File: transformer.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (869 lines) | stat: -rw-r--r-- 32,195 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
# -*- coding: utf-8 -*-
# Authors: Mainak Jas <mainak@neuro.hut.fi>
#          Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Romain Trachel <trachelr@gmail.com>
#
# License: BSD (3-clause)

import numpy as np

from .mixin import TransformerMixin
from .base import BaseEstimator

from .. import pick_types
from ..filter import filter_data, _triage_filter_params
from ..time_frequency.psd import psd_array_multitaper
from ..externals.six import string_types
from ..utils import _check_type_picks, check_version
from ..io.pick import pick_info, _pick_data_channels, _picks_by_type
from ..cov import _check_scalings_user


class _ConstantScaler():
    """Scale channel types using constant values."""

    def __init__(self, info, scalings, do_scaling=True):
        self._scalings = scalings
        self._info = info
        self._do_scaling = do_scaling

    def fit(self, X, y=None):
        scalings = _check_scalings_user(self._scalings)
        picks_by_type = _picks_by_type(pick_info(
            self._info, _pick_data_channels(self._info, exclude=())))
        std = np.ones(sum(len(p[1]) for p in picks_by_type))
        if X.shape[1] != len(std):
            raise ValueError('info had %d data channels but X has %d channels'
                             % (len(std), len(X)))
        if self._do_scaling:  # this is silly, but necessary for completeness
            for kind, picks in picks_by_type:
                std[picks] = 1. / scalings[kind]
        self.std_ = std
        self.mean_ = np.zeros_like(std)
        return self

    def transform(self, X):
        return X / self.std_

    def inverse_transform(self, X, y=None):
        return X * self.std_

    def fit_transform(self, X, y=None):
        return self.fit(X, y).transform(X)


def _sklearn_reshape_apply(func, return_result, X, *args, **kwargs):
    """Reshape epochs and apply function."""
    if not isinstance(X, np.ndarray):
        raise ValueError("data should be an np.ndarray, got %s." % type(X))
    X = np.atleast_3d(X)
    orig_shape = X.shape
    X = np.reshape(X.transpose(0, 2, 1), (-1, orig_shape[1]))
    X = func(X, *args, **kwargs)
    if return_result:
        X.shape = (orig_shape[0], orig_shape[2], orig_shape[1])
        X = X.transpose(0, 2, 1)
        return X


class Scaler(TransformerMixin, BaseEstimator):
    u"""Standardize channel data.

    This class scales data for each channel. It differs from scikit-learn
    classes (e.g., :class:`sklearn.preprocessing.StandardScaler`) in that
    it scales each *channel* by estimating μ and σ using data from all
    time points and epochs, as opposed to standardizing each *feature*
    (i.e., each time point for each channel) by estimating using μ and σ
    using data from all epochs.

    Parameters
    ----------
    info : instance of Info | None
        The measurement info. Only necessary if ``scalings`` is a dict or
        None.
    scalings : dict, string, defaults to None.
        Scaling method to be applied to data channel wise.

        * if scalings is None (default), scales mag by 1e15, grad by 1e13,
          and eeg by 1e6.
        * if scalings is :class:`dict`, keys are channel types and values
          are scale factors.
        * if ``scalings=='median'``,
          :class:`sklearn.preprocessing.RobustScaler`
          is used (requires sklearn version 0.17+).
        * if ``scalings=='mean'``,
          :class:`sklearn.preprocessing.StandardScaler`
          is used.

    with_mean : boolean, True by default
        If True, center the data using mean (or median) before scaling.
        Ignored for channel-type scaling.
    with_std : boolean, True by default
        If True, scale the data to unit variance (``scalings='mean'``),
        quantile range (``scalings='median``), or using channel type
        if ``scalings`` is a dict or None).
    """

    def __init__(self, info=None, scalings=None, with_mean=True,
                 with_std=True):  # noqa: D102
        self.info = info
        self.with_mean = with_mean
        self.with_std = with_std
        self.scalings = scalings

        if not (scalings is None or isinstance(scalings, (dict, str))):
            raise ValueError('scalings type should be dict, str, or None, '
                             'got %s' % type(scalings))
        if isinstance(scalings, string_types) and \
                scalings not in ('mean', 'median'):
            raise ValueError('Invalid method for scaling, must be "mean" or '
                             '"median" but got %s' % scalings)
        if scalings is None or isinstance(scalings, dict):
            if info is None:
                raise ValueError('Need to specify "info" if scalings is'
                                 '%s' % type(scalings))
            self._scaler = _ConstantScaler(info, scalings, self.with_std)
        elif scalings == 'mean':
            from sklearn.preprocessing import StandardScaler
            self._scaler = StandardScaler(self.with_mean, self.with_std)
        else:  # scalings == 'median':
            if not check_version('sklearn', '0.17'):
                raise ValueError("median requires version 0.17 of "
                                 "sklearn library")
            from sklearn.preprocessing import RobustScaler
            self._scaler = RobustScaler(self.with_mean, self.with_std)

    def fit(self, epochs_data, y=None):
        """Standardize data across channels.

        Parameters
        ----------
        epochs_data : array, shape (n_epochs, n_channels, n_times)
            The data to concatenate channels.
        y : array, shape (n_epochs,)
            The label for each epoch.

        Returns
        -------
        self : instance of Scaler
            Returns the modified instance.
        """
        _sklearn_reshape_apply(self._scaler.fit, False, epochs_data, y=y)
        return self

    def transform(self, epochs_data):
        """Standardize data across channels.

        Parameters
        ----------
        epochs_data : array, shape (n_epochs, n_channels, n_times)
            The data.

        Returns
        -------
        X : array, shape (n_epochs, n_channels, n_times)
            The data concatenated over channels.

        Notes
        -----
        This function makes a copy of the data before the operations and the
        memory usage may be large with big data.
        """
        return _sklearn_reshape_apply(self._scaler.transform, True,
                                      epochs_data)

    def fit_transform(self, epochs_data, y=None):
        """Fit to data, then transform it.

        Fits transformer to epochs_data and y and returns a transformed version
        of epochs_data.

        Parameters
        ----------
        epochs_data : array, shape (n_epochs, n_channels, n_times)
            The data.
        y : None | array, shape (n_epochs,)
            The label for each epoch.
            Defaults to None.

        Returns
        -------
        X : array, shape (n_epochs, n_channels, n_times)
            The data concatenated over channels.

        Notes
        -----
        This function makes a copy of the data before the operations and the
        memory usage may be large with big data.
        """
        return self.fit(epochs_data, y).transform(epochs_data)

    def inverse_transform(self, epochs_data):
        """Invert standardization of data across channels.

        Parameters
        ----------
        epochs_data : array, shape (n_epochs, n_channels, n_times)
            The data.

        Returns
        -------
        X : array, shape (n_epochs, n_channels, n_times)
            The data concatenated over channels.

        Notes
        -----
        This function makes a copy of the data before the operations and the
        memory usage may be large with big data.
        """
        return _sklearn_reshape_apply(self._scaler.inverse_transform, True,
                                      epochs_data)


class Vectorizer(TransformerMixin):
    """Transform n-dimensional array into 2D array of n_samples by n_features.

    This class reshapes an n-dimensional array into an n_samples * n_features
    array, usable by the estimators and transformers of scikit-learn.

    Examples
    --------
    clf = make_pipeline(SpatialFilter(), _XdawnTransformer(), Vectorizer(),
                        LogisticRegression())

    Attributes
    ----------
    features_shape_ : tuple
         Stores the original shape of data.
    """

    def fit(self, X, y=None):
        """Store the shape of the features of X.

        Parameters
        ----------
        X : array-like
            The data to fit. Can be, for example a list, or an array of at
            least 2d. The first dimension must be of length n_samples, where
            samples are the independent samples used by the estimator
            (e.g. n_epochs for epoched data).
        y : None | array, shape (n_samples,)
            Used for scikit-learn compatibility.

        Returns
        -------
        self : Instance of Vectorizer
            Return the modified instance.
        """
        X = np.asarray(X)
        self.features_shape_ = X.shape[1:]
        return self

    def transform(self, X):
        """Convert given array into two dimensions.

        Parameters
        ----------
        X : array-like
            The data to fit. Can be, for example a list, or an array of at
            least 2d. The first dimension must be of length n_samples, where
            samples are the independent samples used by the estimator
            (e.g. n_epochs for epoched data).

        Returns
        -------
        X : array, shape (n_samples, n_features)
            The transformed data.
        """
        X = np.asarray(X)
        if X.shape[1:] != self.features_shape_:
            raise ValueError("Shape of X used in fit and transform must be "
                             "same")
        return X.reshape(len(X), -1)

    def fit_transform(self, X, y=None):
        """Fit the data, then transform in one step.

        Parameters
        ----------
        X : array-like
            The data to fit. Can be, for example a list, or an array of at
            least 2d. The first dimension must be of length n_samples, where
            samples are the independent samples used by the estimator
            (e.g. n_epochs for epoched data).
        y : None | array, shape (n_samples,)
            Used for scikit-learn compatibility.

        Returns
        -------
        X : array, shape (n_samples, -1)
            The transformed data.
        """
        return self.fit(X).transform(X)

    def inverse_transform(self, X):
        """Transform 2D data back to its original feature shape.

        Parameters
        ----------
        X : array-like, shape (n_samples,  n_features)
            Data to be transformed back to original shape.

        Returns
        -------
        X : array
            The data transformed into shape as used in fit. The first
            dimension is of length n_samples.
        """
        X = np.asarray(X)
        if X.ndim != 2:
            raise ValueError("X should be of 2 dimensions but given has %s "
                             "dimension(s)" % X.ndim)
        return X.reshape((len(X),) + self.features_shape_)


class PSDEstimator(TransformerMixin):
    """Compute power spectrum density (PSD) using a multi-taper method.

    Parameters
    ----------
    sfreq : float
        The sampling frequency.
    fmin : float
        The lower frequency of interest.
    fmax : float
        The upper frequency of interest.
    bandwidth : float
        The bandwidth of the multi taper windowing function in Hz.
    adaptive : bool
        Use adaptive weights to combine the tapered spectra into PSD
        (slow, use n_jobs >> 1 to speed up computation).
    low_bias : bool
        Only use tapers with more than 90% spectral concentration within
        bandwidth.
    n_jobs : int
        Number of parallel jobs to use (only used if adaptive=True).
    normalization : str
        Either "full" or "length" (default). If "full", the PSD will
        be normalized by the sampling rate as well as the length of
        the signal (as in nitime).
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    See Also
    --------
    mne.time_frequency.psd_multitaper
    """

    def __init__(self, sfreq=2 * np.pi, fmin=0, fmax=np.inf, bandwidth=None,
                 adaptive=False, low_bias=True, n_jobs=1,
                 normalization='length', verbose=None):  # noqa: D102
        self.sfreq = sfreq
        self.fmin = fmin
        self.fmax = fmax
        self.bandwidth = bandwidth
        self.adaptive = adaptive
        self.low_bias = low_bias
        self.n_jobs = n_jobs
        self.verbose = verbose
        self.normalization = normalization

    def fit(self, epochs_data, y):
        """Compute power spectrum density (PSD) using a multi-taper method.

        Parameters
        ----------
        epochs_data : array, shape (n_epochs, n_channels, n_times)
            The data.
        y : array, shape (n_epochs,)
            The label for each epoch

        Returns
        -------
        self : instance of PSDEstimator
            returns the modified instance
        """
        if not isinstance(epochs_data, np.ndarray):
            raise ValueError("epochs_data should be of type ndarray (got %s)."
                             % type(epochs_data))

        return self

    def transform(self, epochs_data):
        """Compute power spectrum density (PSD) using a multi-taper method.

        Parameters
        ----------
        epochs_data : array, shape (n_epochs, n_channels, n_times)
            The data

        Returns
        -------
        psd : array, shape (n_signals, len(freqs)) or (len(freqs),)
            The computed PSD.
        """
        if not isinstance(epochs_data, np.ndarray):
            raise ValueError("epochs_data should be of type ndarray (got %s)."
                             % type(epochs_data))
        psd, _ = psd_array_multitaper(
            epochs_data, sfreq=self.sfreq, fmin=self.fmin, fmax=self.fmax,
            bandwidth=self.bandwidth, adaptive=self.adaptive,
            low_bias=self.low_bias, normalization=self.normalization,
            n_jobs=self.n_jobs)
        return psd


class FilterEstimator(TransformerMixin):
    """Estimator to filter RtEpochs.

    Applies a zero-phase low-pass, high-pass, band-pass, or band-stop
    filter to the channels selected by "picks".

    l_freq and h_freq are the frequencies below which and above which,
    respectively, to filter out of the data. Thus the uses are:

        - l_freq < h_freq: band-pass filter
        - l_freq > h_freq: band-stop filter
        - l_freq is not None, h_freq is None: low-pass filter
        - l_freq is None, h_freq is not None: high-pass filter

    If n_jobs > 1, more memory is required as "len(picks) * n_times"
    additional time points need to be temporarily stored in memory.

    Parameters
    ----------
    info : instance of Info
        Measurement info.
    l_freq : float | None
        Low cut-off frequency in Hz. If None the data are only low-passed.
    h_freq : float | None
        High cut-off frequency in Hz. If None the data are only
        high-passed.
    picks : array-like of int | None
        Indices of channels to filter. If None only the data (MEG/EEG)
        channels will be filtered.
    filter_length : str (Default: '10s') | int | None
        Length of the filter to use. If None or "len(x) < filter_length",
        the filter length used is len(x). Otherwise, if int, overlap-add
        filtering with a filter of the specified length in samples) is
        used (faster for long signals). If str, a human-readable time in
        units of "s" or "ms" (e.g., "10s" or "5500ms") will be converted
        to the shortest power-of-two length at least that duration.
    l_trans_bandwidth : float
        Width of the transition band at the low cut-off frequency in Hz.
    h_trans_bandwidth : float
        Width of the transition band at the high cut-off frequency in Hz.
    n_jobs : int | str
        Number of jobs to run in parallel.
        Can be 'cuda' if ``cupy`` is installed properly and method='fir'.
    method : str
        'fir' will use overlap-add FIR filtering, 'iir' will use IIR
        forward-backward filtering (via filtfilt).
    iir_params : dict | None
        Dictionary of parameters to use for IIR filtering.
        See mne.filter.construct_iir_filter for details. If iir_params
        is None and method="iir", 4th order Butterworth will be used.
    fir_design : str
        Can be "firwin" (default in 0.16) to use
        :func:`scipy.signal.firwin`, or "firwin2" (default in 0.15 and
        before) to use :func:`scipy.signal.firwin2`. "firwin" uses a
        time-domain design technique that generally gives improved
        attenuation using fewer samples than "firwin2".

        ..versionadded:: 0.15
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more). Defaults to
        self.verbose.

    See Also
    --------
    TemporalFilter

    Notes
    -----
    This is primarily meant for use in conjunction with
    :class:`mne.realtime.RtEpochs`. In general it is not recommended in a
    normal processing pipeline as it may result in edge artifacts. Use with
    caution.
    """

    def __init__(self, info, l_freq, h_freq, picks=None, filter_length='auto',
                 l_trans_bandwidth='auto', h_trans_bandwidth='auto', n_jobs=1,
                 method='fir', iir_params=None, fir_design='firwin',
                 verbose=None):  # noqa: D102
        self.info = info
        self.l_freq = l_freq
        self.h_freq = h_freq
        self.picks = _check_type_picks(picks)
        self.filter_length = filter_length
        self.l_trans_bandwidth = l_trans_bandwidth
        self.h_trans_bandwidth = h_trans_bandwidth
        self.n_jobs = n_jobs
        self.method = method
        self.iir_params = iir_params
        self.fir_design = fir_design

    def fit(self, epochs_data, y):
        """Filter data.

        Parameters
        ----------
        epochs_data : array, shape (n_epochs, n_channels, n_times)
            The data.
        y : array, shape (n_epochs,)
            The label for each epoch.

        Returns
        -------
        self : instance of FilterEstimator
            Returns the modified instance
        """
        if not isinstance(epochs_data, np.ndarray):
            raise ValueError("epochs_data should be of type ndarray (got %s)."
                             % type(epochs_data))

        if self.picks is None:
            self.picks = pick_types(self.info, meg=True, eeg=True,
                                    ref_meg=False, exclude=[])

        if self.l_freq == 0:
            self.l_freq = None
        if self.h_freq is not None and self.h_freq > (self.info['sfreq'] / 2.):
            self.h_freq = None
        if self.l_freq is not None and not isinstance(self.l_freq, float):
            self.l_freq = float(self.l_freq)
        if self.h_freq is not None and not isinstance(self.h_freq, float):
            self.h_freq = float(self.h_freq)

        if self.info['lowpass'] is None or (self.h_freq is not None and
                                            (self.l_freq is None or
                                             self.l_freq < self.h_freq) and
                                            self.h_freq <
                                            self.info['lowpass']):
            self.info['lowpass'] = self.h_freq

        if self.info['highpass'] is None or (self.l_freq is not None and
                                             (self.h_freq is None or
                                              self.l_freq < self.h_freq) and
                                             self.l_freq >
                                             self.info['highpass']):
            self.info['highpass'] = self.l_freq

        return self

    def transform(self, epochs_data):
        """Filter data.

        Parameters
        ----------
        epochs_data : array, shape (n_epochs, n_channels, n_times)
            The data.

        Returns
        -------
        X : array, shape (n_epochs, n_channels, n_times)
            The data after filtering
        """
        if not isinstance(epochs_data, np.ndarray):
            raise ValueError("epochs_data should be of type ndarray (got %s)."
                             % type(epochs_data))
        epochs_data = np.atleast_3d(epochs_data)
        return filter_data(
            epochs_data, self.info['sfreq'], self.l_freq, self.h_freq,
            self.picks, self.filter_length, self.l_trans_bandwidth,
            self.h_trans_bandwidth, method=self.method,
            iir_params=self.iir_params, n_jobs=self.n_jobs, copy=False,
            fir_design=self.fir_design, verbose=False)


class UnsupervisedSpatialFilter(TransformerMixin, BaseEstimator):
    """Use unsupervised spatial filtering across time and samples.

    Parameters
    ----------
    estimator : scikit-learn estimator
        Estimator using some decomposition algorithm.
    average : bool, defaults to False
        If True, the estimator is fitted on the average across samples
        (e.g. epochs).
    """

    def __init__(self, estimator, average=False):  # noqa: D102
        # XXX: Use _check_estimator #3381
        for attr in ('fit', 'transform', 'fit_transform'):
            if not hasattr(estimator, attr):
                raise ValueError('estimator must be a scikit-learn '
                                 'transformer, missing %s method' % attr)

        if not isinstance(average, bool):
            raise ValueError("average parameter must be of bool type, got "
                             "%s instead" % type(bool))

        self.estimator = estimator
        self.average = average

    def fit(self, X, y=None):
        """Fit the spatial filters.

        Parameters
        ----------
        X : array, shape (n_epochs, n_channels, n_times)
            The data to be filtered.
        y : None | array, shape (n_samples,)
            Used for scikit-learn compatibility.

        Returns
        -------
        self : Instance of UnsupervisedSpatialFilter
            Return the modified instance.
        """
        if self.average:
            X = np.mean(X, axis=0).T
        else:
            n_epochs, n_channels, n_times = X.shape
            # trial as time samples
            X = np.transpose(X, (1, 0, 2)).reshape((n_channels, n_epochs *
                                                    n_times)).T
        self.estimator.fit(X)
        return self

    def fit_transform(self, X, y=None):
        """Transform the data to its filtered components after fitting.

        Parameters
        ----------
        X : array, shape (n_epochs, n_channels, n_times)
            The data to be filtered.
        y : None | array, shape (n_samples,)
            Used for scikit-learn compatibility.

        Returns
        -------
        X : array, shape (n_epochs, n_channels, n_times)
            The transformed data.
        """
        return self.fit(X).transform(X)

    def transform(self, X):
        """Transform the data to its spatial filters.

        Parameters
        ----------
        X : array, shape (n_epochs, n_channels, n_times)
            The data to be filtered.

        Returns
        -------
        X : array, shape (n_epochs, n_channels, n_times)
            The transformed data.
        """
        return self._apply_method(X, 'transform')

    def inverse_transform(self, X):
        """Inverse transform the data to its original space.

        Parameters
        ----------
        X : array, shape (n_epochs, n_components, n_times)
            The data to be inverted.

        Returns
        -------
        X : array, shape (n_epochs, n_channels, n_times)
            The transformed data.
        """
        return self._apply_method(X, 'inverse_transform')

    def _apply_method(self, X, method):
        """Vectorize time samples as trials, apply method and reshape back.

        Parameters
        ----------
        X : array, shape (n_epochs, n_dims, n_times)
            The data to be inverted.

        Returns
        -------
        X : array, shape (n_epochs, n_dims, n_times)
            The transformed data.
        """
        n_epochs, n_channels, n_times = X.shape
        # trial as time samples
        X = np.transpose(X, [1, 0, 2])
        X = np.reshape(X, [n_channels, n_epochs * n_times]).T
        # apply method
        method = getattr(self.estimator, method)
        X = method(X)
        # put it back to n_epochs, n_dimensions
        X = np.reshape(X.T, [-1, n_epochs, n_times]).transpose([1, 0, 2])
        return X


class TemporalFilter(TransformerMixin):
    """Estimator to filter data array along the last dimension.

    Applies a zero-phase low-pass, high-pass, band-pass, or band-stop
    filter to the channels.

    l_freq and h_freq are the frequencies below which and above which,
    respectively, to filter out of the data. Thus the uses are:

        - l_freq < h_freq: band-pass filter
        - l_freq > h_freq: band-stop filter
        - l_freq is not None, h_freq is None: low-pass filter
        - l_freq is None, h_freq is not None: high-pass filter

    See :func:`mne.filter.filter_data`.

    Parameters
    ----------
    l_freq : float | None
        Low cut-off frequency in Hz. If None the data are only low-passed.
    h_freq : float | None
        High cut-off frequency in Hz. If None the data are only
        high-passed.
    sfreq : float, defaults to 1.0
        Sampling frequency in Hz.
    filter_length : str | int, defaults to 'auto'
        Length of the FIR filter to use (if applicable):

            * int: specified length in samples.
            * 'auto' (default in 0.14): the filter length is chosen based
              on the size of the transition regions (7 times the reciprocal
              of the shortest transition band).
            * str: (default in 0.13 is "10s") a human-readable time in
              units of "s" or "ms" (e.g., "10s" or "5500ms") will be
              converted to that number of samples if ``phase="zero"``, or
              the shortest power-of-two length at least that duration for
              ``phase="zero-double"``.

    l_trans_bandwidth : float | str
        Width of the transition band at the low cut-off frequency in Hz
        (high pass or cutoff 1 in bandpass). Can be "auto"
        (default in 0.14) to use a multiple of ``l_freq``::

            min(max(l_freq * 0.25, 2), l_freq)

        Only used for ``method='fir'``.
    h_trans_bandwidth : float | str
        Width of the transition band at the high cut-off frequency in Hz
        (low pass or cutoff 2 in bandpass). Can be "auto"
        (default in 0.14) to use a multiple of ``h_freq``::

            min(max(h_freq * 0.25, 2.), info['sfreq'] / 2. - h_freq)

        Only used for ``method='fir'``.
    n_jobs : int | str, defaults to 1
        Number of jobs to run in parallel.
        Can be 'cuda' if ``cupy`` is installed properly and method='fir'.
    method : str, defaults to 'fir'
        'fir' will use overlap-add FIR filtering, 'iir' will use IIR
        forward-backward filtering (via filtfilt).
    iir_params : dict | None, defaults to None
        Dictionary of parameters to use for IIR filtering.
        See mne.filter.construct_iir_filter for details. If iir_params
        is None and method="iir", 4th order Butterworth will be used.
    fir_window : str, defaults to 'hamming'
        The window to use in FIR design, can be "hamming", "hann",
        or "blackman".
    fir_design : str
        Can be "firwin" (default) to use :func:`scipy.signal.firwin`,
        or "firwin2" to use :func:`scipy.signal.firwin2`. "firwin" uses
        a time-domain design technique that generally gives improved
        attenuation using fewer samples than "firwin2".

        ..versionadded:: 0.15
    verbose : bool, str, int, or None, defaults to None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more). Defaults to
        self.verbose.

    See Also
    --------
    FilterEstimator
    Vectorizer
    mne.filter.filter_data
    """

    def __init__(self, l_freq=None, h_freq=None, sfreq=1.0,
                 filter_length='auto', l_trans_bandwidth='auto',
                 h_trans_bandwidth='auto', n_jobs=1, method='fir',
                 iir_params=None, fir_window='hamming', fir_design='firwin',
                 verbose=None):  # noqa: D102
        self.l_freq = l_freq
        self.h_freq = h_freq
        self.sfreq = sfreq
        self.filter_length = filter_length
        self.l_trans_bandwidth = l_trans_bandwidth
        self.h_trans_bandwidth = h_trans_bandwidth
        self.n_jobs = n_jobs
        self.method = method
        self.iir_params = iir_params
        self.fir_window = fir_window
        self.fir_design = fir_design
        self.verbose = verbose

        if not isinstance(self.n_jobs, int) and self.n_jobs == 'cuda':
            raise ValueError('n_jobs must be int or "cuda", got %s instead.'
                             % type(self.n_jobs))

    def fit(self, X, y=None):
        """Do nothing (for scikit-learn compatibility purposes).

        Parameters
        ----------
        X : array, shape (n_epochs, n_channels, n_times) or or shape (n_channels, n_times) # noqa
            The data to be filtered over the last dimension. The channels
            dimension can be zero when passing a 2D array.
        y : None
            Not used, for scikit-learn compatibility issues.

        Returns
        -------
        self : instance of Filterer
            Returns the modified instance.
        """
        return self

    def transform(self, X):
        """Filter data along the last dimension.

        Parameters
        ----------
        X : array, shape (n_epochs, n_channels, n_times) or shape (n_channels, n_times) # noqa
            The data to be filtered over the last dimension. The channels
            dimension can be zero when passing a 2D array.

        Returns
        -------
        X : array, shape is same as used in input.
            The data after filtering.
        """
        X = np.atleast_2d(X)

        if X.ndim > 3:
            raise ValueError("Array must be of at max 3 dimensions instead "
                             "got %s dimensional matrix" % (X.ndim))

        shape = X.shape
        X = X.reshape(-1, shape[-1])
        (X, self.sfreq, self.l_freq, self.h_freq, self.l_trans_bandwidth,
         self.h_trans_bandwidth, self.filter_length, _, self.fir_window,
         self.fir_design) = \
            _triage_filter_params(X, self.sfreq, self.l_freq, self.h_freq,
                                  self.l_trans_bandwidth,
                                  self.h_trans_bandwidth, self.filter_length,
                                  self.method, phase='zero',
                                  fir_window=self.fir_window,
                                  fir_design=self.fir_design)
        X = filter_data(X, self.sfreq, self.l_freq, self.h_freq,
                        filter_length=self.filter_length,
                        l_trans_bandwidth=self.l_trans_bandwidth,
                        h_trans_bandwidth=self.h_trans_bandwidth,
                        n_jobs=self.n_jobs, method=self.method,
                        iir_params=self.iir_params, copy=False,
                        fir_window=self.fir_window, fir_design=self.fir_design,
                        verbose=self.verbose)
        return X.reshape(shape)