File: time_delaying_ridge.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (342 lines) | stat: -rw-r--r-- 13,108 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
# -*- coding: utf-8 -*-
"""TimeDelayingRidge class."""
# Authors: Eric Larson <larson.eric.d@gmail.com>
#          Ross Maddox <ross.maddox@rochester.edu>
#
# License: BSD (3-clause)

import numpy as np
from scipy import linalg

from .base import BaseEstimator
from ..filter import next_fast_len
from ..utils import warn
from ..externals.six import string_types


def _compute_corrs(X, y, smin, smax):
    """Compute auto- and cross-correlations."""
    if X.ndim == 2:
        assert y.ndim == 2
        X = X[:, np.newaxis, :]
        y = y[:, np.newaxis, :]
    assert X.shape[:2] == y.shape[:2]
    len_trf = smax - smin
    len_x, n_epochs, n_ch_x = X.shape
    len_y, n_epcohs, n_ch_y = y.shape
    assert len_x == len_y

    n_fft = next_fast_len(X.shape[0] + max(smax, 0) - min(smin, 0) - 1)

    x_xt = np.zeros([n_ch_x * len_trf] * 2)
    x_y = np.zeros((len_trf, n_ch_x, n_ch_y), order='F')
    for ei in range(n_epochs):
        this_X = X[:, ei, :]
        X_fft = np.fft.rfft(this_X, n_fft, axis=0)
        y_fft = np.fft.rfft(y[:, ei, :], n_fft, axis=0)

        # compute the autocorrelations
        for ch0 in range(n_ch_x):
            other_sl = slice(ch0, n_ch_x)
            ac_temp = np.fft.irfft(X_fft[:, ch0][:, np.newaxis] *
                                   X_fft[:, other_sl].conj(), n_fft, axis=0)
            n_other = ac_temp.shape[1]
            row = ac_temp[:len_trf]  # zero and positive lags
            col = ac_temp[-1:-len_trf:-1]  # negative lags
            # Our autocorrelation structure is a Toeplitz matrix, but
            # it's faster to create the Toeplitz ourselves.
            x_xt_temp = np.zeros((len_trf, len_trf, n_other))
            for ii in range(len_trf):
                x_xt_temp[ii, ii:] = row[:len_trf - ii]
                x_xt_temp[ii + 1:, ii] = col[:len_trf - ii - 1]
            row_adjust = np.zeros((len_trf, n_other))
            col_adjust = np.zeros((len_trf, n_other))

            # However, we need to adjust for coeffs that are cut off by
            # the mode="same"-like behavior of the algorithm,
            # i.e. the non-zero delays should not have the same AC value
            # as the zero-delay ones (because they actually have fewer
            # coefficients).
            #
            # These adjustments also follow a Toeplitz structure, but it's
            # computationally more efficient to manually accumulate and
            # subtract from each row and col, rather than accumulate a single
            # adjustment matrix using Toeplitz repetitions then subtract

            # Adjust positive lags where the tail gets cut off
            for idx in range(1, smax):
                ii = idx - smin
                end_sl = slice(X.shape[0] - idx, -smax - min(ii, 0), -1)
                c = (this_X[-idx, other_sl][np.newaxis] *
                     this_X[end_sl, ch0][:, np.newaxis])
                r = this_X[-idx, ch0] * this_X[end_sl, other_sl]
                if ii <= 0:
                    col_adjust += c
                    row_adjust += r
                    if ii == 0:
                        x_xt_temp[0, :] = row - row_adjust
                        x_xt_temp[1:, 0] = col - col_adjust[1:]
                else:
                    col_adjust[:-ii] += c
                    row_adjust[:-ii] += r
                    x_xt_temp[ii, ii:] = row[:-ii] - row_adjust[:-ii]
                    x_xt_temp[ii + 1:, ii] = col[:-ii] - col_adjust[1:-ii]

            # Adjust negative lags where the head gets cut off
            x_xt_temp = x_xt_temp[::-1][:, ::-1]
            row_adjust.fill(0.)
            col_adjust.fill(0.)
            for idx in range(0, -smin):
                ii = idx + smax
                start_sl = slice(idx, -smin + min(ii, 0))
                c = (this_X[idx, other_sl][np.newaxis] *
                     this_X[start_sl, ch0][:, np.newaxis])
                r = this_X[idx, ch0] * this_X[start_sl, other_sl]
                if ii <= 0:
                    col_adjust += c
                    row_adjust += r
                    if ii == 0:
                        x_xt_temp[0, :] -= row_adjust
                        x_xt_temp[1:, 0] -= col_adjust[1:]
                else:
                    col_adjust[:-ii] += c
                    row_adjust[:-ii] += r
                    x_xt_temp[ii, ii:] -= row_adjust[:-ii]
                    x_xt_temp[ii + 1:, ii] -= col_adjust[1:-ii]

            x_xt_temp = x_xt_temp[::-1][:, ::-1]
            for oi in range(n_other):
                ch1 = oi + ch0
                # Store the result
                this_result = x_xt_temp[:, :, oi]
                x_xt[ch0 * len_trf:(ch0 + 1) * len_trf,
                     ch1 * len_trf:(ch1 + 1) * len_trf] += this_result
                if ch0 != ch1:
                    x_xt[ch1 * len_trf:(ch1 + 1) * len_trf,
                         ch0 * len_trf:(ch0 + 1) * len_trf] += this_result.T

            # compute the crosscorrelations
            cc_temp = np.fft.irfft(
                y_fft * X_fft[:, ch0][:, np.newaxis].conj(), n_fft, axis=0)
            if smin < 0 and smax >= 0:
                x_y[:-smin, ch0] += cc_temp[smin:]
                x_y[len_trf - smax:, ch0] += cc_temp[:smax]
            else:
                x_y[:, ch0] += cc_temp[smin:smax]

    x_y = np.reshape(x_y, (n_ch_x * len_trf, n_ch_y), order='F')
    return x_xt, x_y, n_ch_x


def _compute_reg_neighbors(n_ch_x, n_delays, reg_type, method='direct',
                           normed=False):
    """Compute regularization parameter from neighbors."""
    from scipy.sparse.csgraph import laplacian
    known_types = ('ridge', 'laplacian')
    if isinstance(reg_type, string_types):
        reg_type = (reg_type,) * 2
    if len(reg_type) != 2:
        raise ValueError('reg_type must have two elements, got %s'
                         % (len(reg_type),))
    for r in reg_type:
        if r not in known_types:
            raise ValueError('reg_type entries must be one of %s, got %s'
                             % (known_types, r))
    reg_time = (reg_type[0] == 'laplacian' and n_delays > 1)
    reg_chs = (reg_type[1] == 'laplacian' and n_ch_x > 1)
    if not reg_time and not reg_chs:
        return np.eye(n_ch_x * n_delays)
    # regularize time
    if reg_time:
        reg = np.eye(n_delays)
        stride = n_delays + 1
        reg.flat[1::stride] += -1
        reg.flat[n_delays::stride] += -1
        reg.flat[n_delays + 1:-n_delays - 1:stride] += 1
        args = [reg] * n_ch_x
        reg = linalg.block_diag(*args)
    else:
        reg = np.zeros((n_delays * n_ch_x,) * 2)

    # regularize features
    if reg_chs:
        block = n_delays * n_delays
        row_offset = block * n_ch_x
        stride = n_delays * n_ch_x + 1
        reg.flat[n_delays:-row_offset:stride] += -1
        reg.flat[n_delays + row_offset::stride] += 1
        reg.flat[row_offset:-n_delays:stride] += -1
        reg.flat[:-(n_delays + row_offset):stride] += 1
    assert np.array_equal(reg[::-1, ::-1], reg)

    if method == 'direct':
        if normed:
            norm = np.sqrt(np.diag(reg))
            reg /= norm
            reg /= norm[:, np.newaxis]
        return reg
    else:
        # Use csgraph. Note that our -1's above are really the neighbors!
        # If we ever want to allow arbitrary adjacency matrices, this is how
        # we'd want to do it.
        reg = laplacian(-reg, normed=normed)
    return reg


def _fit_corrs(x_xt, x_y, n_ch_x, reg_type, alpha, n_ch_in):
    """Fit the model using correlation matrices."""
    # do the regularized solving
    n_ch_out = x_y.shape[1]
    assert x_y.shape[0] % n_ch_x == 0
    n_delays = x_y.shape[0] // n_ch_x
    reg = _compute_reg_neighbors(n_ch_x, n_delays, reg_type)
    mat = x_xt + alpha * reg
    # From sklearn
    try:
        # Note: we must use overwrite_a=False in order to be able to
        #       use the fall-back solution below in case a LinAlgError
        #       is raised
        w = linalg.solve(mat, x_y, sym_pos=True, overwrite_a=False)
    except np.linalg.LinAlgError:
        warn('Singular matrix in solving dual problem. Using '
             'least-squares solution instead.')
        w = linalg.lstsq(mat, x_y, lapack_driver='gelsy')[0]
    w = w.T.reshape([n_ch_out, n_ch_in, n_delays])
    return w


class TimeDelayingRidge(BaseEstimator):
    """Ridge regression of data with time delays.

    Parameters
    ----------
    tmin : int | float
        The starting lag, in seconds (or samples if ``sfreq`` == 1).
        Negative values correspond to times in the past.
    tmax : int | float
        The ending lag, in seconds (or samples if ``sfreq`` == 1).
        Positive values correspond to times in the future.
        Must be >= tmin.
    sfreq : float
        The sampling frequency used to convert times into samples.
    alpha : float
        The ridge (or laplacian) regularization factor.
    reg_type : str | list
        Can be "ridge" (default) or "laplacian".
        Can also be a 2-element list specifying how to regularize in time
        and across adjacent features.
    fit_intercept : bool
        If True (default), the sample mean is removed before fitting.

    Notes
    -----
    This class is meant to be used with :class:`mne.decoding.ReceptiveField`
    by only implicitly doing the time delaying. For reasonable receptive
    field and input signal sizes, it should be more CPU and memory
    efficient by using frequency-domain methods (FFTs) to compute the
    auto- and cross-correlations.

    See Also
    --------
    mne.decoding.ReceptiveField
    """

    _estimator_type = "regressor"

    def __init__(self, tmin, tmax, sfreq, alpha=0., reg_type='ridge',
                 fit_intercept=True):  # noqa: D102
        if tmin > tmax:
            raise ValueError('tmin must be <= tmax, got %s and %s'
                             % (tmin, tmax))
        self.tmin = float(tmin)
        self.tmax = float(tmax)
        self.sfreq = float(sfreq)
        self.alpha = float(alpha)
        self.reg_type = reg_type
        self.fit_intercept = fit_intercept

    @property
    def _smin(self):
        return int(round(self.tmin * self.sfreq))

    @property
    def _smax(self):
        return int(round(self.tmax * self.sfreq)) + 1

    def fit(self, X, y):
        """Estimate the coefficients of the linear model.

        Parameters
        ----------
        X : array, shape (n_samples[, n_epochs], n_features)
            The training input samples to estimate the linear coefficients.
        y : array, shape (n_samples[, n_epochs],  n_outputs)
            The target values.

        Returns
        -------
        self : instance of TimeDelayingRidge
            Returns the modified instance.
        """
        if X.ndim == 3:
            assert y.ndim == 3
            assert X.shape[:2] == y.shape[:2]
        else:
            assert X.ndim == 2 and y.ndim == 2
            assert X.shape[0] == y.shape[0]
        # These are split into two functions because it's possible that we
        # might want to allow people to do them separately (e.g., to test
        # different regularization parameters).
        if self.fit_intercept:
            # We could do this in the Fourier domain, too, but it should
            # be a bit cleaner numerically to do it here.
            X_offset = np.mean(X, axis=0)
            y_offset = np.mean(y, axis=0)
            if X.ndim == 3:
                X_offset = X_offset.mean(axis=0)
                y_offset = np.mean(y_offset, axis=0)
            X = X - X_offset
            y = y - y_offset
        else:
            X_offset = y_offset = 0.
        self.cov_, x_y_, n_ch_x = _compute_corrs(X, y, self._smin, self._smax)
        self.coef_ = _fit_corrs(self.cov_, x_y_, n_ch_x,
                                self.reg_type, self.alpha, n_ch_x)
        # This is the sklearn formula from LinearModel (will be 0. for no fit)
        if self.fit_intercept:
            self.intercept_ = y_offset - np.dot(X_offset, self.coef_.sum(-1).T)
        else:
            self.intercept_ = 0.
        return self

    def predict(self, X):
        """Predict the output.

        Parameters
        ----------
        X : array, shape (n_samples[, n_epochs], n_features)
            The data.

        Returns
        -------
        X : ndarray
            The predicted response.
        """
        if X.ndim == 2:
            X = X[:, np.newaxis, :]
            singleton = True
        else:
            singleton = False
        out = np.zeros(X.shape[:2] + (self.coef_.shape[0],))
        smin = self._smin
        offset = max(smin, 0)
        for ei in range(X.shape[1]):
            for oi in range(self.coef_.shape[0]):
                for fi in range(self.coef_.shape[1]):
                    temp = np.convolve(X[:, ei, fi], self.coef_[oi, fi])
                    temp = temp[max(-smin, 0):][:len(out) - offset]
                    out[offset:len(temp) + offset, ei, oi] += temp
        out += self.intercept_
        if singleton:
            out = out[:, 0, :]
        return out