1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
# -*- coding: utf-8 -*-
"""TimeDelayingRidge class."""
# Authors: Eric Larson <larson.eric.d@gmail.com>
# Ross Maddox <ross.maddox@rochester.edu>
#
# License: BSD (3-clause)
import numpy as np
from scipy import linalg
from .base import BaseEstimator
from ..filter import next_fast_len
from ..utils import warn
from ..externals.six import string_types
def _compute_corrs(X, y, smin, smax):
"""Compute auto- and cross-correlations."""
if X.ndim == 2:
assert y.ndim == 2
X = X[:, np.newaxis, :]
y = y[:, np.newaxis, :]
assert X.shape[:2] == y.shape[:2]
len_trf = smax - smin
len_x, n_epochs, n_ch_x = X.shape
len_y, n_epcohs, n_ch_y = y.shape
assert len_x == len_y
n_fft = next_fast_len(X.shape[0] + max(smax, 0) - min(smin, 0) - 1)
x_xt = np.zeros([n_ch_x * len_trf] * 2)
x_y = np.zeros((len_trf, n_ch_x, n_ch_y), order='F')
for ei in range(n_epochs):
this_X = X[:, ei, :]
X_fft = np.fft.rfft(this_X, n_fft, axis=0)
y_fft = np.fft.rfft(y[:, ei, :], n_fft, axis=0)
# compute the autocorrelations
for ch0 in range(n_ch_x):
other_sl = slice(ch0, n_ch_x)
ac_temp = np.fft.irfft(X_fft[:, ch0][:, np.newaxis] *
X_fft[:, other_sl].conj(), n_fft, axis=0)
n_other = ac_temp.shape[1]
row = ac_temp[:len_trf] # zero and positive lags
col = ac_temp[-1:-len_trf:-1] # negative lags
# Our autocorrelation structure is a Toeplitz matrix, but
# it's faster to create the Toeplitz ourselves.
x_xt_temp = np.zeros((len_trf, len_trf, n_other))
for ii in range(len_trf):
x_xt_temp[ii, ii:] = row[:len_trf - ii]
x_xt_temp[ii + 1:, ii] = col[:len_trf - ii - 1]
row_adjust = np.zeros((len_trf, n_other))
col_adjust = np.zeros((len_trf, n_other))
# However, we need to adjust for coeffs that are cut off by
# the mode="same"-like behavior of the algorithm,
# i.e. the non-zero delays should not have the same AC value
# as the zero-delay ones (because they actually have fewer
# coefficients).
#
# These adjustments also follow a Toeplitz structure, but it's
# computationally more efficient to manually accumulate and
# subtract from each row and col, rather than accumulate a single
# adjustment matrix using Toeplitz repetitions then subtract
# Adjust positive lags where the tail gets cut off
for idx in range(1, smax):
ii = idx - smin
end_sl = slice(X.shape[0] - idx, -smax - min(ii, 0), -1)
c = (this_X[-idx, other_sl][np.newaxis] *
this_X[end_sl, ch0][:, np.newaxis])
r = this_X[-idx, ch0] * this_X[end_sl, other_sl]
if ii <= 0:
col_adjust += c
row_adjust += r
if ii == 0:
x_xt_temp[0, :] = row - row_adjust
x_xt_temp[1:, 0] = col - col_adjust[1:]
else:
col_adjust[:-ii] += c
row_adjust[:-ii] += r
x_xt_temp[ii, ii:] = row[:-ii] - row_adjust[:-ii]
x_xt_temp[ii + 1:, ii] = col[:-ii] - col_adjust[1:-ii]
# Adjust negative lags where the head gets cut off
x_xt_temp = x_xt_temp[::-1][:, ::-1]
row_adjust.fill(0.)
col_adjust.fill(0.)
for idx in range(0, -smin):
ii = idx + smax
start_sl = slice(idx, -smin + min(ii, 0))
c = (this_X[idx, other_sl][np.newaxis] *
this_X[start_sl, ch0][:, np.newaxis])
r = this_X[idx, ch0] * this_X[start_sl, other_sl]
if ii <= 0:
col_adjust += c
row_adjust += r
if ii == 0:
x_xt_temp[0, :] -= row_adjust
x_xt_temp[1:, 0] -= col_adjust[1:]
else:
col_adjust[:-ii] += c
row_adjust[:-ii] += r
x_xt_temp[ii, ii:] -= row_adjust[:-ii]
x_xt_temp[ii + 1:, ii] -= col_adjust[1:-ii]
x_xt_temp = x_xt_temp[::-1][:, ::-1]
for oi in range(n_other):
ch1 = oi + ch0
# Store the result
this_result = x_xt_temp[:, :, oi]
x_xt[ch0 * len_trf:(ch0 + 1) * len_trf,
ch1 * len_trf:(ch1 + 1) * len_trf] += this_result
if ch0 != ch1:
x_xt[ch1 * len_trf:(ch1 + 1) * len_trf,
ch0 * len_trf:(ch0 + 1) * len_trf] += this_result.T
# compute the crosscorrelations
cc_temp = np.fft.irfft(
y_fft * X_fft[:, ch0][:, np.newaxis].conj(), n_fft, axis=0)
if smin < 0 and smax >= 0:
x_y[:-smin, ch0] += cc_temp[smin:]
x_y[len_trf - smax:, ch0] += cc_temp[:smax]
else:
x_y[:, ch0] += cc_temp[smin:smax]
x_y = np.reshape(x_y, (n_ch_x * len_trf, n_ch_y), order='F')
return x_xt, x_y, n_ch_x
def _compute_reg_neighbors(n_ch_x, n_delays, reg_type, method='direct',
normed=False):
"""Compute regularization parameter from neighbors."""
from scipy.sparse.csgraph import laplacian
known_types = ('ridge', 'laplacian')
if isinstance(reg_type, string_types):
reg_type = (reg_type,) * 2
if len(reg_type) != 2:
raise ValueError('reg_type must have two elements, got %s'
% (len(reg_type),))
for r in reg_type:
if r not in known_types:
raise ValueError('reg_type entries must be one of %s, got %s'
% (known_types, r))
reg_time = (reg_type[0] == 'laplacian' and n_delays > 1)
reg_chs = (reg_type[1] == 'laplacian' and n_ch_x > 1)
if not reg_time and not reg_chs:
return np.eye(n_ch_x * n_delays)
# regularize time
if reg_time:
reg = np.eye(n_delays)
stride = n_delays + 1
reg.flat[1::stride] += -1
reg.flat[n_delays::stride] += -1
reg.flat[n_delays + 1:-n_delays - 1:stride] += 1
args = [reg] * n_ch_x
reg = linalg.block_diag(*args)
else:
reg = np.zeros((n_delays * n_ch_x,) * 2)
# regularize features
if reg_chs:
block = n_delays * n_delays
row_offset = block * n_ch_x
stride = n_delays * n_ch_x + 1
reg.flat[n_delays:-row_offset:stride] += -1
reg.flat[n_delays + row_offset::stride] += 1
reg.flat[row_offset:-n_delays:stride] += -1
reg.flat[:-(n_delays + row_offset):stride] += 1
assert np.array_equal(reg[::-1, ::-1], reg)
if method == 'direct':
if normed:
norm = np.sqrt(np.diag(reg))
reg /= norm
reg /= norm[:, np.newaxis]
return reg
else:
# Use csgraph. Note that our -1's above are really the neighbors!
# If we ever want to allow arbitrary adjacency matrices, this is how
# we'd want to do it.
reg = laplacian(-reg, normed=normed)
return reg
def _fit_corrs(x_xt, x_y, n_ch_x, reg_type, alpha, n_ch_in):
"""Fit the model using correlation matrices."""
# do the regularized solving
n_ch_out = x_y.shape[1]
assert x_y.shape[0] % n_ch_x == 0
n_delays = x_y.shape[0] // n_ch_x
reg = _compute_reg_neighbors(n_ch_x, n_delays, reg_type)
mat = x_xt + alpha * reg
# From sklearn
try:
# Note: we must use overwrite_a=False in order to be able to
# use the fall-back solution below in case a LinAlgError
# is raised
w = linalg.solve(mat, x_y, sym_pos=True, overwrite_a=False)
except np.linalg.LinAlgError:
warn('Singular matrix in solving dual problem. Using '
'least-squares solution instead.')
w = linalg.lstsq(mat, x_y, lapack_driver='gelsy')[0]
w = w.T.reshape([n_ch_out, n_ch_in, n_delays])
return w
class TimeDelayingRidge(BaseEstimator):
"""Ridge regression of data with time delays.
Parameters
----------
tmin : int | float
The starting lag, in seconds (or samples if ``sfreq`` == 1).
Negative values correspond to times in the past.
tmax : int | float
The ending lag, in seconds (or samples if ``sfreq`` == 1).
Positive values correspond to times in the future.
Must be >= tmin.
sfreq : float
The sampling frequency used to convert times into samples.
alpha : float
The ridge (or laplacian) regularization factor.
reg_type : str | list
Can be "ridge" (default) or "laplacian".
Can also be a 2-element list specifying how to regularize in time
and across adjacent features.
fit_intercept : bool
If True (default), the sample mean is removed before fitting.
Notes
-----
This class is meant to be used with :class:`mne.decoding.ReceptiveField`
by only implicitly doing the time delaying. For reasonable receptive
field and input signal sizes, it should be more CPU and memory
efficient by using frequency-domain methods (FFTs) to compute the
auto- and cross-correlations.
See Also
--------
mne.decoding.ReceptiveField
"""
_estimator_type = "regressor"
def __init__(self, tmin, tmax, sfreq, alpha=0., reg_type='ridge',
fit_intercept=True): # noqa: D102
if tmin > tmax:
raise ValueError('tmin must be <= tmax, got %s and %s'
% (tmin, tmax))
self.tmin = float(tmin)
self.tmax = float(tmax)
self.sfreq = float(sfreq)
self.alpha = float(alpha)
self.reg_type = reg_type
self.fit_intercept = fit_intercept
@property
def _smin(self):
return int(round(self.tmin * self.sfreq))
@property
def _smax(self):
return int(round(self.tmax * self.sfreq)) + 1
def fit(self, X, y):
"""Estimate the coefficients of the linear model.
Parameters
----------
X : array, shape (n_samples[, n_epochs], n_features)
The training input samples to estimate the linear coefficients.
y : array, shape (n_samples[, n_epochs], n_outputs)
The target values.
Returns
-------
self : instance of TimeDelayingRidge
Returns the modified instance.
"""
if X.ndim == 3:
assert y.ndim == 3
assert X.shape[:2] == y.shape[:2]
else:
assert X.ndim == 2 and y.ndim == 2
assert X.shape[0] == y.shape[0]
# These are split into two functions because it's possible that we
# might want to allow people to do them separately (e.g., to test
# different regularization parameters).
if self.fit_intercept:
# We could do this in the Fourier domain, too, but it should
# be a bit cleaner numerically to do it here.
X_offset = np.mean(X, axis=0)
y_offset = np.mean(y, axis=0)
if X.ndim == 3:
X_offset = X_offset.mean(axis=0)
y_offset = np.mean(y_offset, axis=0)
X = X - X_offset
y = y - y_offset
else:
X_offset = y_offset = 0.
self.cov_, x_y_, n_ch_x = _compute_corrs(X, y, self._smin, self._smax)
self.coef_ = _fit_corrs(self.cov_, x_y_, n_ch_x,
self.reg_type, self.alpha, n_ch_x)
# This is the sklearn formula from LinearModel (will be 0. for no fit)
if self.fit_intercept:
self.intercept_ = y_offset - np.dot(X_offset, self.coef_.sum(-1).T)
else:
self.intercept_ = 0.
return self
def predict(self, X):
"""Predict the output.
Parameters
----------
X : array, shape (n_samples[, n_epochs], n_features)
The data.
Returns
-------
X : ndarray
The predicted response.
"""
if X.ndim == 2:
X = X[:, np.newaxis, :]
singleton = True
else:
singleton = False
out = np.zeros(X.shape[:2] + (self.coef_.shape[0],))
smin = self._smin
offset = max(smin, 0)
for ei in range(X.shape[1]):
for oi in range(self.coef_.shape[0]):
for fi in range(self.coef_.shape[1]):
temp = np.convolve(X[:, ei, fi], self.coef_[oi, fi])
temp = temp[max(-smin, 0):][:len(out) - offset]
out[offset:len(temp) + offset, ei, oi] += temp
out += self.intercept_
if singleton:
out = out[:, 0, :]
return out
|