1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
|
# -*- coding: utf-8 -*-
"""Single-dipole functions and classes."""
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Eric Larson <larson.eric.d@gmail.com>
#
# License: Simplified BSD
from copy import deepcopy
from functools import partial
import re
import numpy as np
from scipy import linalg
from .cov import read_cov, compute_whitener
from .io.constants import FIFF
from .io.pick import pick_types, channel_type
from .io.proj import make_projector, _needs_eeg_average_ref_proj
from .bem import _fit_sphere
from .evoked import _read_evoked, _aspect_rev, _write_evokeds
from .transforms import _print_coord_trans, _coord_frame_name, apply_trans
from .viz.evoked import _plot_evoked
from .forward._make_forward import (_get_trans, _setup_bem,
_prep_meg_channels, _prep_eeg_channels)
from .forward._compute_forward import (_compute_forwards_meeg,
_prep_field_computation)
from .externals.six import string_types
from .surface import transform_surface_to, _compute_nearest
from .bem import _bem_find_surface, _bem_explain_surface
from .source_space import (_make_volume_source_space, SourceSpaces,
_points_outside_surface)
from .parallel import parallel_func
from .utils import (logger, verbose, _time_mask, warn, _check_fname,
check_fname, _pl)
class Dipole(object):
u"""Dipole class for sequential dipole fits.
.. note:: This class should usually not be instantiated directly,
instead :func:`mne.read_dipole` should be used.
Used to store positions, orientations, amplitudes, times, goodness of fit
of dipoles, typically obtained with Neuromag/xfit, mne_dipole_fit
or certain inverse solvers. Note that dipole position vectors are given in
the head coordinate frame.
Parameters
----------
times : array, shape (n_dipoles,)
The time instants at which each dipole was fitted (sec).
pos : array, shape (n_dipoles, 3)
The dipoles positions (m) in head coordinates.
amplitude : array, shape (n_dipoles,)
The amplitude of the dipoles (Am).
ori : array, shape (n_dipoles, 3)
The dipole orientations (normalized to unit length).
gof : array, shape (n_dipoles,)
The goodness of fit.
name : str | None
Name of the dipole.
conf : dict
Confidence limits in dipole orientation for "vol" in m^3 (volume),
"depth" in m (along the depth axis), "long" in m (longitudinal axis),
"trans" in m (transverse axis), "qlong" in Am, and "qtrans" in Am
(currents). The current confidence limit in the depth direction is
assumed to be zero (although it can be non-zero when a BEM is used).
.. versionadded:: 0.15
khi2 : array, shape (n_dipoles,)
The χ^2 values for the fits.
.. versionadded:: 0.15
nfree : array, shape (n_dipoles,)
The number of free parameters for each fit.
.. versionadded:: 0.15
See Also
--------
fit_dipole
DipoleFixed
read_dipole
Notes
-----
This class is for sequential dipole fits, where the position
changes as a function of time. For fixed dipole fits, where the
position is fixed as a function of time, use :class:`mne.DipoleFixed`.
"""
def __init__(self, times, pos, amplitude, ori, gof,
name=None, conf=None, khi2=None, nfree=None): # noqa: D102
self.times = np.array(times)
self.pos = np.array(pos)
self.amplitude = np.array(amplitude)
self.ori = np.array(ori)
self.gof = np.array(gof)
self.name = name
self.conf = deepcopy(conf) if conf is not None else dict()
self.khi2 = np.array(khi2) if khi2 is not None else None
self.nfree = np.array(nfree) if nfree is not None else None
def __repr__(self): # noqa: D105
s = "n_times : %s" % len(self.times)
s += ", tmin : %0.3f" % np.min(self.times)
s += ", tmax : %0.3f" % np.max(self.times)
return "<Dipole | %s>" % s
def save(self, fname):
"""Save dipole in a .dip file.
Parameters
----------
fname : str
The name of the .dip file.
"""
# obligatory fields
fmt = ' %7.1f %7.1f %8.2f %8.2f %8.2f %8.3f %8.3f %8.3f %8.3f %6.2f'
header = ('# begin end X (mm) Y (mm) Z (mm)'
' Q(nAm) Qx(nAm) Qy(nAm) Qz(nAm) g/%')
t = self.times[:, np.newaxis] * 1000.
gof = self.gof[:, np.newaxis]
amp = 1e9 * self.amplitude[:, np.newaxis]
out = (t, t, self.pos / 1e-3, amp, self.ori * amp, gof)
# optional fields
fmts = dict(khi2=(' khi^2', ' %8.1f', 1.),
nfree=(' free', ' %5d', 1),
vol=(' vol/mm^3', ' %9.3f', 1e9),
depth=(' depth/mm', ' %9.3f', 1e3),
long=(' long/mm', ' %8.3f', 1e3),
trans=(' trans/mm', ' %9.3f', 1e3),
qlong=(' Qlong/nAm', ' %10.3f', 1e9),
qtrans=(' Qtrans/nAm', ' %11.3f', 1e9),
)
for key in ('khi2', 'nfree'):
data = getattr(self, key)
if data is not None:
header += fmts[key][0]
fmt += fmts[key][1]
out += (data[:, np.newaxis] * fmts[key][2],)
for key in ('vol', 'depth', 'long', 'trans', 'qlong', 'qtrans'):
data = self.conf.get(key)
if data is not None:
header += fmts[key][0]
fmt += fmts[key][1]
out += (data[:, np.newaxis] * fmts[key][2],)
out = np.concatenate(out, axis=-1)
# NB CoordinateSystem is hard-coded as Head here
with open(fname, 'wb') as fid:
fid.write('# CoordinateSystem "Head"\n'.encode('utf-8'))
fid.write((header + '\n').encode('utf-8'))
np.savetxt(fid, out, fmt=fmt)
if self.name is not None:
fid.write(('## Name "%s dipoles" Style "Dipoles"'
% self.name).encode('utf-8'))
def crop(self, tmin=None, tmax=None):
"""Crop data to a given time interval.
Parameters
----------
tmin : float | None
Start time of selection in seconds.
tmax : float | None
End time of selection in seconds.
Returns
-------
self : instance of Dipole
The cropped instance.
"""
sfreq = None
if len(self.times) > 1:
sfreq = 1. / np.median(np.diff(self.times))
mask = _time_mask(self.times, tmin, tmax, sfreq=sfreq)
for attr in ('times', 'pos', 'gof', 'amplitude', 'ori',
'khi2', 'nfree'):
if getattr(self, attr) is not None:
setattr(self, attr, getattr(self, attr)[mask])
for key in self.conf.keys():
self.conf[key] = self.conf[key][mask]
return self
def copy(self):
"""Copy the Dipoles object.
Returns
-------
dip : instance of Dipole
The copied dipole instance.
"""
return deepcopy(self)
@verbose
def plot_locations(self, trans, subject, subjects_dir=None,
mode='orthoview', coord_frame='mri', idx='gof',
show_all=True, ax=None, block=False, show=True,
verbose=None):
"""Plot dipole locations in 3d.
Parameters
----------
trans : dict
The mri to head trans.
subject : str
The subject name corresponding to FreeSurfer environment
variable SUBJECT.
subjects_dir : None | str
The path to the freesurfer subjects reconstructions.
It corresponds to Freesurfer environment variable SUBJECTS_DIR.
The default is None.
mode : str
Currently only ``'orthoview'`` is supported.
.. versionadded:: 0.14.0
coord_frame : str
Coordinate frame to use, 'head' or 'mri'. Defaults to 'mri'.
.. versionadded:: 0.14.0
idx : int | 'gof' | 'amplitude'
Index of the initially plotted dipole. Can also be 'gof' to plot
the dipole with highest goodness of fit value or 'amplitude' to
plot the dipole with the highest amplitude. The dipoles can also be
browsed through using up/down arrow keys or mouse scroll. Defaults
to 'gof'. Only used if mode equals 'orthoview'.
.. versionadded:: 0.14.0
show_all : bool
Whether to always plot all the dipoles. If True (default), the
active dipole is plotted as a red dot and it's location determines
the shown MRI slices. The the non-active dipoles are plotted as
small blue dots. If False, only the active dipole is plotted.
Only used if mode equals 'orthoview'.
.. versionadded:: 0.14.0
ax : instance of matplotlib Axes3D | None
Axes to plot into. If None (default), axes will be created.
Only used if mode equals 'orthoview'.
.. versionadded:: 0.14.0
block : bool
Whether to halt program execution until the figure is closed.
Defaults to False. Only used if mode equals 'orthoview'.
.. versionadded:: 0.14.0
show : bool
Show figure if True. Defaults to True.
Only used if mode equals 'orthoview'.
.. versionadded:: 0.14.0
verbose : bool, str, int, or None
If not None, override default verbose level (see
:func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
for more).
Returns
-------
fig : instance of mlab.Figure or matplotlib Figure
The mayavi figure or matplotlib Figure.
Notes
-----
.. versionadded:: 0.9.0
"""
from .viz import plot_dipole_locations
dipoles = self
if mode in [None, 'cone', 'sphere']: # support old behavior
dipoles = []
for t in self.times:
dipoles.append(self.copy())
dipoles[-1].crop(t, t)
elif mode != 'orthoview':
raise ValueError("mode must be 'cone', 'sphere' or 'orthoview'. "
"Got %s." % mode)
return plot_dipole_locations(
dipoles, trans, subject, subjects_dir, mode, coord_frame, idx,
show_all, ax, block, show)
def plot_amplitudes(self, color='k', show=True):
"""Plot the dipole amplitudes as a function of time.
Parameters
----------
color: matplotlib Color
Color to use for the trace.
show : bool
Show figure if True.
Returns
-------
fig : matplotlib.figure.Figure
The figure object containing the plot.
"""
from .viz import plot_dipole_amplitudes
return plot_dipole_amplitudes([self], [color], show)
def __getitem__(self, item):
"""Get a time slice.
Parameters
----------
item : array-like or slice
The slice of time points to use.
Returns
-------
dip : instance of Dipole
The sliced dipole.
"""
if isinstance(item, int): # make sure attributes stay 2d
item = [item]
selected_times = self.times[item].copy()
selected_pos = self.pos[item, :].copy()
selected_amplitude = self.amplitude[item].copy()
selected_ori = self.ori[item, :].copy()
selected_gof = self.gof[item].copy()
selected_name = self.name
selected_conf = dict()
for key in self.conf.keys():
selected_conf[key] = self.conf[key][item]
selected_khi2 = self.khi2[item] if self.khi2 is not None else None
selected_nfree = self.nfree[item] if self.nfree is not None else None
return Dipole(
selected_times, selected_pos, selected_amplitude, selected_ori,
selected_gof, selected_name, selected_conf, selected_khi2,
selected_nfree)
def __len__(self):
"""Return the number of dipoles.
Returns
-------
len : int
The number of dipoles.
Examples
--------
This can be used as::
>>> len(dipoles) # doctest: +SKIP
10
"""
return self.pos.shape[0]
def _read_dipole_fixed(fname):
"""Read a fixed dipole FIF file."""
logger.info('Reading %s ...' % fname)
info, nave, aspect_kind, first, last, comment, times, data = \
_read_evoked(fname)
return DipoleFixed(info, data, times, nave, aspect_kind, first, last,
comment)
class DipoleFixed(object):
"""Dipole class for fixed-position dipole fits.
.. note:: This class should usually not be instantiated directly,
instead :func:`mne.read_dipole` should be used.
Parameters
----------
info : instance of Info
The measurement info.
data : array, shape (n_channels, n_times)
The dipole data.
times : array, shape (n_times,)
The time points.
nave : int
Number of averages.
aspect_kind : int
The kind of data.
first : int
First sample.
last : int
Last sample.
comment : str
The dipole comment.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
See Also
--------
read_dipole
Dipole
fit_dipole
Notes
-----
This class is for fixed-position dipole fits, where the position
(and maybe orientation) is static over time. For sequential dipole fits,
where the position can change a function of time, use :class:`mne.Dipole`.
.. versionadded:: 0.12
"""
@verbose
def __init__(self, info, data, times, nave, aspect_kind, first, last,
comment, verbose=None): # noqa: D102
self.info = info
self.nave = nave
self._aspect_kind = aspect_kind
self.kind = _aspect_rev.get(str(aspect_kind), 'Unknown')
self.first = first
self.last = last
self.comment = comment
self.times = times
self.data = data
self.verbose = verbose
def __repr__(self): # noqa: D105
s = "n_times : %s" % len(self.times)
s += ", tmin : %s" % np.min(self.times)
s += ", tmax : %s" % np.max(self.times)
return "<DipoleFixed | %s>" % s
def copy(self):
"""Copy the DipoleFixed object.
Returns
-------
inst : instance of DipoleFixed
The copy.
Notes
-----
.. versionadded:: 0.16
"""
return deepcopy(self)
@property
def ch_names(self):
"""Channel names."""
return self.info['ch_names']
@verbose
def save(self, fname, verbose=None):
"""Save dipole in a .fif file.
Parameters
----------
fname : str
The name of the .fif file. Must end with ``'.fif'`` or
``'.fif.gz'`` to make it explicit that the file contains
dipole information in FIF format.
verbose : bool, str, int, or None
If not None, override default verbose level (see
:func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
for more).
"""
check_fname(fname, 'DipoleFixed', ('-dip.fif', '-dip.fif.gz',
'_dip.fif', '_dip.fif.gz',),
('.fif', '.fif.gz'))
_write_evokeds(fname, self, check=False)
def plot(self, show=True, time_unit='s'):
"""Plot dipole data.
Parameters
----------
show : bool
Call pyplot.show() at the end or not.
time_unit : str
The units for the time axis, can be "ms" or "s" (default).
.. versionadded:: 0.16
Returns
-------
fig : instance of matplotlib.figure.Figure
The figure containing the time courses.
"""
return _plot_evoked(self, picks=None, exclude=(), unit=True, show=show,
ylim=None, xlim='tight', proj=False, hline=None,
units=None, scalings=None, titles=None, axes=None,
gfp=False, window_title=None, spatial_colors=False,
plot_type="butterfly", selectable=False,
time_unit=time_unit)
# #############################################################################
# IO
@verbose
def read_dipole(fname, verbose=None):
"""Read .dip file from Neuromag/xfit or MNE.
Parameters
----------
fname : str
The name of the .dip or .fif file.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
dipole : instance of Dipole or DipoleFixed
The dipole.
See Also
--------
Dipole
DipoleFixed
fit_dipole
"""
_check_fname(fname, overwrite='read', must_exist=True)
if fname.endswith('.fif') or fname.endswith('.fif.gz'):
return _read_dipole_fixed(fname)
else:
return _read_dipole_text(fname)
def _read_dipole_text(fname):
"""Read a dipole text file."""
# Figure out the special fields
need_header = True
def_line = name = None
# There is a bug in older np.loadtxt regarding skipping fields,
# so just read the data ourselves (need to get name and header anyway)
data = list()
with open(fname, 'r') as fid:
for line in fid:
if not (line.startswith('%') or line.startswith('#')):
need_header = False
data.append(line.strip().split())
else:
if need_header:
def_line = line
if line.startswith('##') or line.startswith('%%'):
m = re.search('Name "(.*) dipoles"', line)
if m:
name = m.group(1)
del line
data = np.atleast_2d(np.array(data, float))
if def_line is None:
raise IOError('Dipole text file is missing field definition '
'comment, cannot parse %s' % (fname,))
# actually parse the fields
def_line = def_line.lstrip('%').lstrip('#').strip()
# MNE writes it out differently than Elekta, let's standardize them...
fields = re.sub(r'([X|Y|Z] )\(mm\)', # "X (mm)", etc.
lambda match: match.group(1).strip() + '/mm', def_line)
fields = re.sub(r'\((.*?)\)', # "Q(nAm)", etc.
lambda match: '/' + match.group(1), fields)
fields = re.sub('(begin|end) ', # "begin" and "end" with no units
lambda match: match.group(1) + '/ms', fields)
fields = fields.lower().split()
required_fields = ('begin/ms',
'x/mm', 'y/mm', 'z/mm',
'q/nam', 'qx/nam', 'qy/nam', 'qz/nam',
'g/%')
optional_fields = ('khi^2', 'free', # standard ones
# now the confidence fields (up to 5!)
'vol/mm^3', 'depth/mm', 'long/mm', 'trans/mm',
'qlong/nam', 'qtrans/nam')
conf_scales = [1e-9, 1e-3, 1e-3, 1e-3, 1e-9, 1e-9]
missing_fields = sorted(set(required_fields) - set(fields))
if len(missing_fields) > 0:
raise RuntimeError('Could not find necessary fields in header: %s'
% (missing_fields,))
handled_fields = set(required_fields) | set(optional_fields)
assert len(handled_fields) == len(required_fields) + len(optional_fields)
ignored_fields = sorted(set(fields) -
set(handled_fields) -
set(['end/ms']))
if len(ignored_fields) > 0:
warn('Ignoring extra fields in dipole file: %s' % (ignored_fields,))
if len(fields) != data.shape[1]:
raise IOError('More data fields (%s) found than data columns (%s): %s'
% (len(fields), data.shape[1], fields))
logger.info("%d dipole(s) found" % len(data))
if 'end/ms' in fields:
if np.diff(data[:, [fields.index('begin/ms'),
fields.index('end/ms')]], 1, -1).any():
warn('begin and end fields differed, but only begin will be used '
'to store time values')
# Find the correct column in our data array, then scale to proper units
idx = [fields.index(field) for field in required_fields]
assert len(idx) >= 9
times = data[:, idx[0]] / 1000.
pos = 1e-3 * data[:, idx[1:4]] # put data in meters
amplitude = data[:, idx[4]]
norm = amplitude.copy()
amplitude /= 1e9
norm[norm == 0] = 1
ori = data[:, idx[5:8]] / norm[:, np.newaxis]
gof = data[:, idx[8]]
# Deal with optional fields
optional = [None] * 2
for fi, field in enumerate(optional_fields[:2]):
if field in fields:
optional[fi] = data[:, fields.index(field)]
khi2, nfree = optional
conf = dict()
for field, scale in zip(optional_fields[2:], conf_scales): # confidence
if field in fields:
conf[field.split('/')[0]] = scale * data[:, fields.index(field)]
return Dipole(times, pos, amplitude, ori, gof, name, conf, khi2, nfree)
# #############################################################################
# Fitting
def _dipole_forwards(fwd_data, whitener, rr, n_jobs=1):
"""Compute the forward solution and do other nice stuff."""
B = _compute_forwards_meeg(rr, fwd_data, n_jobs, verbose=False)
B = np.concatenate(B, axis=1)
assert np.isfinite(B).all()
B_orig = B.copy()
# Apply projection and whiten (cov has projections already)
B = np.dot(B, whitener.T)
# column normalization doesn't affect our fitting, so skip for now
# S = np.sum(B * B, axis=1) # across channels
# scales = np.repeat(3. / np.sqrt(np.sum(np.reshape(S, (len(rr), 3)),
# axis=1)), 3)
# B *= scales[:, np.newaxis]
scales = np.ones(3)
return B, B_orig, scales
def _make_guesses(surf, grid, exclude, mindist, n_jobs):
"""Make a guess space inside a sphere or BEM surface."""
if 'rr' in surf:
logger.info('Guess surface (%s) is in %s coordinates'
% (_bem_explain_surface(surf['id']),
_coord_frame_name(surf['coord_frame'])))
else:
logger.info('Making a spherical guess space with radius %7.1f mm...'
% (1000 * surf['R']))
logger.info('Filtering (grid = %6.f mm)...' % (1000 * grid))
src = _make_volume_source_space(surf, grid, exclude, 1000 * mindist,
do_neighbors=False, n_jobs=n_jobs)
assert 'vertno' in src
# simplify the result to make things easier later
src = dict(rr=src['rr'][src['vertno']], nn=src['nn'][src['vertno']],
nuse=src['nuse'], coord_frame=src['coord_frame'],
vertno=np.arange(src['nuse']))
return SourceSpaces([src])
def _fit_eval(rd, B, B2, fwd_svd=None, fwd_data=None, whitener=None):
"""Calculate the residual sum of squares."""
if fwd_svd is None:
fwd = _dipole_forwards(fwd_data, whitener, rd[np.newaxis, :])[0]
uu, sing, vv = linalg.svd(fwd, overwrite_a=True, full_matrices=False)
else:
uu, sing, vv = fwd_svd
gof = _dipole_gof(uu, sing, vv, B, B2)[0]
# mne-c uses fitness=B2-Bm2, but ours (1-gof) is just a normalized version
return 1. - gof
def _dipole_gof(uu, sing, vv, B, B2):
"""Calculate the goodness of fit from the forward SVD."""
ncomp = 3 if sing[2] / (sing[0] if sing[0] > 0 else 1.) > 0.2 else 2
one = np.dot(vv[:ncomp], B)
Bm2 = np.sum(one * one)
gof = Bm2 / B2
return gof, one
def _fit_Q(fwd_data, whitener, B, B2, B_orig, rd, ori=None):
"""Fit the dipole moment once the location is known."""
if 'fwd' in fwd_data:
# should be a single precomputed "guess" (i.e., fixed position)
assert rd is None
fwd = fwd_data['fwd']
assert fwd.shape[0] == 3
fwd_orig = fwd_data['fwd_orig']
assert fwd_orig.shape[0] == 3
scales = fwd_data['scales']
assert scales.shape == (3,)
fwd_svd = fwd_data['fwd_svd'][0]
else:
fwd, fwd_orig, scales = _dipole_forwards(fwd_data, whitener,
rd[np.newaxis, :])
fwd_svd = None
if ori is None:
if fwd_svd is None:
fwd_svd = linalg.svd(fwd, full_matrices=False)
uu, sing, vv = fwd_svd
gof, one = _dipole_gof(uu, sing, vv, B, B2)
ncomp = len(one)
# Counteract the effect of column normalization
Q = scales[0] * np.sum(uu.T[:ncomp] *
(one / sing[:ncomp])[:, np.newaxis], axis=0)
else:
fwd = np.dot(ori[np.newaxis], fwd)
sing = np.linalg.norm(fwd)
one = np.dot(fwd / sing, B)
gof = (one * one)[0] / B2
Q = ori * (scales[0] * np.sum(one / sing))
ncomp = 3
B_residual_noproj = B_orig - np.dot(fwd_orig.T, Q)
return Q, gof, B_residual_noproj, ncomp
def _fit_dipoles(fun, min_dist_to_inner_skull, data, times, guess_rrs,
guess_data, fwd_data, whitener, ori, n_jobs, rank):
"""Fit a single dipole to the given whitened, projected data."""
from scipy.optimize import fmin_cobyla
parallel, p_fun, _ = parallel_func(fun, n_jobs)
# parallel over time points
res = parallel(p_fun(min_dist_to_inner_skull, B, t, guess_rrs,
guess_data, fwd_data, whitener,
fmin_cobyla, ori, rank)
for B, t in zip(data.T, times))
pos = np.array([r[0] for r in res])
amp = np.array([r[1] for r in res])
ori = np.array([r[2] for r in res])
gof = np.array([r[3] for r in res]) * 100 # convert to percentage
conf = None
if res[0][4] is not None:
conf = np.array([r[4] for r in res])
keys = ['vol', 'depth', 'long', 'trans', 'qlong', 'qtrans']
conf = {key: conf[:, ki] for ki, key in enumerate(keys)}
khi2 = np.array([r[5] for r in res])
nfree = np.array([r[6] for r in res])
residual_noproj = np.array([r[7] for r in res]).T
return pos, amp, ori, gof, conf, khi2, nfree, residual_noproj
'''Simplex code in case we ever want/need it for testing
def _make_tetra_simplex():
"""Make the initial tetrahedron"""
#
# For this definition of a regular tetrahedron, see
#
# http://mathworld.wolfram.com/Tetrahedron.html
#
x = np.sqrt(3.0) / 3.0
r = np.sqrt(6.0) / 12.0
R = 3 * r
d = x / 2.0
simplex = 1e-2 * np.array([[x, 0.0, -r],
[-d, 0.5, -r],
[-d, -0.5, -r],
[0., 0., R]])
return simplex
def try_(p, y, psum, ndim, fun, ihi, neval, fac):
"""Helper to try a value"""
ptry = np.empty(ndim)
fac1 = (1.0 - fac) / ndim
fac2 = fac1 - fac
ptry = psum * fac1 - p[ihi] * fac2
ytry = fun(ptry)
neval += 1
if ytry < y[ihi]:
y[ihi] = ytry
psum[:] += ptry - p[ihi]
p[ihi] = ptry
return ytry, neval
def _simplex_minimize(p, ftol, stol, fun, max_eval=1000):
"""Minimization with the simplex algorithm
Modified from Numerical recipes"""
y = np.array([fun(s) for s in p])
ndim = p.shape[1]
assert p.shape[0] == ndim + 1
mpts = ndim + 1
neval = 0
psum = p.sum(axis=0)
loop = 1
while(True):
ilo = 1
if y[1] > y[2]:
ihi = 1
inhi = 2
else:
ihi = 2
inhi = 1
for i in range(mpts):
if y[i] < y[ilo]:
ilo = i
if y[i] > y[ihi]:
inhi = ihi
ihi = i
elif y[i] > y[inhi]:
if i != ihi:
inhi = i
rtol = 2 * np.abs(y[ihi] - y[ilo]) / (np.abs(y[ihi]) + np.abs(y[ilo]))
if rtol < ftol:
break
if neval >= max_eval:
raise RuntimeError('Maximum number of evaluations exceeded.')
if stol > 0: # Has the simplex collapsed?
dsum = np.sqrt(np.sum((p[ilo] - p[ihi]) ** 2))
if loop > 5 and dsum < stol:
break
ytry, neval = try_(p, y, psum, ndim, fun, ihi, neval, -1.)
if ytry <= y[ilo]:
ytry, neval = try_(p, y, psum, ndim, fun, ihi, neval, 2.)
elif ytry >= y[inhi]:
ysave = y[ihi]
ytry, neval = try_(p, y, psum, ndim, fun, ihi, neval, 0.5)
if ytry >= ysave:
for i in range(mpts):
if i != ilo:
psum[:] = 0.5 * (p[i] + p[ilo])
p[i] = psum
y[i] = fun(psum)
neval += ndim
psum = p.sum(axis=0)
loop += 1
'''
def _fit_confidence(rd, Q, ori, whitener, fwd_data):
# As describedd in the Xfit manual, confidence intervals can be calculated
# by examining a linearization of model at the best-fitting location,
# i.e. taking the Jacobian and using the whitener:
#
# J = [∂b/∂x ∂b/∂y ∂b/∂z ∂b/∂Qx ∂b/∂Qy ∂b/∂Qz]
# C = (J.T C^-1 J)^-1
#
# And then the confidence interval is the diagonal of C, scaled by 1.96
# (for 95% confidence).
direction = np.empty((3, 3))
# The coordinate system has the x axis aligned with the dipole orientation,
direction[0] = ori
# the z axis through the origin of the sphere model
rvec = rd - fwd_data['inner_skull']['r0']
direction[2] = rvec - ori * np.dot(ori, rvec) # orthogonalize
direction[2] /= np.linalg.norm(direction[2])
# and the y axis perpendical with these forming a right-handed system.
direction[1] = np.cross(direction[2], direction[0])
assert np.allclose(np.dot(direction, direction.T), np.eye(3))
# Get spatial deltas in dipole coordinate directions
deltas = (-1e-4, 1e-4)
J = np.empty((whitener.shape[0], 6))
for ii in range(3):
fwds = []
for delta in deltas:
this_r = rd[np.newaxis] + delta * direction[ii]
fwds.append(
np.dot(Q, _dipole_forwards(fwd_data, whitener, this_r)[0]))
J[:, ii] = np.diff(fwds, axis=0)[0] / np.diff(deltas)[0]
# Get current (Q) deltas in the dipole directions
deltas = np.array([-0.01, 0.01]) * np.linalg.norm(Q)
this_fwd = _dipole_forwards(fwd_data, whitener, rd[np.newaxis])[0]
for ii in range(3):
fwds = []
for delta in deltas:
fwds.append(np.dot(Q + delta * direction[ii], this_fwd))
J[:, ii + 3] = np.diff(fwds, axis=0)[0] / np.diff(deltas)[0]
# J is already whitened, so we don't need to do np.dot(whitener, J).
# However, the units in the Jacobian are potentially quite different,
# so we need to do some normalization during inversion, then revert.
direction_norm = np.linalg.norm(J[:, :3])
Q_norm = np.linalg.norm(J[:, 3:5]) # omit possible zero Z
norm = np.array([direction_norm] * 3 + [Q_norm] * 3)
J /= norm
J = np.dot(J.T, J)
C = linalg.pinvh(J, rcond=1e-14)
C /= norm
C /= norm[:, np.newaxis]
conf = 1.96 * np.sqrt(np.diag(C))
# The confidence volume of the dipole location is obtained from by
# taking the eigenvalues of the upper left submatrix and computing
# v = 4π/3 √(c^3 λ1 λ2 λ3) with c = 7.81, or:
vol_conf = 4 * np.pi / 3. * np.sqrt(
476.379541 * np.prod(linalg.eigh(C[:3, :3], eigvals_only=True)))
conf = np.concatenate([conf, [vol_conf]])
# Now we reorder and subselect the proper columns:
# vol, depth, long, trans, Qlong, Qtrans (discard Qdepth, assumed zero)
conf = conf[[6, 2, 0, 1, 3, 4]]
return conf
def _surface_constraint(rd, surf, min_dist_to_inner_skull):
"""Surface fitting constraint."""
dist = _compute_nearest(surf['rr'], rd[np.newaxis, :],
return_dists=True)[1][0]
if _points_outside_surface(rd[np.newaxis, :], surf, 1)[0]:
dist *= -1.
# Once we know the dipole is below the inner skull,
# let's check if its distance to the inner skull is at least
# min_dist_to_inner_skull. This can be enforced by adding a
# constrain proportional to its distance.
dist -= min_dist_to_inner_skull
return dist
def _sphere_constraint(rd, r0, R_adj):
"""Sphere fitting constraint."""
return R_adj - np.sqrt(np.sum((rd - r0) ** 2))
def _fit_dipole(min_dist_to_inner_skull, B_orig, t, guess_rrs,
guess_data, fwd_data, whitener, fmin_cobyla, ori, rank):
"""Fit a single bit of data."""
B = np.dot(whitener, B_orig)
# make constraint function to keep the solver within the inner skull
if 'rr' in fwd_data['inner_skull']: # bem
surf = fwd_data['inner_skull']
constraint = partial(_surface_constraint, surf=surf,
min_dist_to_inner_skull=min_dist_to_inner_skull)
else: # sphere
surf = None
constraint = partial(
_sphere_constraint, r0=fwd_data['inner_skull']['r0'],
R_adj=fwd_data['inner_skull']['R'] - min_dist_to_inner_skull)
# Find a good starting point (find_best_guess in C)
B2 = np.dot(B, B)
if B2 == 0:
warn('Zero field found for time %s' % t)
return np.zeros(3), 0, np.zeros(3), 0, B
idx = np.argmin([_fit_eval(guess_rrs[[fi], :], B, B2, fwd_svd)
for fi, fwd_svd in enumerate(guess_data['fwd_svd'])])
x0 = guess_rrs[idx]
fun = partial(_fit_eval, B=B, B2=B2, fwd_data=fwd_data, whitener=whitener)
# Tested minimizers:
# Simplex, BFGS, CG, COBYLA, L-BFGS-B, Powell, SLSQP, TNC
# Several were similar, but COBYLA won for having a handy constraint
# function we can use to ensure we stay inside the inner skull /
# smallest sphere
rd_final = fmin_cobyla(fun, x0, (constraint,), consargs=(),
rhobeg=5e-2, rhoend=5e-5, disp=False)
# simplex = _make_tetra_simplex() + x0
# _simplex_minimize(simplex, 1e-4, 2e-4, fun)
# rd_final = simplex[0]
# Compute the dipole moment at the final point
Q, gof, residual_noproj, n_comp = _fit_Q(
fwd_data, whitener, B, B2, B_orig, rd_final, ori=ori)
khi2 = (1 - gof) * B2
nfree = rank - n_comp
amp = np.sqrt(np.dot(Q, Q))
norm = 1. if amp == 0. else amp
ori = Q / norm
conf = _fit_confidence(rd_final, Q, ori, whitener, fwd_data)
msg = '---- Fitted : %7.1f ms' % (1000. * t)
if surf is not None:
dist_to_inner_skull = _compute_nearest(
surf['rr'], rd_final[np.newaxis, :], return_dists=True)[1][0]
msg += (", distance to inner skull : %2.4f mm"
% (dist_to_inner_skull * 1000.))
logger.info(msg)
return rd_final, amp, ori, gof, conf, khi2, nfree, residual_noproj
def _fit_dipole_fixed(min_dist_to_inner_skull, B_orig, t, guess_rrs,
guess_data, fwd_data, whitener,
fmin_cobyla, ori, rank):
"""Fit a data using a fixed position."""
B = np.dot(whitener, B_orig)
B2 = np.dot(B, B)
if B2 == 0:
warn('Zero field found for time %s' % t)
return np.zeros(3), 0, np.zeros(3), 0, np.zeros(6)
# Compute the dipole moment
Q, gof, residual_noproj = _fit_Q(guess_data, whitener, B, B2, B_orig,
rd=None, ori=ori)[:3]
if ori is None:
amp = np.sqrt(np.dot(Q, Q))
norm = 1. if amp == 0. else amp
ori = Q / norm
else:
amp = np.dot(Q, ori)
rd_final = guess_rrs[0]
# This will be slow, and we don't use it anyway, so omit it for now:
# conf = _fit_confidence(rd_final, Q, ori, whitener, fwd_data)
conf = khi2 = nfree = None
# No corresponding 'logger' message here because it should go *very* fast
return rd_final, amp, ori, gof, conf, khi2, nfree, residual_noproj
@verbose
def fit_dipole(evoked, cov, bem, trans=None, min_dist=5., n_jobs=1,
pos=None, ori=None, verbose=None):
"""Fit a dipole.
Parameters
----------
evoked : instance of Evoked
The dataset to fit.
cov : str | instance of Covariance
The noise covariance.
bem : str | instance of ConductorModel
The BEM filename (str) or conductor model.
trans : str | None
The head<->MRI transform filename. Must be provided unless BEM
is a sphere model.
min_dist : float
Minimum distance (in millimeters) from the dipole to the inner skull.
Must be positive. Note that because this is a constraint passed to
a solver it is not strict but close, i.e. for a ``min_dist=5.`` the
fits could be 4.9 mm from the inner skull.
n_jobs : int
Number of jobs to run in parallel (used in field computation
and fitting).
pos : ndarray, shape (3,) | None
Position of the dipole to use. If None (default), sequential
fitting (different position and orientation for each time instance)
is performed. If a position (in head coords) is given as an array,
the position is fixed during fitting.
.. versionadded:: 0.12
ori : ndarray, shape (3,) | None
Orientation of the dipole to use. If None (default), the
orientation is free to change as a function of time. If an
orientation (in head coordinates) is given as an array, ``pos``
must also be provided, and the routine computes the amplitude and
goodness of fit of the dipole at the given position and orientation
for each time instant.
.. versionadded:: 0.12
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
dip : instance of Dipole or DipoleFixed
The dipole fits. A :class:`mne.DipoleFixed` is returned if
``pos`` and ``ori`` are both not None, otherwise a
:class:`mne.Dipole` is returned.
residual : instance of Evoked
The M-EEG data channels with the fitted dipolar activity removed.
See Also
--------
mne.beamformer.rap_music
Dipole
DipoleFixed
read_dipole
Notes
-----
.. versionadded:: 0.9.0
"""
# This could eventually be adapted to work with other inputs, these
# are what is needed:
evoked = evoked.copy()
# Determine if a list of projectors has an average EEG ref
if _needs_eeg_average_ref_proj(evoked.info):
raise ValueError('EEG average reference is mandatory for dipole '
'fitting.')
if min_dist < 0:
raise ValueError('min_dist should be positive. Got %s' % min_dist)
if ori is not None and pos is None:
raise ValueError('pos must be provided if ori is not None')
data = evoked.data
if not np.isfinite(data).all():
raise ValueError('Evoked data must be finite')
info = evoked.info
times = evoked.times.copy()
comment = evoked.comment
# Convert the min_dist to meters
min_dist_to_inner_skull = min_dist / 1000.
del min_dist
# Figure out our inputs
neeg = len(pick_types(info, meg=False, eeg=True, ref_meg=False,
exclude=[]))
if isinstance(bem, string_types):
bem_extra = bem
else:
bem_extra = repr(bem)
logger.info('BEM : %s' % bem_extra)
mri_head_t, trans = _get_trans(trans)
logger.info('MRI transform : %s' % trans)
bem = _setup_bem(bem, bem_extra, neeg, mri_head_t, verbose=False)
if not bem['is_sphere']:
# Find the best-fitting sphere
inner_skull = _bem_find_surface(bem, 'inner_skull')
inner_skull = inner_skull.copy()
R, r0 = _fit_sphere(inner_skull['rr'], disp=False)
# r0 back to head frame for logging
r0 = apply_trans(mri_head_t['trans'], r0[np.newaxis, :])[0]
inner_skull['r0'] = r0
logger.info('Head origin : '
'%6.1f %6.1f %6.1f mm rad = %6.1f mm.'
% (1000 * r0[0], 1000 * r0[1], 1000 * r0[2], 1000 * R))
del R, r0
else:
r0 = bem['r0']
if len(bem.get('layers', [])) > 0:
R = bem['layers'][0]['rad']
kind = 'rad'
else: # MEG-only
# Use the minimum distance to the MEG sensors as the radius then
R = np.dot(linalg.inv(info['dev_head_t']['trans']),
np.hstack([r0, [1.]]))[:3] # r0 -> device
R = R - [info['chs'][pick]['loc'][:3]
for pick in pick_types(info, meg=True, exclude=[])]
if len(R) == 0:
raise RuntimeError('No MEG channels found, but MEG-only '
'sphere model used')
R = np.min(np.sqrt(np.sum(R * R, axis=1))) # use dist to sensors
kind = 'max_rad'
logger.info('Sphere model : origin at (% 7.2f % 7.2f % 7.2f) mm, '
'%s = %6.1f mm'
% (1000 * r0[0], 1000 * r0[1], 1000 * r0[2], kind, R))
inner_skull = dict(R=R, r0=r0) # NB sphere model defined in head frame
del R, r0
accurate = False # can be an option later (shouldn't make big diff)
# Deal with DipoleFixed cases here
if pos is not None:
fixed_position = True
pos = np.array(pos, float)
if pos.shape != (3,):
raise ValueError('pos must be None or a 3-element array-like,'
' got %s' % (pos,))
logger.info('Fixed position : %6.1f %6.1f %6.1f mm'
% tuple(1000 * pos))
if ori is not None:
ori = np.array(ori, float)
if ori.shape != (3,):
raise ValueError('oris must be None or a 3-element array-like,'
' got %s' % (ori,))
norm = np.sqrt(np.sum(ori * ori))
if not np.isclose(norm, 1):
raise ValueError('ori must be a unit vector, got length %s'
% (norm,))
logger.info('Fixed orientation : %6.4f %6.4f %6.4f mm'
% tuple(ori))
else:
logger.info('Free orientation : <time-varying>')
fit_n_jobs = 1 # only use 1 job to do the guess fitting
else:
fixed_position = False
# Eventually these could be parameters, but they are just used for
# the initial grid anyway
guess_grid = 0.02 # MNE-C uses 0.01, but this is faster w/similar perf
guess_mindist = max(0.005, min_dist_to_inner_skull)
guess_exclude = 0.02
logger.info('Guess grid : %6.1f mm' % (1000 * guess_grid,))
if guess_mindist > 0.0:
logger.info('Guess mindist : %6.1f mm'
% (1000 * guess_mindist,))
if guess_exclude > 0:
logger.info('Guess exclude : %6.1f mm'
% (1000 * guess_exclude,))
logger.info('Using %s MEG coil definitions.'
% ("accurate" if accurate else "standard"))
fit_n_jobs = n_jobs
if isinstance(cov, string_types):
logger.info('Noise covariance : %s' % (cov,))
cov = read_cov(cov, verbose=False)
logger.info('')
_print_coord_trans(mri_head_t)
_print_coord_trans(info['dev_head_t'])
logger.info('%d bad channels total' % len(info['bads']))
# Forward model setup (setup_forward_model from setup.c)
ch_types = [channel_type(info, idx) for idx in range(info['nchan'])]
megcoils, compcoils, megnames, meg_info = [], [], [], None
eegels, eegnames = [], []
if 'grad' in ch_types or 'mag' in ch_types:
megcoils, compcoils, megnames, meg_info = \
_prep_meg_channels(info, exclude='bads',
accurate=accurate, verbose=verbose)
if 'eeg' in ch_types:
eegels, eegnames = _prep_eeg_channels(info, exclude='bads',
verbose=verbose)
# Ensure that MEG and/or EEG channels are present
if len(megcoils + eegels) == 0:
raise RuntimeError('No MEG or EEG channels found.')
# Whitener for the data
logger.info('Decomposing the sensor noise covariance matrix...')
picks = pick_types(info, meg=True, eeg=True, ref_meg=False)
# In case we want to more closely match MNE-C for debugging:
# from .io.pick import pick_info
# from .cov import prepare_noise_cov
# info_nb = pick_info(info, picks)
# cov = prepare_noise_cov(cov, info_nb, info_nb['ch_names'], verbose=False)
# nzero = (cov['eig'] > 0)
# n_chan = len(info_nb['ch_names'])
# whitener = np.zeros((n_chan, n_chan), dtype=np.float)
# whitener[nzero, nzero] = 1.0 / np.sqrt(cov['eig'][nzero])
# whitener = np.dot(whitener, cov['eigvec'])
whitener, _, rank = compute_whitener(cov, info, picks=picks,
return_rank=True)
# Proceed to computing the fits (make_guess_data)
if fixed_position:
guess_src = dict(nuse=1, rr=pos[np.newaxis], inuse=np.array([True]))
logger.info('Compute forward for dipole location...')
else:
logger.info('\n---- Computing the forward solution for the guesses...')
guess_src = _make_guesses(inner_skull, guess_grid, guess_exclude,
guess_mindist, n_jobs=n_jobs)[0]
# grid coordinates go from mri to head frame
transform_surface_to(guess_src, 'head', mri_head_t)
logger.info('Go through all guess source locations...')
# inner_skull goes from mri to head frame
if 'rr' in inner_skull:
transform_surface_to(inner_skull, 'head', mri_head_t)
if fixed_position:
if 'rr' in inner_skull:
check = _surface_constraint(pos, inner_skull,
min_dist_to_inner_skull)
else:
check = _sphere_constraint(
pos, inner_skull['r0'],
R_adj=inner_skull['R'] - min_dist_to_inner_skull)
if check <= 0:
raise ValueError('fixed position is %0.1fmm outside the inner '
'skull boundary' % (-1000 * check,))
# C code computes guesses w/sphere model for speed, don't bother here
fwd_data = dict(coils_list=[megcoils, eegels], infos=[meg_info, None],
ccoils_list=[compcoils, None], coil_types=['meg', 'eeg'],
inner_skull=inner_skull)
# fwd_data['inner_skull'] in head frame, bem in mri, confusing...
_prep_field_computation(guess_src['rr'], bem, fwd_data, n_jobs,
verbose=False)
guess_fwd, guess_fwd_orig, guess_fwd_scales = _dipole_forwards(
fwd_data, whitener, guess_src['rr'], n_jobs=fit_n_jobs)
# decompose ahead of time
guess_fwd_svd = [linalg.svd(fwd, overwrite_a=False, full_matrices=False)
for fwd in np.array_split(guess_fwd,
len(guess_src['rr']))]
guess_data = dict(fwd=guess_fwd, fwd_svd=guess_fwd_svd,
fwd_orig=guess_fwd_orig, scales=guess_fwd_scales)
del guess_fwd, guess_fwd_svd, guess_fwd_orig, guess_fwd_scales # destroyed
logger.info('[done %d source%s]' % (guess_src['nuse'],
_pl(guess_src['nuse'])))
# Do actual fits
data = data[picks]
ch_names = [info['ch_names'][p] for p in picks]
proj_op = make_projector(info['projs'], ch_names, info['bads'])[0]
fun = _fit_dipole_fixed if fixed_position else _fit_dipole
out = _fit_dipoles(
fun, min_dist_to_inner_skull, data, times, guess_src['rr'],
guess_data, fwd_data, whitener, ori, n_jobs, rank)
assert len(out) == 8
if fixed_position and ori is not None:
# DipoleFixed
data = np.array([out[1], out[3]])
out_info = deepcopy(info)
loc = np.concatenate([pos, ori, np.zeros(6)])
out_info['chs'] = [
dict(ch_name='dip 01', loc=loc, kind=FIFF.FIFFV_DIPOLE_WAVE,
coord_frame=FIFF.FIFFV_COORD_UNKNOWN, unit=FIFF.FIFF_UNIT_AM,
coil_type=FIFF.FIFFV_COIL_DIPOLE,
unit_mul=0, range=1, cal=1., scanno=1, logno=1),
dict(ch_name='goodness', loc=np.full(12, np.nan),
kind=FIFF.FIFFV_GOODNESS_FIT, unit=FIFF.FIFF_UNIT_AM,
coord_frame=FIFF.FIFFV_COORD_UNKNOWN,
coil_type=FIFF.FIFFV_COIL_NONE,
unit_mul=0, range=1., cal=1., scanno=2, logno=100)]
for key in ['hpi_meas', 'hpi_results', 'projs']:
out_info[key] = list()
for key in ['acq_pars', 'acq_stim', 'description', 'dig',
'experimenter', 'hpi_subsystem', 'proj_id', 'proj_name',
'subject_info']:
out_info[key] = None
out_info['bads'] = []
out_info._update_redundant()
out_info._check_consistency()
dipoles = DipoleFixed(out_info, data, times, evoked.nave,
evoked._aspect_kind, evoked.first, evoked.last,
comment)
else:
dipoles = Dipole(times, out[0], out[1], out[2], out[3], comment,
out[4], out[5], out[6])
residual = evoked.copy().apply_proj() # set the projs active
residual.data[picks] = np.dot(proj_op, out[-1])
logger.info('%d time points fitted' % len(dipoles.times))
return dipoles, residual
def get_phantom_dipoles(kind='vectorview'):
"""Get standard phantom dipole locations and orientations.
Parameters
----------
kind : str
Get the information for the given system:
``vectorview`` (default)
The Neuromag VectorView phantom.
``otaniemi``
The older Neuromag phantom used at Otaniemi.
Returns
-------
pos : ndarray, shape (n_dipoles, 3)
The dipole positions.
ori : ndarray, shape (n_dipoles, 3)
The dipole orientations.
Notes
-----
The Elekta phantoms have a radius of 79.5mm, and HPI coil locations
in the XY-plane at the axis extrema (e.g., (79.5, 0), (0, -79.5), ...).
"""
_valid_types = ('vectorview', 'otaniemi')
if not isinstance(kind, string_types) or kind not in _valid_types:
raise ValueError('kind must be one of %s, got %s'
% (_valid_types, kind,))
if kind == 'vectorview':
# these values were pulled from a scanned image provided by
# Elekta folks
a = np.array([59.7, 48.6, 35.8, 24.8, 37.2, 27.5, 15.8, 7.9])
b = np.array([46.1, 41.9, 38.3, 31.5, 13.9, 16.2, 20.0, 19.3])
x = np.concatenate((a, [0] * 8, -b, [0] * 8))
y = np.concatenate(([0] * 8, -a, [0] * 8, b))
c = [22.9, 23.5, 25.5, 23.1, 52.0, 46.4, 41.0, 33.0]
d = [44.4, 34.0, 21.6, 12.7, 62.4, 51.5, 39.1, 27.9]
z = np.concatenate((c, c, d, d))
elif kind == 'otaniemi':
# these values were pulled from an Neuromag manual
# (NM20456A, 13.7.1999, p.65)
a = np.array([56.3, 47.6, 39.0, 30.3])
b = np.array([32.5, 27.5, 22.5, 17.5])
c = np.zeros(4)
x = np.concatenate((a, b, c, c, -a, -b, c, c))
y = np.concatenate((c, c, -a, -b, c, c, b, a))
z = np.concatenate((b, a, b, a, b, a, a, b))
pos = np.vstack((x, y, z)).T / 1000.
# Locs are always in XZ or YZ, and so are the oris. The oris are
# also in the same plane and tangential, so it's easy to determine
# the orientation.
ori = list()
for this_pos in pos:
this_ori = np.zeros(3)
idx = np.where(this_pos == 0)[0]
# assert len(idx) == 1
idx = np.setdiff1d(np.arange(3), idx[0])
this_ori[idx] = (this_pos[idx][::-1] /
np.linalg.norm(this_pos[idx])) * [1, -1]
# Now we have this quality, which we could uncomment to
# double-check:
# np.testing.assert_allclose(np.dot(this_ori, this_pos) /
# np.linalg.norm(this_pos), 0,
# atol=1e-15)
ori.append(this_ori)
ori = np.array(ori)
return pos, ori
def _concatenate_dipoles(dipoles):
"""Concatenate a list of dipoles."""
times, pos, amplitude, ori, gof = [], [], [], [], []
for dipole in dipoles:
times.append(dipole.times)
pos.append(dipole.pos)
amplitude.append(dipole.amplitude)
ori.append(dipole.ori)
gof.append(dipole.gof)
return Dipole(np.concatenate(times), np.concatenate(pos),
np.concatenate(amplitude), np.concatenate(ori),
np.concatenate(gof), name=None)
|