1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
|
# -*- coding: utf-8 -*-
# Authors: Mainak Jas <mainak@neuro.hut.fi>
# Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Romain Trachel <trachelr@gmail.com>
#
# License: BSD (3-clause)
import numpy as np
from .mixin import TransformerMixin
from .base import BaseEstimator
from .. import pick_types
from ..filter import filter_data, _triage_filter_params
from ..time_frequency.psd import psd_array_multitaper
from ..externals.six import string_types
from ..utils import _check_type_picks, check_version
from ..io.pick import pick_info, _pick_data_channels, _picks_by_type
from ..cov import _check_scalings_user
class _ConstantScaler():
"""Scale channel types using constant values."""
def __init__(self, info, scalings, do_scaling=True):
self._scalings = scalings
self._info = info
self._do_scaling = do_scaling
def fit(self, X, y=None):
scalings = _check_scalings_user(self._scalings)
picks_by_type = _picks_by_type(pick_info(
self._info, _pick_data_channels(self._info, exclude=())))
std = np.ones(sum(len(p[1]) for p in picks_by_type))
if X.shape[1] != len(std):
raise ValueError('info had %d data channels but X has %d channels'
% (len(std), len(X)))
if self._do_scaling: # this is silly, but necessary for completeness
for kind, picks in picks_by_type:
std[picks] = 1. / scalings[kind]
self.std_ = std
self.mean_ = np.zeros_like(std)
return self
def transform(self, X):
return X / self.std_
def inverse_transform(self, X, y=None):
return X * self.std_
def fit_transform(self, X, y=None):
return self.fit(X, y).transform(X)
def _sklearn_reshape_apply(func, return_result, X, *args, **kwargs):
"""Reshape epochs and apply function."""
if not isinstance(X, np.ndarray):
raise ValueError("data should be an np.ndarray, got %s." % type(X))
X = np.atleast_3d(X)
orig_shape = X.shape
X = np.reshape(X.transpose(0, 2, 1), (-1, orig_shape[1]))
X = func(X, *args, **kwargs)
if return_result:
X.shape = (orig_shape[0], orig_shape[2], orig_shape[1])
X = X.transpose(0, 2, 1)
return X
class Scaler(TransformerMixin, BaseEstimator):
u"""Standardize channel data.
This class scales data for each channel. It differs from scikit-learn
classes (e.g., :class:`sklearn.preprocessing.StandardScaler`) in that
it scales each *channel* by estimating μ and σ using data from all
time points and epochs, as opposed to standardizing each *feature*
(i.e., each time point for each channel) by estimating using μ and σ
using data from all epochs.
Parameters
----------
info : instance of Info | None
The measurement info. Only necessary if ``scalings`` is a dict or
None.
scalings : dict, string, defaults to None.
Scaling method to be applied to data channel wise.
* if scalings is None (default), scales mag by 1e15, grad by 1e13,
and eeg by 1e6.
* if scalings is :class:`dict`, keys are channel types and values
are scale factors.
* if ``scalings=='median'``,
:class:`sklearn.preprocessing.RobustScaler`
is used (requires sklearn version 0.17+).
* if ``scalings=='mean'``,
:class:`sklearn.preprocessing.StandardScaler`
is used.
with_mean : boolean, True by default
If True, center the data using mean (or median) before scaling.
Ignored for channel-type scaling.
with_std : boolean, True by default
If True, scale the data to unit variance (``scalings='mean'``),
quantile range (``scalings='median``), or using channel type
if ``scalings`` is a dict or None).
"""
def __init__(self, info=None, scalings=None, with_mean=True,
with_std=True): # noqa: D102
self.info = info
self.with_mean = with_mean
self.with_std = with_std
self.scalings = scalings
if not (scalings is None or isinstance(scalings, (dict, str))):
raise ValueError('scalings type should be dict, str, or None, '
'got %s' % type(scalings))
if isinstance(scalings, string_types) and \
scalings not in ('mean', 'median'):
raise ValueError('Invalid method for scaling, must be "mean" or '
'"median" but got %s' % scalings)
if scalings is None or isinstance(scalings, dict):
if info is None:
raise ValueError('Need to specify "info" if scalings is'
'%s' % type(scalings))
self._scaler = _ConstantScaler(info, scalings, self.with_std)
elif scalings == 'mean':
from sklearn.preprocessing import StandardScaler
self._scaler = StandardScaler(self.with_mean, self.with_std)
else: # scalings == 'median':
if not check_version('sklearn', '0.17'):
raise ValueError("median requires version 0.17 of "
"sklearn library")
from sklearn.preprocessing import RobustScaler
self._scaler = RobustScaler(self.with_mean, self.with_std)
def fit(self, epochs_data, y=None):
"""Standardize data across channels.
Parameters
----------
epochs_data : array, shape (n_epochs, n_channels, n_times)
The data to concatenate channels.
y : array, shape (n_epochs,)
The label for each epoch.
Returns
-------
self : instance of Scaler
Returns the modified instance.
"""
_sklearn_reshape_apply(self._scaler.fit, False, epochs_data, y=y)
return self
def transform(self, epochs_data):
"""Standardize data across channels.
Parameters
----------
epochs_data : array, shape (n_epochs, n_channels, n_times)
The data.
Returns
-------
X : array, shape (n_epochs, n_channels, n_times)
The data concatenated over channels.
Notes
-----
This function makes a copy of the data before the operations and the
memory usage may be large with big data.
"""
return _sklearn_reshape_apply(self._scaler.transform, True,
epochs_data)
def fit_transform(self, epochs_data, y=None):
"""Fit to data, then transform it.
Fits transformer to epochs_data and y and returns a transformed version
of epochs_data.
Parameters
----------
epochs_data : array, shape (n_epochs, n_channels, n_times)
The data.
y : None | array, shape (n_epochs,)
The label for each epoch.
Defaults to None.
Returns
-------
X : array, shape (n_epochs, n_channels, n_times)
The data concatenated over channels.
Notes
-----
This function makes a copy of the data before the operations and the
memory usage may be large with big data.
"""
return self.fit(epochs_data, y).transform(epochs_data)
def inverse_transform(self, epochs_data):
"""Invert standardization of data across channels.
Parameters
----------
epochs_data : array, shape (n_epochs, n_channels, n_times)
The data.
Returns
-------
X : array, shape (n_epochs, n_channels, n_times)
The data concatenated over channels.
Notes
-----
This function makes a copy of the data before the operations and the
memory usage may be large with big data.
"""
return _sklearn_reshape_apply(self._scaler.inverse_transform, True,
epochs_data)
class Vectorizer(TransformerMixin):
"""Transform n-dimensional array into 2D array of n_samples by n_features.
This class reshapes an n-dimensional array into an n_samples * n_features
array, usable by the estimators and transformers of scikit-learn.
Examples
--------
clf = make_pipeline(SpatialFilter(), _XdawnTransformer(), Vectorizer(),
LogisticRegression())
Attributes
----------
features_shape_ : tuple
Stores the original shape of data.
"""
def fit(self, X, y=None):
"""Store the shape of the features of X.
Parameters
----------
X : array-like
The data to fit. Can be, for example a list, or an array of at
least 2d. The first dimension must be of length n_samples, where
samples are the independent samples used by the estimator
(e.g. n_epochs for epoched data).
y : None | array, shape (n_samples,)
Used for scikit-learn compatibility.
Returns
-------
self : Instance of Vectorizer
Return the modified instance.
"""
X = np.asarray(X)
self.features_shape_ = X.shape[1:]
return self
def transform(self, X):
"""Convert given array into two dimensions.
Parameters
----------
X : array-like
The data to fit. Can be, for example a list, or an array of at
least 2d. The first dimension must be of length n_samples, where
samples are the independent samples used by the estimator
(e.g. n_epochs for epoched data).
Returns
-------
X : array, shape (n_samples, n_features)
The transformed data.
"""
X = np.asarray(X)
if X.shape[1:] != self.features_shape_:
raise ValueError("Shape of X used in fit and transform must be "
"same")
return X.reshape(len(X), -1)
def fit_transform(self, X, y=None):
"""Fit the data, then transform in one step.
Parameters
----------
X : array-like
The data to fit. Can be, for example a list, or an array of at
least 2d. The first dimension must be of length n_samples, where
samples are the independent samples used by the estimator
(e.g. n_epochs for epoched data).
y : None | array, shape (n_samples,)
Used for scikit-learn compatibility.
Returns
-------
X : array, shape (n_samples, -1)
The transformed data.
"""
return self.fit(X).transform(X)
def inverse_transform(self, X):
"""Transform 2D data back to its original feature shape.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Data to be transformed back to original shape.
Returns
-------
X : array
The data transformed into shape as used in fit. The first
dimension is of length n_samples.
"""
X = np.asarray(X)
if X.ndim != 2:
raise ValueError("X should be of 2 dimensions but given has %s "
"dimension(s)" % X.ndim)
return X.reshape((len(X),) + self.features_shape_)
class PSDEstimator(TransformerMixin):
"""Compute power spectrum density (PSD) using a multi-taper method.
Parameters
----------
sfreq : float
The sampling frequency.
fmin : float
The lower frequency of interest.
fmax : float
The upper frequency of interest.
bandwidth : float
The bandwidth of the multi taper windowing function in Hz.
adaptive : bool
Use adaptive weights to combine the tapered spectra into PSD
(slow, use n_jobs >> 1 to speed up computation).
low_bias : bool
Only use tapers with more than 90% spectral concentration within
bandwidth.
n_jobs : int
Number of parallel jobs to use (only used if adaptive=True).
normalization : str
Either "full" or "length" (default). If "full", the PSD will
be normalized by the sampling rate as well as the length of
the signal (as in nitime).
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
See Also
--------
mne.time_frequency.psd_multitaper
"""
def __init__(self, sfreq=2 * np.pi, fmin=0, fmax=np.inf, bandwidth=None,
adaptive=False, low_bias=True, n_jobs=1,
normalization='length', verbose=None): # noqa: D102
self.sfreq = sfreq
self.fmin = fmin
self.fmax = fmax
self.bandwidth = bandwidth
self.adaptive = adaptive
self.low_bias = low_bias
self.n_jobs = n_jobs
self.verbose = verbose
self.normalization = normalization
def fit(self, epochs_data, y):
"""Compute power spectrum density (PSD) using a multi-taper method.
Parameters
----------
epochs_data : array, shape (n_epochs, n_channels, n_times)
The data.
y : array, shape (n_epochs,)
The label for each epoch
Returns
-------
self : instance of PSDEstimator
returns the modified instance
"""
if not isinstance(epochs_data, np.ndarray):
raise ValueError("epochs_data should be of type ndarray (got %s)."
% type(epochs_data))
return self
def transform(self, epochs_data):
"""Compute power spectrum density (PSD) using a multi-taper method.
Parameters
----------
epochs_data : array, shape (n_epochs, n_channels, n_times)
The data
Returns
-------
psd : array, shape (n_signals, len(freqs)) or (len(freqs),)
The computed PSD.
"""
if not isinstance(epochs_data, np.ndarray):
raise ValueError("epochs_data should be of type ndarray (got %s)."
% type(epochs_data))
psd, _ = psd_array_multitaper(
epochs_data, sfreq=self.sfreq, fmin=self.fmin, fmax=self.fmax,
bandwidth=self.bandwidth, adaptive=self.adaptive,
low_bias=self.low_bias, normalization=self.normalization,
n_jobs=self.n_jobs)
return psd
class FilterEstimator(TransformerMixin):
"""Estimator to filter RtEpochs.
Applies a zero-phase low-pass, high-pass, band-pass, or band-stop
filter to the channels selected by "picks".
l_freq and h_freq are the frequencies below which and above which,
respectively, to filter out of the data. Thus the uses are:
- l_freq < h_freq: band-pass filter
- l_freq > h_freq: band-stop filter
- l_freq is not None, h_freq is None: low-pass filter
- l_freq is None, h_freq is not None: high-pass filter
If n_jobs > 1, more memory is required as "len(picks) * n_times"
additional time points need to be temporarily stored in memory.
Parameters
----------
info : instance of Info
Measurement info.
l_freq : float | None
Low cut-off frequency in Hz. If None the data are only low-passed.
h_freq : float | None
High cut-off frequency in Hz. If None the data are only
high-passed.
picks : array-like of int | None
Indices of channels to filter. If None only the data (MEG/EEG)
channels will be filtered.
filter_length : str (Default: '10s') | int | None
Length of the filter to use. If None or "len(x) < filter_length",
the filter length used is len(x). Otherwise, if int, overlap-add
filtering with a filter of the specified length in samples) is
used (faster for long signals). If str, a human-readable time in
units of "s" or "ms" (e.g., "10s" or "5500ms") will be converted
to the shortest power-of-two length at least that duration.
l_trans_bandwidth : float
Width of the transition band at the low cut-off frequency in Hz.
h_trans_bandwidth : float
Width of the transition band at the high cut-off frequency in Hz.
n_jobs : int | str
Number of jobs to run in parallel.
Can be 'cuda' if ``cupy`` is installed properly and method='fir'.
method : str
'fir' will use overlap-add FIR filtering, 'iir' will use IIR
forward-backward filtering (via filtfilt).
iir_params : dict | None
Dictionary of parameters to use for IIR filtering.
See mne.filter.construct_iir_filter for details. If iir_params
is None and method="iir", 4th order Butterworth will be used.
fir_design : str
Can be "firwin" (default in 0.16) to use
:func:`scipy.signal.firwin`, or "firwin2" (default in 0.15 and
before) to use :func:`scipy.signal.firwin2`. "firwin" uses a
time-domain design technique that generally gives improved
attenuation using fewer samples than "firwin2".
..versionadded:: 0.15
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more). Defaults to
self.verbose.
See Also
--------
TemporalFilter
Notes
-----
This is primarily meant for use in conjunction with
:class:`mne.realtime.RtEpochs`. In general it is not recommended in a
normal processing pipeline as it may result in edge artifacts. Use with
caution.
"""
def __init__(self, info, l_freq, h_freq, picks=None, filter_length='auto',
l_trans_bandwidth='auto', h_trans_bandwidth='auto', n_jobs=1,
method='fir', iir_params=None, fir_design='firwin',
verbose=None): # noqa: D102
self.info = info
self.l_freq = l_freq
self.h_freq = h_freq
self.picks = _check_type_picks(picks)
self.filter_length = filter_length
self.l_trans_bandwidth = l_trans_bandwidth
self.h_trans_bandwidth = h_trans_bandwidth
self.n_jobs = n_jobs
self.method = method
self.iir_params = iir_params
self.fir_design = fir_design
def fit(self, epochs_data, y):
"""Filter data.
Parameters
----------
epochs_data : array, shape (n_epochs, n_channels, n_times)
The data.
y : array, shape (n_epochs,)
The label for each epoch.
Returns
-------
self : instance of FilterEstimator
Returns the modified instance
"""
if not isinstance(epochs_data, np.ndarray):
raise ValueError("epochs_data should be of type ndarray (got %s)."
% type(epochs_data))
if self.picks is None:
self.picks = pick_types(self.info, meg=True, eeg=True,
ref_meg=False, exclude=[])
if self.l_freq == 0:
self.l_freq = None
if self.h_freq is not None and self.h_freq > (self.info['sfreq'] / 2.):
self.h_freq = None
if self.l_freq is not None and not isinstance(self.l_freq, float):
self.l_freq = float(self.l_freq)
if self.h_freq is not None and not isinstance(self.h_freq, float):
self.h_freq = float(self.h_freq)
if self.info['lowpass'] is None or (self.h_freq is not None and
(self.l_freq is None or
self.l_freq < self.h_freq) and
self.h_freq <
self.info['lowpass']):
self.info['lowpass'] = self.h_freq
if self.info['highpass'] is None or (self.l_freq is not None and
(self.h_freq is None or
self.l_freq < self.h_freq) and
self.l_freq >
self.info['highpass']):
self.info['highpass'] = self.l_freq
return self
def transform(self, epochs_data):
"""Filter data.
Parameters
----------
epochs_data : array, shape (n_epochs, n_channels, n_times)
The data.
Returns
-------
X : array, shape (n_epochs, n_channels, n_times)
The data after filtering
"""
if not isinstance(epochs_data, np.ndarray):
raise ValueError("epochs_data should be of type ndarray (got %s)."
% type(epochs_data))
epochs_data = np.atleast_3d(epochs_data)
return filter_data(
epochs_data, self.info['sfreq'], self.l_freq, self.h_freq,
self.picks, self.filter_length, self.l_trans_bandwidth,
self.h_trans_bandwidth, method=self.method,
iir_params=self.iir_params, n_jobs=self.n_jobs, copy=False,
fir_design=self.fir_design, verbose=False)
class UnsupervisedSpatialFilter(TransformerMixin, BaseEstimator):
"""Use unsupervised spatial filtering across time and samples.
Parameters
----------
estimator : scikit-learn estimator
Estimator using some decomposition algorithm.
average : bool, defaults to False
If True, the estimator is fitted on the average across samples
(e.g. epochs).
"""
def __init__(self, estimator, average=False): # noqa: D102
# XXX: Use _check_estimator #3381
for attr in ('fit', 'transform', 'fit_transform'):
if not hasattr(estimator, attr):
raise ValueError('estimator must be a scikit-learn '
'transformer, missing %s method' % attr)
if not isinstance(average, bool):
raise ValueError("average parameter must be of bool type, got "
"%s instead" % type(bool))
self.estimator = estimator
self.average = average
def fit(self, X, y=None):
"""Fit the spatial filters.
Parameters
----------
X : array, shape (n_epochs, n_channels, n_times)
The data to be filtered.
y : None | array, shape (n_samples,)
Used for scikit-learn compatibility.
Returns
-------
self : Instance of UnsupervisedSpatialFilter
Return the modified instance.
"""
if self.average:
X = np.mean(X, axis=0).T
else:
n_epochs, n_channels, n_times = X.shape
# trial as time samples
X = np.transpose(X, (1, 0, 2)).reshape((n_channels, n_epochs *
n_times)).T
self.estimator.fit(X)
return self
def fit_transform(self, X, y=None):
"""Transform the data to its filtered components after fitting.
Parameters
----------
X : array, shape (n_epochs, n_channels, n_times)
The data to be filtered.
y : None | array, shape (n_samples,)
Used for scikit-learn compatibility.
Returns
-------
X : array, shape (n_epochs, n_channels, n_times)
The transformed data.
"""
return self.fit(X).transform(X)
def transform(self, X):
"""Transform the data to its spatial filters.
Parameters
----------
X : array, shape (n_epochs, n_channels, n_times)
The data to be filtered.
Returns
-------
X : array, shape (n_epochs, n_channels, n_times)
The transformed data.
"""
return self._apply_method(X, 'transform')
def inverse_transform(self, X):
"""Inverse transform the data to its original space.
Parameters
----------
X : array, shape (n_epochs, n_components, n_times)
The data to be inverted.
Returns
-------
X : array, shape (n_epochs, n_channels, n_times)
The transformed data.
"""
return self._apply_method(X, 'inverse_transform')
def _apply_method(self, X, method):
"""Vectorize time samples as trials, apply method and reshape back.
Parameters
----------
X : array, shape (n_epochs, n_dims, n_times)
The data to be inverted.
Returns
-------
X : array, shape (n_epochs, n_dims, n_times)
The transformed data.
"""
n_epochs, n_channels, n_times = X.shape
# trial as time samples
X = np.transpose(X, [1, 0, 2])
X = np.reshape(X, [n_channels, n_epochs * n_times]).T
# apply method
method = getattr(self.estimator, method)
X = method(X)
# put it back to n_epochs, n_dimensions
X = np.reshape(X.T, [-1, n_epochs, n_times]).transpose([1, 0, 2])
return X
class TemporalFilter(TransformerMixin):
"""Estimator to filter data array along the last dimension.
Applies a zero-phase low-pass, high-pass, band-pass, or band-stop
filter to the channels.
l_freq and h_freq are the frequencies below which and above which,
respectively, to filter out of the data. Thus the uses are:
- l_freq < h_freq: band-pass filter
- l_freq > h_freq: band-stop filter
- l_freq is not None, h_freq is None: low-pass filter
- l_freq is None, h_freq is not None: high-pass filter
See :func:`mne.filter.filter_data`.
Parameters
----------
l_freq : float | None
Low cut-off frequency in Hz. If None the data are only low-passed.
h_freq : float | None
High cut-off frequency in Hz. If None the data are only
high-passed.
sfreq : float, defaults to 1.0
Sampling frequency in Hz.
filter_length : str | int, defaults to 'auto'
Length of the FIR filter to use (if applicable):
* int: specified length in samples.
* 'auto' (default in 0.14): the filter length is chosen based
on the size of the transition regions (7 times the reciprocal
of the shortest transition band).
* str: (default in 0.13 is "10s") a human-readable time in
units of "s" or "ms" (e.g., "10s" or "5500ms") will be
converted to that number of samples if ``phase="zero"``, or
the shortest power-of-two length at least that duration for
``phase="zero-double"``.
l_trans_bandwidth : float | str
Width of the transition band at the low cut-off frequency in Hz
(high pass or cutoff 1 in bandpass). Can be "auto"
(default in 0.14) to use a multiple of ``l_freq``::
min(max(l_freq * 0.25, 2), l_freq)
Only used for ``method='fir'``.
h_trans_bandwidth : float | str
Width of the transition band at the high cut-off frequency in Hz
(low pass or cutoff 2 in bandpass). Can be "auto"
(default in 0.14) to use a multiple of ``h_freq``::
min(max(h_freq * 0.25, 2.), info['sfreq'] / 2. - h_freq)
Only used for ``method='fir'``.
n_jobs : int | str, defaults to 1
Number of jobs to run in parallel.
Can be 'cuda' if ``cupy`` is installed properly and method='fir'.
method : str, defaults to 'fir'
'fir' will use overlap-add FIR filtering, 'iir' will use IIR
forward-backward filtering (via filtfilt).
iir_params : dict | None, defaults to None
Dictionary of parameters to use for IIR filtering.
See mne.filter.construct_iir_filter for details. If iir_params
is None and method="iir", 4th order Butterworth will be used.
fir_window : str, defaults to 'hamming'
The window to use in FIR design, can be "hamming", "hann",
or "blackman".
fir_design : str
Can be "firwin" (default) to use :func:`scipy.signal.firwin`,
or "firwin2" to use :func:`scipy.signal.firwin2`. "firwin" uses
a time-domain design technique that generally gives improved
attenuation using fewer samples than "firwin2".
..versionadded:: 0.15
verbose : bool, str, int, or None, defaults to None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more). Defaults to
self.verbose.
See Also
--------
FilterEstimator
Vectorizer
mne.filter.filter_data
"""
def __init__(self, l_freq=None, h_freq=None, sfreq=1.0,
filter_length='auto', l_trans_bandwidth='auto',
h_trans_bandwidth='auto', n_jobs=1, method='fir',
iir_params=None, fir_window='hamming', fir_design='firwin',
verbose=None): # noqa: D102
self.l_freq = l_freq
self.h_freq = h_freq
self.sfreq = sfreq
self.filter_length = filter_length
self.l_trans_bandwidth = l_trans_bandwidth
self.h_trans_bandwidth = h_trans_bandwidth
self.n_jobs = n_jobs
self.method = method
self.iir_params = iir_params
self.fir_window = fir_window
self.fir_design = fir_design
self.verbose = verbose
if not isinstance(self.n_jobs, int) and self.n_jobs == 'cuda':
raise ValueError('n_jobs must be int or "cuda", got %s instead.'
% type(self.n_jobs))
def fit(self, X, y=None):
"""Do nothing (for scikit-learn compatibility purposes).
Parameters
----------
X : array, shape (n_epochs, n_channels, n_times) or or shape (n_channels, n_times) # noqa
The data to be filtered over the last dimension. The channels
dimension can be zero when passing a 2D array.
y : None
Not used, for scikit-learn compatibility issues.
Returns
-------
self : instance of Filterer
Returns the modified instance.
"""
return self
def transform(self, X):
"""Filter data along the last dimension.
Parameters
----------
X : array, shape (n_epochs, n_channels, n_times) or shape (n_channels, n_times) # noqa
The data to be filtered over the last dimension. The channels
dimension can be zero when passing a 2D array.
Returns
-------
X : array, shape is same as used in input.
The data after filtering.
"""
X = np.atleast_2d(X)
if X.ndim > 3:
raise ValueError("Array must be of at max 3 dimensions instead "
"got %s dimensional matrix" % (X.ndim))
shape = X.shape
X = X.reshape(-1, shape[-1])
(X, self.sfreq, self.l_freq, self.h_freq, self.l_trans_bandwidth,
self.h_trans_bandwidth, self.filter_length, _, self.fir_window,
self.fir_design) = \
_triage_filter_params(X, self.sfreq, self.l_freq, self.h_freq,
self.l_trans_bandwidth,
self.h_trans_bandwidth, self.filter_length,
self.method, phase='zero',
fir_window=self.fir_window,
fir_design=self.fir_design)
X = filter_data(X, self.sfreq, self.l_freq, self.h_freq,
filter_length=self.filter_length,
l_trans_bandwidth=self.l_trans_bandwidth,
h_trans_bandwidth=self.h_trans_bandwidth,
n_jobs=self.n_jobs, method=self.method,
iir_params=self.iir_params, copy=False,
fir_window=self.fir_window, fir_design=self.fir_design,
verbose=self.verbose)
return X.reshape(shape)
|