
        n_jobs = min(n_jobs, X.shape[-1])
        scoring = check_scoring(self.base_estimator, self.scoring)
        y = _fix_auc(scoring, y)
        with ProgressBar(X.shape[-1] * len(self.estimators_),
                         verbose_bool='auto', mesg=mesg) as pb:
            score = parallel(p_func(self.estimators_, scoring, x, y,
                                    pb.subset(pb_idx))
                             for pb_idx, x in array_split_idx(
                                 X, n_jobs, axis=-1,
                                 n_per_split=len(self.estimators_)))

        score = np.concatenate(score, axis=1)
        return score


def _gl_transform(estimators, X, method, pb):
    """Transform the dataset.

    This will apply each estimator to all slices of the data.

    Parameters
    ----------
    X : array, shape (n_samples, nd_features, n_slices)
        The training input samples. For each data slice, a clone estimator
        is fitted independently. The feature dimension can be multidimensional
        e.g. X.shape = (n_samples, n_features_1, n_features_2, n_estimators)

    Returns
    -------
    Xt : array, shape (n_samples, n_slices)
        The transformed values generated by each estimator.
    """
    n_sample, n_iter = X.shape[0], X.shape[-1]
    for ii, est in enumerate(estimators):
        # stack generalized data for faster prediction
        X_stack = X.transpose(np.r_[0, X.ndim - 1, range(1, X.ndim - 1)])
        X_stack = X_stack.reshape(np.r_[n_sample * n_iter, X_stack.shape[2:]])
        transform = getattr(est, method)
        _y_pred = transform(X_stack)
        # unstack generalizations
        if _y_pred.ndim == 2:
            _y_pred = np.reshape(_y_pred, [n_sample, n_iter, _y_pred.shape[1]])
        else:
            shape = np.r_[n_sample, n_iter, _y_pred.shape[1:]].astype(int)
            _y_pred = np.reshape(_y_pred, shape)
        # Initialize array of predictions on the first transform iteration
        if ii == 0:
            y_pred = _gl_init_pred(_y_pred, X, len(estimators))
        y_pred[:, ii, ...] = _y_pred
        pb.update((ii + 1) * n_iter)
    return y_pred


def _gl_init_pred(y_pred, X, n_train):
    """Aux. function to GeneralizingEstimator to initialize y_pred."""
    n_sample, n_iter = X.shape[0], X.shape[-1]
    if y_pred.ndim == 3:
        y_pred = np.zeros((n_sample, n_train, n_iter, y_pred.shape[-1]),
                          y_pred.dtype)
    else:
        y_pred = np.zeros((n_sample, n_train, n_iter), y_pred.dtype)
    return y_pred


def _gl_score(estimators, scoring, X, y, pb):
    """Score GeneralizingEstimator in parallel.

    Predict and score each slice of data.

    Parameters
    ----------
    estimators : list of estimators
        The fitted estimators.
    scoring : callable, string or None
        If scoring is None (default), the predictions are internally
        generated by estimator.score(). Else, we must first get the
        predictions to pass them to ad-hoc scorer.
    X : array, shape (n_samples, nd_features, n_slices)
        The target data. The feature dimension can be multidimensional e.g.
        X.shape = (n_samples, n_features_1, n_features_2, n_estimators)
    y : array, shape (n_samples,) | (n_samples, n_targets)
        The target values.

    Returns
    -------
    score : array, shape (n_estimators, n_slices)
        The score for each slice of data.
    """
    # FIXME: The level parallelization may be a bit high, and might be memory
    # consuming. Perhaps need to lower it down to the loop across X slices.
    score_shape = [len(estimators), X.shape[-1]]
    for jj in range(X.shape[-1]):
        for ii, est in enumerate(estimators):
            _score = scoring(est, X[..., jj], y)
            # Initialize array of predictions on the first score iteration
            if (ii == 0) and (jj == 0):
                dtype = type(_score)
                score = np.zeros(score_shape, dtype)
            score[ii, jj, ...] = _score
            pb.update(jj * len(estimators) + ii + 1)
    return score


def _fix_auc(scoring, y):
    from sklearn.preprocessing import LabelEncoder
    # This fixes sklearn's inability to compute roc_auc when y not in [0, 1]
    # scikit-learn/scikit-learn#6874
    if scoring is not None:
        if (
            hasattr(scoring, '_score_func') and
            hasattr(scoring._score_func, '__name__') and
            scoring._score_func.__name__ == 'roc_auc_score'
        ):
            if np.ndim(y) != 1 or len(set(y)) != 2:
                raise ValueError('roc_auc scoring can only be computed for '
                                 'two-class problems.')
            y = LabelEncoder().fit_transform(y)
    return y