1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
# Author: Jean-Remi King, <jeanremi.king@gmail.com>
#
# License: BSD (3-clause)
import numpy as np
from numpy.testing import assert_array_equal, assert_equal
import pytest
from mne.utils import requires_version
from mne.decoding.search_light import SlidingEstimator, GeneralizingEstimator
from mne.decoding.transformer import Vectorizer
def make_data():
"""Make data."""
n_epochs, n_chan, n_time = 50, 32, 10
X = np.random.rand(n_epochs, n_chan, n_time)
y = np.arange(n_epochs) % 2
for ii in range(n_time):
coef = np.random.randn(n_chan)
X[y == 0, :, ii] += coef
X[y == 1, :, ii] -= coef
return X, y
@requires_version('sklearn', '0.17')
def test_search_light():
"""Test SlidingEstimator."""
from sklearn.linear_model import Ridge, LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.metrics import roc_auc_score, make_scorer
with pytest.warns(None): # NumPy module import
from sklearn.ensemble import BaggingClassifier
from sklearn.base import is_classifier
logreg = LogisticRegression(solver='liblinear', multi_class='ovr',
random_state=0)
X, y = make_data()
n_epochs, _, n_time = X.shape
# init
pytest.raises(ValueError, SlidingEstimator, 'foo')
sl = SlidingEstimator(Ridge())
assert (not is_classifier(sl))
sl = SlidingEstimator(LogisticRegression(solver='liblinear'))
assert (is_classifier(sl))
# fit
assert_equal(sl.__repr__()[:18], '<SlidingEstimator(')
sl.fit(X, y)
assert_equal(sl.__repr__()[-28:], ', fitted with 10 estimators>')
pytest.raises(ValueError, sl.fit, X[1:], y)
pytest.raises(ValueError, sl.fit, X[:, :, 0], y)
sl.fit(X, y, sample_weight=np.ones_like(y))
# transforms
pytest.raises(ValueError, sl.predict, X[:, :, :2])
y_pred = sl.predict(X)
assert (y_pred.dtype == int)
assert_array_equal(y_pred.shape, [n_epochs, n_time])
y_proba = sl.predict_proba(X)
assert (y_proba.dtype == float)
assert_array_equal(y_proba.shape, [n_epochs, n_time, 2])
# score
score = sl.score(X, y)
assert_array_equal(score.shape, [n_time])
assert (np.sum(np.abs(score)) != 0)
assert (score.dtype == float)
sl = SlidingEstimator(logreg)
assert_equal(sl.scoring, None)
# Scoring method
for scoring in ['foo', 999]:
sl = SlidingEstimator(logreg, scoring=scoring)
sl.fit(X, y)
pytest.raises((ValueError, TypeError), sl.score, X, y)
# Check sklearn's roc_auc fix: scikit-learn/scikit-learn#6874
# -- 3 class problem
sl = SlidingEstimator(logreg, scoring='roc_auc')
y = np.arange(len(X)) % 3
sl.fit(X, y)
pytest.raises(ValueError, sl.score, X, y)
# -- 2 class problem not in [0, 1]
y = np.arange(len(X)) % 2 + 1
sl.fit(X, y)
score = sl.score(X, y)
assert_array_equal(score, [roc_auc_score(y - 1, _y_pred - 1)
for _y_pred in sl.decision_function(X).T])
y = np.arange(len(X)) % 2
# Cannot pass a metric as a scoring parameter
sl1 = SlidingEstimator(logreg, scoring=roc_auc_score)
sl1.fit(X, y)
pytest.raises(ValueError, sl1.score, X, y)
# Now use string as scoring
sl1 = SlidingEstimator(logreg, scoring='roc_auc')
sl1.fit(X, y)
rng = np.random.RandomState(0)
X = rng.randn(*X.shape) # randomize X to avoid AUCs in [0, 1]
score_sl = sl1.score(X, y)
assert_array_equal(score_sl.shape, [n_time])
assert (score_sl.dtype == float)
# Check that scoring was applied adequately
scoring = make_scorer(roc_auc_score, needs_threshold=True)
score_manual = [scoring(est, x, y) for est, x in zip(
sl1.estimators_, X.transpose(2, 0, 1))]
assert_array_equal(score_manual, score_sl)
# n_jobs
sl = SlidingEstimator(logreg, n_jobs=1, scoring='roc_auc')
score_1job = sl.fit(X, y).score(X, y)
sl.n_jobs = 2
score_njobs = sl.fit(X, y).score(X, y)
assert_array_equal(score_1job, score_njobs)
sl.predict(X)
# n_jobs > n_estimators
sl.fit(X[..., [0]], y)
sl.predict(X[..., [0]])
# pipeline
class _LogRegTransformer(LogisticRegression):
# XXX needs transformer in pipeline to get first proba only
def __init__(self):
super(_LogRegTransformer, self).__init__()
self.multi_class = 'auto'
self.random_state = 0
self.solver = 'liblinear'
def transform(self, X):
return super(_LogRegTransformer, self).predict_proba(X)[..., 1]
pipe = make_pipeline(SlidingEstimator(_LogRegTransformer()),
logreg)
pipe.fit(X, y)
pipe.predict(X)
# n-dimensional feature space
X = np.random.rand(10, 3, 4, 2)
y = np.arange(10) % 2
y_preds = list()
for n_jobs in [1, 2]:
pipe = SlidingEstimator(
make_pipeline(Vectorizer(), logreg), n_jobs=n_jobs)
y_preds.append(pipe.fit(X, y).predict(X))
features_shape = pipe.estimators_[0].steps[0][1].features_shape_
assert_array_equal(features_shape, [3, 4])
assert_array_equal(y_preds[0], y_preds[1])
# Bagging classifiers
X = np.random.rand(10, 3, 4)
for n_jobs in (1, 2):
pipe = SlidingEstimator(BaggingClassifier(None, 2), n_jobs=n_jobs)
pipe.fit(X, y)
pipe.score(X, y)
assert (isinstance(pipe.estimators_[0], BaggingClassifier))
@requires_version('sklearn', '0.17')
def test_generalization_light():
"""Test GeneralizingEstimator."""
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_auc_score
logreg = LogisticRegression(solver='liblinear', multi_class='ovr',
random_state=0)
X, y = make_data()
n_epochs, _, n_time = X.shape
# fit
gl = GeneralizingEstimator(logreg)
assert_equal(repr(gl)[:23], '<GeneralizingEstimator(')
gl.fit(X, y)
gl.fit(X, y, sample_weight=np.ones_like(y))
assert_equal(gl.__repr__()[-28:], ', fitted with 10 estimators>')
# transforms
y_pred = gl.predict(X)
assert_array_equal(y_pred.shape, [n_epochs, n_time, n_time])
assert (y_pred.dtype == int)
y_proba = gl.predict_proba(X)
assert (y_proba.dtype == float)
assert_array_equal(y_proba.shape, [n_epochs, n_time, n_time, 2])
# transform to different datasize
y_pred = gl.predict(X[:, :, :2])
assert_array_equal(y_pred.shape, [n_epochs, n_time, 2])
# score
score = gl.score(X[:, :, :3], y)
assert_array_equal(score.shape, [n_time, 3])
assert (np.sum(np.abs(score)) != 0)
assert (score.dtype == float)
gl = GeneralizingEstimator(logreg, scoring='roc_auc')
gl.fit(X, y)
score = gl.score(X, y)
auc = roc_auc_score(y, gl.estimators_[0].predict_proba(X[..., 0])[..., 1])
assert_equal(score[0, 0], auc)
for scoring in ['foo', 999]:
gl = GeneralizingEstimator(logreg, scoring=scoring)
gl.fit(X, y)
pytest.raises((ValueError, TypeError), gl.score, X, y)
# Check sklearn's roc_auc fix: scikit-learn/scikit-learn#6874
# -- 3 class problem
gl = GeneralizingEstimator(logreg, scoring='roc_auc')
y = np.arange(len(X)) % 3
gl.fit(X, y)
pytest.raises(ValueError, gl.score, X, y)
# -- 2 class problem not in [0, 1]
y = np.arange(len(X)) % 2 + 1
gl.fit(X, y)
score = gl.score(X, y)
manual_score = [[roc_auc_score(y - 1, _y_pred) for _y_pred in _y_preds]
for _y_preds in gl.decision_function(X).transpose(1, 2, 0)]
assert_array_equal(score, manual_score)
# n_jobs
gl = GeneralizingEstimator(logreg, n_jobs=2)
gl.fit(X, y)
y_pred = gl.predict(X)
assert_array_equal(y_pred.shape, [n_epochs, n_time, n_time])
score = gl.score(X, y)
assert_array_equal(score.shape, [n_time, n_time])
# n_jobs > n_estimators
gl.fit(X[..., [0]], y)
gl.predict(X[..., [0]])
# n-dimensional feature space
X = np.random.rand(10, 3, 4, 2)
y = np.arange(10) % 2
y_preds = list()
for n_jobs in [1, 2]:
pipe = GeneralizingEstimator(
make_pipeline(Vectorizer(), logreg), n_jobs=n_jobs)
y_preds.append(pipe.fit(X, y).predict(X))
features_shape = pipe.estimators_[0].steps[0][1].features_shape_
assert_array_equal(features_shape, [3, 4])
assert_array_equal(y_preds[0], y_preds[1])
@requires_version('sklearn', '0.17')
def test_cross_val_predict():
"""Test cross_val_predict with predict_proba."""
from sklearn.linear_model import LinearRegression
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.base import BaseEstimator, clone
from sklearn.model_selection import cross_val_predict
rng = np.random.RandomState(42)
X = rng.randn(10, 1, 3)
y = rng.randint(0, 2, 10)
estimator = SlidingEstimator(LinearRegression())
cross_val_predict(estimator, X, y, cv=2)
class Classifier(BaseEstimator):
"""Moch class that does not have classes_ attribute."""
def __init__(self):
self.base_estimator = LinearDiscriminantAnalysis()
def fit(self, X, y):
self.estimator_ = clone(self.base_estimator).fit(X, y)
return self
def predict_proba(self, X):
return self.estimator_.predict_proba(X)
with pytest.raises(AttributeError, match="classes_ attribute"):
estimator = SlidingEstimator(Classifier())
cross_val_predict(estimator, X, y, method='predict_proba', cv=2)
estimator = SlidingEstimator(LinearDiscriminantAnalysis())
cross_val_predict(estimator, X, y, method='predict_proba', cv=2)
|