1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Romain Trachel <trachelr@gmail.com>
# Alexandre Barachant <alexandre.barachant@gmail.com>
# Jean-Remi King <jeanremi.king@gmail.com>
#
# License: BSD (3-clause)
import os.path as op
import pytest
import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
assert_equal)
from mne import io, Epochs, read_events, pick_types
from mne.decoding.csp import CSP, _ajd_pham, SPoC
from mne.utils import requires_sklearn
data_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data')
raw_fname = op.join(data_dir, 'test_raw.fif')
event_name = op.join(data_dir, 'test-eve.fif')
tmin, tmax = -0.2, 0.5
event_id = dict(aud_l=1, vis_l=3)
# if stop is too small pca may fail in some cases, but we're okay on this file
start, stop = 0, 8
def simulate_data(target, n_trials=100, n_channels=10, random_state=42):
"""Simulate data according to an instantaneous mixin model.
Data are simulated in the statistical source space, where one source is
modulated according to a target variable, before being mixed with a
random mixing matrix.
"""
rs = np.random.RandomState(random_state)
# generate a orthogonal mixin matrix
mixing_mat = np.linalg.svd(rs.randn(n_channels, n_channels))[0]
S = rs.randn(n_trials, n_channels, 50)
S[:, 0] *= np.atleast_2d(np.sqrt(target)).T
S[:, 1:] *= 0.01 # less noise
X = np.dot(mixing_mat, S).transpose((1, 0, 2))
return X, mixing_mat
@pytest.mark.slowtest
def test_csp():
"""Test Common Spatial Patterns algorithm on epochs."""
raw = io.read_raw_fif(raw_fname, preload=False)
events = read_events(event_name)
picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=False, exclude='bads')
picks = picks[2:12:3] # subselect channels -> disable proj!
raw.add_proj([], remove_existing=True)
epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
baseline=(None, 0), preload=True, proj=False)
epochs_data = epochs.get_data()
n_channels = epochs_data.shape[1]
y = epochs.events[:, -1]
# Init
pytest.raises(ValueError, CSP, n_components='foo', norm_trace=False)
for reg in ['foo', -0.1, 1.1]:
csp = CSP(reg=reg, norm_trace=False)
pytest.raises(ValueError, csp.fit, epochs_data, epochs.events[:, -1])
for reg in ['oas', 'ledoit_wolf', 0, 0.5, 1.]:
CSP(reg=reg, norm_trace=False)
for cov_est in ['foo', None]:
pytest.raises(ValueError, CSP, cov_est=cov_est, norm_trace=False)
pytest.raises(ValueError, CSP, norm_trace='foo')
for cov_est in ['concat', 'epoch']:
CSP(cov_est=cov_est, norm_trace=False)
n_components = 3
# Fit
for norm_trace in [True, False]:
csp = CSP(n_components=n_components, norm_trace=norm_trace)
csp.fit(epochs_data, epochs.events[:, -1])
assert_equal(len(csp.mean_), n_components)
assert_equal(len(csp.std_), n_components)
# Transform
X = csp.fit_transform(epochs_data, y)
sources = csp.transform(epochs_data)
assert (sources.shape[1] == n_components)
assert (csp.filters_.shape == (n_channels, n_channels))
assert (csp.patterns_.shape == (n_channels, n_channels))
assert_array_almost_equal(sources, X)
# Test data exception
pytest.raises(ValueError, csp.fit, epochs_data,
np.zeros_like(epochs.events))
pytest.raises(ValueError, csp.fit, epochs, y)
pytest.raises(ValueError, csp.transform, epochs)
# Test plots
epochs.pick_types(meg='mag')
cmap = ('RdBu', True)
components = np.arange(n_components)
for plot in (csp.plot_patterns, csp.plot_filters):
plot(epochs.info, components=components, res=12, show=False, cmap=cmap)
# Test with more than 2 classes
epochs = Epochs(raw, events, tmin=tmin, tmax=tmax, picks=picks,
event_id=dict(aud_l=1, aud_r=2, vis_l=3, vis_r=4),
baseline=(None, 0), proj=False, preload=True)
epochs_data = epochs.get_data()
n_channels = epochs_data.shape[1]
n_channels = epochs_data.shape[1]
for cov_est in ['concat', 'epoch']:
csp = CSP(n_components=n_components, cov_est=cov_est, norm_trace=False)
csp.fit(epochs_data, epochs.events[:, 2]).transform(epochs_data)
assert_equal(len(csp._classes), 4)
assert_array_equal(csp.filters_.shape, [n_channels, n_channels])
assert_array_equal(csp.patterns_.shape, [n_channels, n_channels])
# Test average power transform
n_components = 2
assert (csp.transform_into == 'average_power')
feature_shape = [len(epochs_data), n_components]
X_trans = dict()
for log in (None, True, False):
csp = CSP(n_components=n_components, log=log, norm_trace=False)
assert (csp.log is log)
Xt = csp.fit_transform(epochs_data, epochs.events[:, 2])
assert_array_equal(Xt.shape, feature_shape)
X_trans[str(log)] = Xt
# log=None => log=True
assert_array_almost_equal(X_trans['None'], X_trans['True'])
# Different normalization return different transform
assert (np.sum((X_trans['True'] - X_trans['False']) ** 2) > 1.)
# Check wrong inputs
pytest.raises(ValueError, CSP, transform_into='average_power', log='foo')
# Test csp space transform
csp = CSP(transform_into='csp_space', norm_trace=False)
assert (csp.transform_into == 'csp_space')
for log in ('foo', True, False):
pytest.raises(ValueError, CSP, transform_into='csp_space', log=log,
norm_trace=False)
n_components = 2
csp = CSP(n_components=n_components, transform_into='csp_space',
norm_trace=False)
Xt = csp.fit(epochs_data, epochs.events[:, 2]).transform(epochs_data)
feature_shape = [len(epochs_data), n_components, epochs_data.shape[2]]
assert_array_equal(Xt.shape, feature_shape)
# Check mixing matrix on simulated data
y = np.array([100] * 50 + [1] * 50)
X, A = simulate_data(y)
for cov_est in ['concat', 'epoch']:
# fit csp
csp = CSP(n_components=1, cov_est=cov_est, norm_trace=False)
csp.fit(X, y)
# check the first pattern match the mixing matrix
# the sign might change
corr = np.abs(np.corrcoef(csp.patterns_[0, :].T, A[:, 0])[0, 1])
assert np.abs(corr) > 0.99
# check output
out = csp.transform(X)
corr = np.abs(np.corrcoef(out[:, 0], y)[0, 1])
assert np.abs(corr) > 0.95
@requires_sklearn
def test_regularized_csp():
"""Test Common Spatial Patterns algorithm using regularized covariance."""
raw = io.read_raw_fif(raw_fname)
events = read_events(event_name)
picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=False, exclude='bads')
picks = picks[1:13:3]
epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
baseline=(None, 0), preload=True)
epochs_data = epochs.get_data()
n_channels = epochs_data.shape[1]
n_components = 3
reg_cov = [None, 0.05, 'ledoit_wolf', 'oas']
for reg in reg_cov:
csp = CSP(n_components=n_components, reg=reg, norm_trace=False,
rank=None)
csp.fit(epochs_data, epochs.events[:, -1])
y = epochs.events[:, -1]
X = csp.fit_transform(epochs_data, y)
assert (csp.filters_.shape == (n_channels, n_channels))
assert (csp.patterns_.shape == (n_channels, n_channels))
assert_array_almost_equal(csp.fit(epochs_data, y).
transform(epochs_data), X)
# test init exception
pytest.raises(ValueError, csp.fit, epochs_data,
np.zeros_like(epochs.events))
pytest.raises(ValueError, csp.fit, epochs, y)
pytest.raises(ValueError, csp.transform, epochs)
csp.n_components = n_components
sources = csp.transform(epochs_data)
assert (sources.shape[1] == n_components)
@requires_sklearn
def test_csp_pipeline():
"""Test if CSP works in a pipeline."""
from sklearn.svm import SVC
from sklearn.pipeline import Pipeline
csp = CSP(reg=1, norm_trace=False)
svc = SVC()
pipe = Pipeline([("CSP", csp), ("SVC", svc)])
pipe.set_params(CSP__reg=0.2)
assert (pipe.get_params()["CSP__reg"] == 0.2)
def test_ajd():
"""Test approximate joint diagonalization."""
# The implementation shuold obtain the same
# results as the Matlab implementation by Pham Dinh-Tuan.
# Generate a set of cavariances matrices for test purpose
n_times, n_channels = 10, 3
seed = np.random.RandomState(0)
diags = 2.0 + 0.1 * seed.randn(n_times, n_channels)
A = 2 * seed.rand(n_channels, n_channels) - 1
A /= np.atleast_2d(np.sqrt(np.sum(A ** 2, 1))).T
covmats = np.empty((n_times, n_channels, n_channels))
for i in range(n_times):
covmats[i] = np.dot(np.dot(A, np.diag(diags[i])), A.T)
V, D = _ajd_pham(covmats)
# Results obtained with original matlab implementation
V_matlab = [[-3.507280775058041, -5.498189967306344, 7.720624541198574],
[0.694689013234610, 0.775690358505945, -1.162043086446043],
[-0.592603135588066, -0.598996925696260, 1.009550086271192]]
assert_array_almost_equal(V, V_matlab)
def test_spoc():
"""Test SPoC."""
X = np.random.randn(10, 10, 20)
y = np.random.randn(10)
spoc = SPoC(n_components=4)
spoc.fit(X, y)
Xt = spoc.transform(X)
assert_array_equal(Xt.shape, [10, 4])
spoc = SPoC(n_components=4, transform_into='csp_space')
spoc.fit(X, y)
Xt = spoc.transform(X)
assert_array_equal(Xt.shape, [10, 4, 20])
assert_array_equal(spoc.filters_.shape, [10, 10])
assert_array_equal(spoc.patterns_.shape, [10, 10])
# check y
pytest.raises(ValueError, spoc.fit, X, y * 0)
# Check that doesn't take CSP-spcific input
pytest.raises(TypeError, SPoC, cov_est='epoch')
# Check mixing matrix on simulated data
rs = np.random.RandomState(42)
y = rs.rand(100) * 50 + 1
X, A = simulate_data(y)
# fit spoc
spoc = SPoC(n_components=1)
spoc.fit(X, y)
# check the first patterns match the mixing matrix
corr = np.abs(np.corrcoef(spoc.patterns_[0, :].T, A[:, 0])[0, 1])
assert np.abs(corr) > 0.99
# check output
out = spoc.transform(X)
corr = np.abs(np.corrcoef(out[:, 0], y)[0, 1])
assert np.abs(corr) > 0.85
|