File: dipole.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (1393 lines) | stat: -rw-r--r-- 53,716 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
# -*- coding: utf-8 -*-
"""Single-dipole functions and classes."""

# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Eric Larson <larson.eric.d@gmail.com>
#
# License: Simplified BSD

from copy import deepcopy
from functools import partial
import re

import numpy as np
from scipy import linalg

from .cov import read_cov, compute_whitener
from .io.constants import FIFF
from .io.pick import pick_types, channel_type
from .io.proj import make_projector, _needs_eeg_average_ref_proj
from .bem import _fit_sphere
from .evoked import _read_evoked, _aspect_rev, _write_evokeds
from .transforms import _print_coord_trans, _coord_frame_name, apply_trans
from .viz.evoked import _plot_evoked
from .forward._make_forward import (_get_trans, _setup_bem,
                                    _prep_meg_channels, _prep_eeg_channels)
from .forward._compute_forward import (_compute_forwards_meeg,
                                       _prep_field_computation)

from .externals.six import string_types
from .surface import transform_surface_to, _compute_nearest
from .bem import _bem_find_surface, _bem_explain_surface
from .source_space import (_make_volume_source_space, SourceSpaces,
                           _points_outside_surface)
from .parallel import parallel_func
from .utils import (logger, verbose, _time_mask, warn, _check_fname,
                    check_fname, _pl)


class Dipole(object):
    u"""Dipole class for sequential dipole fits.

    .. note:: This class should usually not be instantiated directly,
              instead :func:`mne.read_dipole` should be used.

    Used to store positions, orientations, amplitudes, times, goodness of fit
    of dipoles, typically obtained with Neuromag/xfit, mne_dipole_fit
    or certain inverse solvers. Note that dipole position vectors are given in
    the head coordinate frame.

    Parameters
    ----------
    times : array, shape (n_dipoles,)
        The time instants at which each dipole was fitted (sec).
    pos : array, shape (n_dipoles, 3)
        The dipoles positions (m) in head coordinates.
    amplitude : array, shape (n_dipoles,)
        The amplitude of the dipoles (Am).
    ori : array, shape (n_dipoles, 3)
        The dipole orientations (normalized to unit length).
    gof : array, shape (n_dipoles,)
        The goodness of fit.
    name : str | None
        Name of the dipole.
    conf : dict
        Confidence limits in dipole orientation for "vol" in m^3 (volume),
        "depth" in m (along the depth axis), "long" in m (longitudinal axis),
        "trans" in m (transverse axis), "qlong" in Am, and "qtrans" in Am
        (currents). The current confidence limit in the depth direction is
        assumed to be zero (although it can be non-zero when a BEM is used).

        .. versionadded:: 0.15
    khi2 : array, shape (n_dipoles,)
        The χ^2 values for the fits.

        .. versionadded:: 0.15
    nfree : array, shape (n_dipoles,)
        The number of free parameters for each fit.

        .. versionadded:: 0.15

    See Also
    --------
    fit_dipole
    DipoleFixed
    read_dipole

    Notes
    -----
    This class is for sequential dipole fits, where the position
    changes as a function of time. For fixed dipole fits, where the
    position is fixed as a function of time, use :class:`mne.DipoleFixed`.
    """

    def __init__(self, times, pos, amplitude, ori, gof,
                 name=None, conf=None, khi2=None, nfree=None):  # noqa: D102
        self.times = np.array(times)
        self.pos = np.array(pos)
        self.amplitude = np.array(amplitude)
        self.ori = np.array(ori)
        self.gof = np.array(gof)
        self.name = name
        self.conf = deepcopy(conf) if conf is not None else dict()
        self.khi2 = np.array(khi2) if khi2 is not None else None
        self.nfree = np.array(nfree) if nfree is not None else None

    def __repr__(self):  # noqa: D105
        s = "n_times : %s" % len(self.times)
        s += ", tmin : %0.3f" % np.min(self.times)
        s += ", tmax : %0.3f" % np.max(self.times)
        return "<Dipole  |  %s>" % s

    def save(self, fname):
        """Save dipole in a .dip file.

        Parameters
        ----------
        fname : str
            The name of the .dip file.
        """
        # obligatory fields
        fmt = '  %7.1f %7.1f %8.2f %8.2f %8.2f %8.3f %8.3f %8.3f %8.3f %6.2f'
        header = ('#   begin     end   X (mm)   Y (mm)   Z (mm)'
                  '   Q(nAm)  Qx(nAm)  Qy(nAm)  Qz(nAm)    g/%')
        t = self.times[:, np.newaxis] * 1000.
        gof = self.gof[:, np.newaxis]
        amp = 1e9 * self.amplitude[:, np.newaxis]
        out = (t, t, self.pos / 1e-3, amp, self.ori * amp, gof)

        # optional fields
        fmts = dict(khi2=('    khi^2', ' %8.1f', 1.),
                    nfree=('  free', ' %5d', 1),
                    vol=('  vol/mm^3', ' %9.3f', 1e9),
                    depth=('  depth/mm', ' %9.3f', 1e3),
                    long=('  long/mm', ' %8.3f', 1e3),
                    trans=('  trans/mm', ' %9.3f', 1e3),
                    qlong=('  Qlong/nAm', ' %10.3f', 1e9),
                    qtrans=('  Qtrans/nAm', ' %11.3f', 1e9),
                    )
        for key in ('khi2', 'nfree'):
            data = getattr(self, key)
            if data is not None:
                header += fmts[key][0]
                fmt += fmts[key][1]
                out += (data[:, np.newaxis] * fmts[key][2],)
        for key in ('vol', 'depth', 'long', 'trans', 'qlong', 'qtrans'):
            data = self.conf.get(key)
            if data is not None:
                header += fmts[key][0]
                fmt += fmts[key][1]
                out += (data[:, np.newaxis] * fmts[key][2],)
        out = np.concatenate(out, axis=-1)

        # NB CoordinateSystem is hard-coded as Head here
        with open(fname, 'wb') as fid:
            fid.write('# CoordinateSystem "Head"\n'.encode('utf-8'))
            fid.write((header + '\n').encode('utf-8'))
            np.savetxt(fid, out, fmt=fmt)
            if self.name is not None:
                fid.write(('## Name "%s dipoles" Style "Dipoles"'
                           % self.name).encode('utf-8'))

    def crop(self, tmin=None, tmax=None):
        """Crop data to a given time interval.

        Parameters
        ----------
        tmin : float | None
            Start time of selection in seconds.
        tmax : float | None
            End time of selection in seconds.

        Returns
        -------
        self : instance of Dipole
            The cropped instance.
        """
        sfreq = None
        if len(self.times) > 1:
            sfreq = 1. / np.median(np.diff(self.times))
        mask = _time_mask(self.times, tmin, tmax, sfreq=sfreq)
        for attr in ('times', 'pos', 'gof', 'amplitude', 'ori',
                     'khi2', 'nfree'):
            if getattr(self, attr) is not None:
                setattr(self, attr, getattr(self, attr)[mask])
        for key in self.conf.keys():
            self.conf[key] = self.conf[key][mask]
        return self

    def copy(self):
        """Copy the Dipoles object.

        Returns
        -------
        dip : instance of Dipole
            The copied dipole instance.
        """
        return deepcopy(self)

    @verbose
    def plot_locations(self, trans, subject, subjects_dir=None,
                       mode='orthoview', coord_frame='mri', idx='gof',
                       show_all=True, ax=None, block=False, show=True,
                       verbose=None):
        """Plot dipole locations in 3d.

        Parameters
        ----------
        trans : dict
            The mri to head trans.
        subject : str
            The subject name corresponding to FreeSurfer environment
            variable SUBJECT.
        subjects_dir : None | str
            The path to the freesurfer subjects reconstructions.
            It corresponds to Freesurfer environment variable SUBJECTS_DIR.
            The default is None.
        mode : str
            Currently only ``'orthoview'`` is supported.

            .. versionadded:: 0.14.0
        coord_frame : str
            Coordinate frame to use, 'head' or 'mri'. Defaults to 'mri'.

            .. versionadded:: 0.14.0
        idx : int | 'gof' | 'amplitude'
            Index of the initially plotted dipole. Can also be 'gof' to plot
            the dipole with highest goodness of fit value or 'amplitude' to
            plot the dipole with the highest amplitude. The dipoles can also be
            browsed through using up/down arrow keys or mouse scroll. Defaults
            to 'gof'. Only used if mode equals 'orthoview'.

            .. versionadded:: 0.14.0
        show_all : bool
            Whether to always plot all the dipoles. If True (default), the
            active dipole is plotted as a red dot and it's location determines
            the shown MRI slices. The the non-active dipoles are plotted as
            small blue dots. If False, only the active dipole is plotted.
            Only used if mode equals 'orthoview'.

            .. versionadded:: 0.14.0
        ax : instance of matplotlib Axes3D | None
            Axes to plot into. If None (default), axes will be created.
            Only used if mode equals 'orthoview'.

            .. versionadded:: 0.14.0
        block : bool
            Whether to halt program execution until the figure is closed.
            Defaults to False. Only used if mode equals 'orthoview'.

            .. versionadded:: 0.14.0
        show : bool
            Show figure if True. Defaults to True.
            Only used if mode equals 'orthoview'.

            .. versionadded:: 0.14.0
        verbose : bool, str, int, or None
            If not None, override default verbose level (see
            :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
            for more).

        Returns
        -------
        fig : instance of mlab.Figure or matplotlib Figure
            The mayavi figure or matplotlib Figure.

        Notes
        -----
        .. versionadded:: 0.9.0
        """
        from .viz import plot_dipole_locations
        dipoles = self
        if mode in [None, 'cone', 'sphere']:  # support old behavior
            dipoles = []
            for t in self.times:
                dipoles.append(self.copy())
                dipoles[-1].crop(t, t)
        elif mode != 'orthoview':
            raise ValueError("mode must be 'cone', 'sphere' or 'orthoview'. "
                             "Got %s." % mode)
        return plot_dipole_locations(
            dipoles, trans, subject, subjects_dir, mode, coord_frame, idx,
            show_all, ax, block, show)

    def plot_amplitudes(self, color='k', show=True):
        """Plot the dipole amplitudes as a function of time.

        Parameters
        ----------
        color: matplotlib Color
            Color to use for the trace.
        show : bool
            Show figure if True.

        Returns
        -------
        fig : matplotlib.figure.Figure
            The figure object containing the plot.
        """
        from .viz import plot_dipole_amplitudes
        return plot_dipole_amplitudes([self], [color], show)

    def __getitem__(self, item):
        """Get a time slice.

        Parameters
        ----------
        item : array-like or slice
            The slice of time points to use.

        Returns
        -------
        dip : instance of Dipole
            The sliced dipole.
        """
        if isinstance(item, int):  # make sure attributes stay 2d
            item = [item]

        selected_times = self.times[item].copy()
        selected_pos = self.pos[item, :].copy()
        selected_amplitude = self.amplitude[item].copy()
        selected_ori = self.ori[item, :].copy()
        selected_gof = self.gof[item].copy()
        selected_name = self.name
        selected_conf = dict()
        for key in self.conf.keys():
            selected_conf[key] = self.conf[key][item]
        selected_khi2 = self.khi2[item] if self.khi2 is not None else None
        selected_nfree = self.nfree[item] if self.nfree is not None else None
        return Dipole(
            selected_times, selected_pos, selected_amplitude, selected_ori,
            selected_gof, selected_name, selected_conf, selected_khi2,
            selected_nfree)

    def __len__(self):
        """Return the number of dipoles.

        Returns
        -------
        len : int
            The number of dipoles.

        Examples
        --------
        This can be used as::

            >>> len(dipoles)  # doctest: +SKIP
            10

        """
        return self.pos.shape[0]


def _read_dipole_fixed(fname):
    """Read a fixed dipole FIF file."""
    logger.info('Reading %s ...' % fname)
    info, nave, aspect_kind, first, last, comment, times, data = \
        _read_evoked(fname)
    return DipoleFixed(info, data, times, nave, aspect_kind, first, last,
                       comment)


class DipoleFixed(object):
    """Dipole class for fixed-position dipole fits.

    .. note:: This class should usually not be instantiated directly,
              instead :func:`mne.read_dipole` should be used.

    Parameters
    ----------
    info : instance of Info
        The measurement info.
    data : array, shape (n_channels, n_times)
        The dipole data.
    times : array, shape (n_times,)
        The time points.
    nave : int
        Number of averages.
    aspect_kind : int
        The kind of data.
    first : int
        First sample.
    last : int
        Last sample.
    comment : str
        The dipole comment.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    See Also
    --------
    read_dipole
    Dipole
    fit_dipole

    Notes
    -----
    This class is for fixed-position dipole fits, where the position
    (and maybe orientation) is static over time. For sequential dipole fits,
    where the position can change a function of time, use :class:`mne.Dipole`.

    .. versionadded:: 0.12
    """

    @verbose
    def __init__(self, info, data, times, nave, aspect_kind, first, last,
                 comment, verbose=None):  # noqa: D102
        self.info = info
        self.nave = nave
        self._aspect_kind = aspect_kind
        self.kind = _aspect_rev.get(str(aspect_kind), 'Unknown')
        self.first = first
        self.last = last
        self.comment = comment
        self.times = times
        self.data = data
        self.verbose = verbose

    def __repr__(self):  # noqa: D105
        s = "n_times : %s" % len(self.times)
        s += ", tmin : %s" % np.min(self.times)
        s += ", tmax : %s" % np.max(self.times)
        return "<DipoleFixed  |  %s>" % s

    def copy(self):
        """Copy the DipoleFixed object.

        Returns
        -------
        inst : instance of DipoleFixed
            The copy.

        Notes
        -----
        .. versionadded:: 0.16
        """
        return deepcopy(self)

    @property
    def ch_names(self):
        """Channel names."""
        return self.info['ch_names']

    @verbose
    def save(self, fname, verbose=None):
        """Save dipole in a .fif file.

        Parameters
        ----------
        fname : str
            The name of the .fif file. Must end with ``'.fif'`` or
            ``'.fif.gz'`` to make it explicit that the file contains
            dipole information in FIF format.
        verbose : bool, str, int, or None
            If not None, override default verbose level (see
            :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
            for more).
        """
        check_fname(fname, 'DipoleFixed', ('-dip.fif', '-dip.fif.gz',
                                           '_dip.fif', '_dip.fif.gz',),
                    ('.fif', '.fif.gz'))
        _write_evokeds(fname, self, check=False)

    def plot(self, show=True, time_unit='s'):
        """Plot dipole data.

        Parameters
        ----------
        show : bool
            Call pyplot.show() at the end or not.
        time_unit : str
            The units for the time axis, can be "ms" or "s" (default).

            .. versionadded:: 0.16

        Returns
        -------
        fig : instance of matplotlib.figure.Figure
            The figure containing the time courses.
        """
        return _plot_evoked(self, picks=None, exclude=(), unit=True, show=show,
                            ylim=None, xlim='tight', proj=False, hline=None,
                            units=None, scalings=None, titles=None, axes=None,
                            gfp=False, window_title=None, spatial_colors=False,
                            plot_type="butterfly", selectable=False,
                            time_unit=time_unit)


# #############################################################################
# IO
@verbose
def read_dipole(fname, verbose=None):
    """Read .dip file from Neuromag/xfit or MNE.

    Parameters
    ----------
    fname : str
        The name of the .dip or .fif file.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    dipole : instance of Dipole or DipoleFixed
        The dipole.

    See Also
    --------
    Dipole
    DipoleFixed
    fit_dipole
    """
    _check_fname(fname, overwrite='read', must_exist=True)
    if fname.endswith('.fif') or fname.endswith('.fif.gz'):
        return _read_dipole_fixed(fname)
    else:
        return _read_dipole_text(fname)


def _read_dipole_text(fname):
    """Read a dipole text file."""
    # Figure out the special fields
    need_header = True
    def_line = name = None
    # There is a bug in older np.loadtxt regarding skipping fields,
    # so just read the data ourselves (need to get name and header anyway)
    data = list()
    with open(fname, 'r') as fid:
        for line in fid:
            if not (line.startswith('%') or line.startswith('#')):
                need_header = False
                data.append(line.strip().split())
            else:
                if need_header:
                    def_line = line
                if line.startswith('##') or line.startswith('%%'):
                    m = re.search('Name "(.*) dipoles"', line)
                    if m:
                        name = m.group(1)
        del line
    data = np.atleast_2d(np.array(data, float))
    if def_line is None:
        raise IOError('Dipole text file is missing field definition '
                      'comment, cannot parse %s' % (fname,))
    # actually parse the fields
    def_line = def_line.lstrip('%').lstrip('#').strip()
    # MNE writes it out differently than Elekta, let's standardize them...
    fields = re.sub(r'([X|Y|Z] )\(mm\)',  # "X (mm)", etc.
                    lambda match: match.group(1).strip() + '/mm', def_line)
    fields = re.sub(r'\((.*?)\)',  # "Q(nAm)", etc.
                    lambda match: '/' + match.group(1), fields)
    fields = re.sub('(begin|end) ',  # "begin" and "end" with no units
                    lambda match: match.group(1) + '/ms', fields)
    fields = fields.lower().split()
    required_fields = ('begin/ms',
                       'x/mm', 'y/mm', 'z/mm',
                       'q/nam', 'qx/nam', 'qy/nam', 'qz/nam',
                       'g/%')
    optional_fields = ('khi^2', 'free',  # standard ones
                       # now the confidence fields (up to 5!)
                       'vol/mm^3', 'depth/mm', 'long/mm', 'trans/mm',
                       'qlong/nam', 'qtrans/nam')
    conf_scales = [1e-9, 1e-3, 1e-3, 1e-3, 1e-9, 1e-9]
    missing_fields = sorted(set(required_fields) - set(fields))
    if len(missing_fields) > 0:
        raise RuntimeError('Could not find necessary fields in header: %s'
                           % (missing_fields,))
    handled_fields = set(required_fields) | set(optional_fields)
    assert len(handled_fields) == len(required_fields) + len(optional_fields)
    ignored_fields = sorted(set(fields) -
                            set(handled_fields) -
                            set(['end/ms']))
    if len(ignored_fields) > 0:
        warn('Ignoring extra fields in dipole file: %s' % (ignored_fields,))
    if len(fields) != data.shape[1]:
        raise IOError('More data fields (%s) found than data columns (%s): %s'
                      % (len(fields), data.shape[1], fields))

    logger.info("%d dipole(s) found" % len(data))

    if 'end/ms' in fields:
        if np.diff(data[:, [fields.index('begin/ms'),
                            fields.index('end/ms')]], 1, -1).any():
            warn('begin and end fields differed, but only begin will be used '
                 'to store time values')

    # Find the correct column in our data array, then scale to proper units
    idx = [fields.index(field) for field in required_fields]
    assert len(idx) >= 9
    times = data[:, idx[0]] / 1000.
    pos = 1e-3 * data[:, idx[1:4]]  # put data in meters
    amplitude = data[:, idx[4]]
    norm = amplitude.copy()
    amplitude /= 1e9
    norm[norm == 0] = 1
    ori = data[:, idx[5:8]] / norm[:, np.newaxis]
    gof = data[:, idx[8]]
    # Deal with optional fields
    optional = [None] * 2
    for fi, field in enumerate(optional_fields[:2]):
        if field in fields:
            optional[fi] = data[:, fields.index(field)]
    khi2, nfree = optional
    conf = dict()
    for field, scale in zip(optional_fields[2:], conf_scales):  # confidence
        if field in fields:
            conf[field.split('/')[0]] = scale * data[:, fields.index(field)]
    return Dipole(times, pos, amplitude, ori, gof, name, conf, khi2, nfree)


# #############################################################################
# Fitting

def _dipole_forwards(fwd_data, whitener, rr, n_jobs=1):
    """Compute the forward solution and do other nice stuff."""
    B = _compute_forwards_meeg(rr, fwd_data, n_jobs, verbose=False)
    B = np.concatenate(B, axis=1)
    assert np.isfinite(B).all()
    B_orig = B.copy()

    # Apply projection and whiten (cov has projections already)
    B = np.dot(B, whitener.T)

    # column normalization doesn't affect our fitting, so skip for now
    # S = np.sum(B * B, axis=1)  # across channels
    # scales = np.repeat(3. / np.sqrt(np.sum(np.reshape(S, (len(rr), 3)),
    #                                        axis=1)), 3)
    # B *= scales[:, np.newaxis]
    scales = np.ones(3)
    return B, B_orig, scales


def _make_guesses(surf, grid, exclude, mindist, n_jobs):
    """Make a guess space inside a sphere or BEM surface."""
    if 'rr' in surf:
        logger.info('Guess surface (%s) is in %s coordinates'
                    % (_bem_explain_surface(surf['id']),
                       _coord_frame_name(surf['coord_frame'])))
    else:
        logger.info('Making a spherical guess space with radius %7.1f mm...'
                    % (1000 * surf['R']))
    logger.info('Filtering (grid = %6.f mm)...' % (1000 * grid))
    src = _make_volume_source_space(surf, grid, exclude, 1000 * mindist,
                                    do_neighbors=False, n_jobs=n_jobs)
    assert 'vertno' in src
    # simplify the result to make things easier later
    src = dict(rr=src['rr'][src['vertno']], nn=src['nn'][src['vertno']],
               nuse=src['nuse'], coord_frame=src['coord_frame'],
               vertno=np.arange(src['nuse']))
    return SourceSpaces([src])


def _fit_eval(rd, B, B2, fwd_svd=None, fwd_data=None, whitener=None):
    """Calculate the residual sum of squares."""
    if fwd_svd is None:
        fwd = _dipole_forwards(fwd_data, whitener, rd[np.newaxis, :])[0]
        uu, sing, vv = linalg.svd(fwd, overwrite_a=True, full_matrices=False)
    else:
        uu, sing, vv = fwd_svd
    gof = _dipole_gof(uu, sing, vv, B, B2)[0]
    # mne-c uses fitness=B2-Bm2, but ours (1-gof) is just a normalized version
    return 1. - gof


def _dipole_gof(uu, sing, vv, B, B2):
    """Calculate the goodness of fit from the forward SVD."""
    ncomp = 3 if sing[2] / (sing[0] if sing[0] > 0 else 1.) > 0.2 else 2
    one = np.dot(vv[:ncomp], B)
    Bm2 = np.sum(one * one)
    gof = Bm2 / B2
    return gof, one


def _fit_Q(fwd_data, whitener, B, B2, B_orig, rd, ori=None):
    """Fit the dipole moment once the location is known."""
    if 'fwd' in fwd_data:
        # should be a single precomputed "guess" (i.e., fixed position)
        assert rd is None
        fwd = fwd_data['fwd']
        assert fwd.shape[0] == 3
        fwd_orig = fwd_data['fwd_orig']
        assert fwd_orig.shape[0] == 3
        scales = fwd_data['scales']
        assert scales.shape == (3,)
        fwd_svd = fwd_data['fwd_svd'][0]
    else:
        fwd, fwd_orig, scales = _dipole_forwards(fwd_data, whitener,
                                                 rd[np.newaxis, :])
        fwd_svd = None
    if ori is None:
        if fwd_svd is None:
            fwd_svd = linalg.svd(fwd, full_matrices=False)
        uu, sing, vv = fwd_svd
        gof, one = _dipole_gof(uu, sing, vv, B, B2)
        ncomp = len(one)
        # Counteract the effect of column normalization
        Q = scales[0] * np.sum(uu.T[:ncomp] *
                               (one / sing[:ncomp])[:, np.newaxis], axis=0)
    else:
        fwd = np.dot(ori[np.newaxis], fwd)
        sing = np.linalg.norm(fwd)
        one = np.dot(fwd / sing, B)
        gof = (one * one)[0] / B2
        Q = ori * (scales[0] * np.sum(one / sing))
        ncomp = 3
    B_residual_noproj = B_orig - np.dot(fwd_orig.T, Q)
    return Q, gof, B_residual_noproj, ncomp


def _fit_dipoles(fun, min_dist_to_inner_skull, data, times, guess_rrs,
                 guess_data, fwd_data, whitener, ori, n_jobs, rank):
    """Fit a single dipole to the given whitened, projected data."""
    from scipy.optimize import fmin_cobyla
    parallel, p_fun, _ = parallel_func(fun, n_jobs)
    # parallel over time points
    res = parallel(p_fun(min_dist_to_inner_skull, B, t, guess_rrs,
                         guess_data, fwd_data, whitener,
                         fmin_cobyla, ori, rank)
                   for B, t in zip(data.T, times))
    pos = np.array([r[0] for r in res])
    amp = np.array([r[1] for r in res])
    ori = np.array([r[2] for r in res])
    gof = np.array([r[3] for r in res]) * 100  # convert to percentage
    conf = None
    if res[0][4] is not None:
        conf = np.array([r[4] for r in res])
        keys = ['vol', 'depth', 'long', 'trans', 'qlong', 'qtrans']
        conf = {key: conf[:, ki] for ki, key in enumerate(keys)}
    khi2 = np.array([r[5] for r in res])
    nfree = np.array([r[6] for r in res])
    residual_noproj = np.array([r[7] for r in res]).T

    return pos, amp, ori, gof, conf, khi2, nfree, residual_noproj


'''Simplex code in case we ever want/need it for testing

def _make_tetra_simplex():
    """Make the initial tetrahedron"""
    #
    # For this definition of a regular tetrahedron, see
    #
    # http://mathworld.wolfram.com/Tetrahedron.html
    #
    x = np.sqrt(3.0) / 3.0
    r = np.sqrt(6.0) / 12.0
    R = 3 * r
    d = x / 2.0
    simplex = 1e-2 * np.array([[x, 0.0, -r],
                               [-d, 0.5, -r],
                               [-d, -0.5, -r],
                               [0., 0., R]])
    return simplex


def try_(p, y, psum, ndim, fun, ihi, neval, fac):
    """Helper to try a value"""
    ptry = np.empty(ndim)
    fac1 = (1.0 - fac) / ndim
    fac2 = fac1 - fac
    ptry = psum * fac1 - p[ihi] * fac2
    ytry = fun(ptry)
    neval += 1
    if ytry < y[ihi]:
        y[ihi] = ytry
        psum[:] += ptry - p[ihi]
        p[ihi] = ptry
    return ytry, neval


def _simplex_minimize(p, ftol, stol, fun, max_eval=1000):
    """Minimization with the simplex algorithm

    Modified from Numerical recipes"""
    y = np.array([fun(s) for s in p])
    ndim = p.shape[1]
    assert p.shape[0] == ndim + 1
    mpts = ndim + 1
    neval = 0
    psum = p.sum(axis=0)

    loop = 1
    while(True):
        ilo = 1
        if y[1] > y[2]:
            ihi = 1
            inhi = 2
        else:
            ihi = 2
            inhi = 1
        for i in range(mpts):
            if y[i] < y[ilo]:
                ilo = i
            if y[i] > y[ihi]:
                inhi = ihi
                ihi = i
            elif y[i] > y[inhi]:
                if i != ihi:
                    inhi = i

        rtol = 2 * np.abs(y[ihi] - y[ilo]) / (np.abs(y[ihi]) + np.abs(y[ilo]))
        if rtol < ftol:
            break
        if neval >= max_eval:
            raise RuntimeError('Maximum number of evaluations exceeded.')
        if stol > 0:  # Has the simplex collapsed?
            dsum = np.sqrt(np.sum((p[ilo] - p[ihi]) ** 2))
            if loop > 5 and dsum < stol:
                break

        ytry, neval = try_(p, y, psum, ndim, fun, ihi, neval, -1.)
        if ytry <= y[ilo]:
            ytry, neval = try_(p, y, psum, ndim, fun, ihi, neval, 2.)
        elif ytry >= y[inhi]:
            ysave = y[ihi]
            ytry, neval = try_(p, y, psum, ndim, fun, ihi, neval, 0.5)
            if ytry >= ysave:
                for i in range(mpts):
                    if i != ilo:
                        psum[:] = 0.5 * (p[i] + p[ilo])
                        p[i] = psum
                        y[i] = fun(psum)
                neval += ndim
                psum = p.sum(axis=0)
        loop += 1
'''


def _fit_confidence(rd, Q, ori, whitener, fwd_data):
    # As describedd in the Xfit manual, confidence intervals can be calculated
    # by examining a linearization of model at the best-fitting location,
    # i.e. taking the Jacobian and using the whitener:
    #
    #     J = [∂b/∂x ∂b/∂y ∂b/∂z ∂b/∂Qx ∂b/∂Qy ∂b/∂Qz]
    #     C = (J.T C^-1 J)^-1
    #
    # And then the confidence interval is the diagonal of C, scaled by 1.96
    # (for 95% confidence).
    direction = np.empty((3, 3))
    # The coordinate system has the x axis aligned with the dipole orientation,
    direction[0] = ori
    # the z axis through the origin of the sphere model
    rvec = rd - fwd_data['inner_skull']['r0']
    direction[2] = rvec - ori * np.dot(ori, rvec)  # orthogonalize
    direction[2] /= np.linalg.norm(direction[2])
    # and the y axis perpendical with these forming a right-handed system.
    direction[1] = np.cross(direction[2], direction[0])
    assert np.allclose(np.dot(direction, direction.T), np.eye(3))
    # Get spatial deltas in dipole coordinate directions
    deltas = (-1e-4, 1e-4)
    J = np.empty((whitener.shape[0], 6))
    for ii in range(3):
        fwds = []
        for delta in deltas:
            this_r = rd[np.newaxis] + delta * direction[ii]
            fwds.append(
                np.dot(Q, _dipole_forwards(fwd_data, whitener, this_r)[0]))
        J[:, ii] = np.diff(fwds, axis=0)[0] / np.diff(deltas)[0]
    # Get current (Q) deltas in the dipole directions
    deltas = np.array([-0.01, 0.01]) * np.linalg.norm(Q)
    this_fwd = _dipole_forwards(fwd_data, whitener, rd[np.newaxis])[0]
    for ii in range(3):
        fwds = []
        for delta in deltas:
            fwds.append(np.dot(Q + delta * direction[ii], this_fwd))
        J[:, ii + 3] = np.diff(fwds, axis=0)[0] / np.diff(deltas)[0]
    # J is already whitened, so we don't need to do np.dot(whitener, J).
    # However, the units in the Jacobian are potentially quite different,
    # so we need to do some normalization during inversion, then revert.
    direction_norm = np.linalg.norm(J[:, :3])
    Q_norm = np.linalg.norm(J[:, 3:5])  # omit possible zero Z
    norm = np.array([direction_norm] * 3 + [Q_norm] * 3)
    J /= norm
    J = np.dot(J.T, J)
    C = linalg.pinvh(J, rcond=1e-14)
    C /= norm
    C /= norm[:, np.newaxis]
    conf = 1.96 * np.sqrt(np.diag(C))
    # The confidence volume of the dipole location is obtained from by
    # taking the eigenvalues of the upper left submatrix and computing
    # v = 4π/3 √(c^3 λ1 λ2 λ3) with c = 7.81, or:
    vol_conf = 4 * np.pi / 3. * np.sqrt(
        476.379541 * np.prod(linalg.eigh(C[:3, :3], eigvals_only=True)))
    conf = np.concatenate([conf, [vol_conf]])
    # Now we reorder and subselect the proper columns:
    # vol, depth, long, trans, Qlong, Qtrans (discard Qdepth, assumed zero)
    conf = conf[[6, 2, 0, 1, 3, 4]]
    return conf


def _surface_constraint(rd, surf, min_dist_to_inner_skull):
    """Surface fitting constraint."""
    dist = _compute_nearest(surf['rr'], rd[np.newaxis, :],
                            return_dists=True)[1][0]
    if _points_outside_surface(rd[np.newaxis, :], surf, 1)[0]:
        dist *= -1.
    # Once we know the dipole is below the inner skull,
    # let's check if its distance to the inner skull is at least
    # min_dist_to_inner_skull. This can be enforced by adding a
    # constrain proportional to its distance.
    dist -= min_dist_to_inner_skull
    return dist


def _sphere_constraint(rd, r0, R_adj):
    """Sphere fitting constraint."""
    return R_adj - np.sqrt(np.sum((rd - r0) ** 2))


def _fit_dipole(min_dist_to_inner_skull, B_orig, t, guess_rrs,
                guess_data, fwd_data, whitener, fmin_cobyla, ori, rank):
    """Fit a single bit of data."""
    B = np.dot(whitener, B_orig)

    # make constraint function to keep the solver within the inner skull
    if 'rr' in fwd_data['inner_skull']:  # bem
        surf = fwd_data['inner_skull']
        constraint = partial(_surface_constraint, surf=surf,
                             min_dist_to_inner_skull=min_dist_to_inner_skull)
    else:  # sphere
        surf = None
        constraint = partial(
            _sphere_constraint, r0=fwd_data['inner_skull']['r0'],
            R_adj=fwd_data['inner_skull']['R'] - min_dist_to_inner_skull)

    # Find a good starting point (find_best_guess in C)
    B2 = np.dot(B, B)
    if B2 == 0:
        warn('Zero field found for time %s' % t)
        return np.zeros(3), 0, np.zeros(3), 0, B

    idx = np.argmin([_fit_eval(guess_rrs[[fi], :], B, B2, fwd_svd)
                     for fi, fwd_svd in enumerate(guess_data['fwd_svd'])])
    x0 = guess_rrs[idx]
    fun = partial(_fit_eval, B=B, B2=B2, fwd_data=fwd_data, whitener=whitener)

    # Tested minimizers:
    #    Simplex, BFGS, CG, COBYLA, L-BFGS-B, Powell, SLSQP, TNC
    # Several were similar, but COBYLA won for having a handy constraint
    # function we can use to ensure we stay inside the inner skull /
    # smallest sphere
    rd_final = fmin_cobyla(fun, x0, (constraint,), consargs=(),
                           rhobeg=5e-2, rhoend=5e-5, disp=False)

    # simplex = _make_tetra_simplex() + x0
    # _simplex_minimize(simplex, 1e-4, 2e-4, fun)
    # rd_final = simplex[0]

    # Compute the dipole moment at the final point
    Q, gof, residual_noproj, n_comp = _fit_Q(
        fwd_data, whitener, B, B2, B_orig, rd_final, ori=ori)
    khi2 = (1 - gof) * B2
    nfree = rank - n_comp
    amp = np.sqrt(np.dot(Q, Q))
    norm = 1. if amp == 0. else amp
    ori = Q / norm

    conf = _fit_confidence(rd_final, Q, ori, whitener, fwd_data)

    msg = '---- Fitted : %7.1f ms' % (1000. * t)
    if surf is not None:
        dist_to_inner_skull = _compute_nearest(
            surf['rr'], rd_final[np.newaxis, :], return_dists=True)[1][0]
        msg += (", distance to inner skull : %2.4f mm"
                % (dist_to_inner_skull * 1000.))

    logger.info(msg)
    return rd_final, amp, ori, gof, conf, khi2, nfree, residual_noproj


def _fit_dipole_fixed(min_dist_to_inner_skull, B_orig, t, guess_rrs,
                      guess_data, fwd_data, whitener,
                      fmin_cobyla, ori, rank):
    """Fit a data using a fixed position."""
    B = np.dot(whitener, B_orig)
    B2 = np.dot(B, B)
    if B2 == 0:
        warn('Zero field found for time %s' % t)
        return np.zeros(3), 0, np.zeros(3), 0, np.zeros(6)
    # Compute the dipole moment
    Q, gof, residual_noproj = _fit_Q(guess_data, whitener, B, B2, B_orig,
                                     rd=None, ori=ori)[:3]
    if ori is None:
        amp = np.sqrt(np.dot(Q, Q))
        norm = 1. if amp == 0. else amp
        ori = Q / norm
    else:
        amp = np.dot(Q, ori)
    rd_final = guess_rrs[0]
    # This will be slow, and we don't use it anyway, so omit it for now:
    # conf = _fit_confidence(rd_final, Q, ori, whitener, fwd_data)
    conf = khi2 = nfree = None
    # No corresponding 'logger' message here because it should go *very* fast
    return rd_final, amp, ori, gof, conf, khi2, nfree, residual_noproj


@verbose
def fit_dipole(evoked, cov, bem, trans=None, min_dist=5., n_jobs=1,
               pos=None, ori=None, verbose=None):
    """Fit a dipole.

    Parameters
    ----------
    evoked : instance of Evoked
        The dataset to fit.
    cov : str | instance of Covariance
        The noise covariance.
    bem : str | instance of ConductorModel
        The BEM filename (str) or conductor model.
    trans : str | None
        The head<->MRI transform filename. Must be provided unless BEM
        is a sphere model.
    min_dist : float
        Minimum distance (in millimeters) from the dipole to the inner skull.
        Must be positive. Note that because this is a constraint passed to
        a solver it is not strict but close, i.e. for a ``min_dist=5.`` the
        fits could be 4.9 mm from the inner skull.
    n_jobs : int
        Number of jobs to run in parallel (used in field computation
        and fitting).
    pos : ndarray, shape (3,) | None
        Position of the dipole to use. If None (default), sequential
        fitting (different position and orientation for each time instance)
        is performed. If a position (in head coords) is given as an array,
        the position is fixed during fitting.

        .. versionadded:: 0.12

    ori : ndarray, shape (3,) | None
        Orientation of the dipole to use. If None (default), the
        orientation is free to change as a function of time. If an
        orientation (in head coordinates) is given as an array, ``pos``
        must also be provided, and the routine computes the amplitude and
        goodness of fit of the dipole at the given position and orientation
        for each time instant.

        .. versionadded:: 0.12

    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    dip : instance of Dipole or DipoleFixed
        The dipole fits. A :class:`mne.DipoleFixed` is returned if
        ``pos`` and ``ori`` are both not None, otherwise a
        :class:`mne.Dipole` is returned.
    residual : instance of Evoked
        The M-EEG data channels with the fitted dipolar activity removed.

    See Also
    --------
    mne.beamformer.rap_music
    Dipole
    DipoleFixed
    read_dipole

    Notes
    -----
    .. versionadded:: 0.9.0
    """
    # This could eventually be adapted to work with other inputs, these
    # are what is needed:

    evoked = evoked.copy()

    # Determine if a list of projectors has an average EEG ref
    if _needs_eeg_average_ref_proj(evoked.info):
        raise ValueError('EEG average reference is mandatory for dipole '
                         'fitting.')
    if min_dist < 0:
        raise ValueError('min_dist should be positive. Got %s' % min_dist)
    if ori is not None and pos is None:
        raise ValueError('pos must be provided if ori is not None')

    data = evoked.data
    if not np.isfinite(data).all():
        raise ValueError('Evoked data must be finite')
    info = evoked.info
    times = evoked.times.copy()
    comment = evoked.comment

    # Convert the min_dist to meters
    min_dist_to_inner_skull = min_dist / 1000.
    del min_dist

    # Figure out our inputs
    neeg = len(pick_types(info, meg=False, eeg=True, ref_meg=False,
                          exclude=[]))
    if isinstance(bem, string_types):
        bem_extra = bem
    else:
        bem_extra = repr(bem)
        logger.info('BEM               : %s' % bem_extra)
    mri_head_t, trans = _get_trans(trans)
    logger.info('MRI transform     : %s' % trans)
    bem = _setup_bem(bem, bem_extra, neeg, mri_head_t, verbose=False)
    if not bem['is_sphere']:
        # Find the best-fitting sphere
        inner_skull = _bem_find_surface(bem, 'inner_skull')
        inner_skull = inner_skull.copy()
        R, r0 = _fit_sphere(inner_skull['rr'], disp=False)
        # r0 back to head frame for logging
        r0 = apply_trans(mri_head_t['trans'], r0[np.newaxis, :])[0]
        inner_skull['r0'] = r0
        logger.info('Head origin       : '
                    '%6.1f %6.1f %6.1f mm rad = %6.1f mm.'
                    % (1000 * r0[0], 1000 * r0[1], 1000 * r0[2], 1000 * R))
        del R, r0
    else:
        r0 = bem['r0']
        if len(bem.get('layers', [])) > 0:
            R = bem['layers'][0]['rad']
            kind = 'rad'
        else:  # MEG-only
            # Use the minimum distance to the MEG sensors as the radius then
            R = np.dot(linalg.inv(info['dev_head_t']['trans']),
                       np.hstack([r0, [1.]]))[:3]  # r0 -> device
            R = R - [info['chs'][pick]['loc'][:3]
                     for pick in pick_types(info, meg=True, exclude=[])]
            if len(R) == 0:
                raise RuntimeError('No MEG channels found, but MEG-only '
                                   'sphere model used')
            R = np.min(np.sqrt(np.sum(R * R, axis=1)))  # use dist to sensors
            kind = 'max_rad'
        logger.info('Sphere model      : origin at (% 7.2f % 7.2f % 7.2f) mm, '
                    '%s = %6.1f mm'
                    % (1000 * r0[0], 1000 * r0[1], 1000 * r0[2], kind, R))
        inner_skull = dict(R=R, r0=r0)  # NB sphere model defined in head frame
        del R, r0
    accurate = False  # can be an option later (shouldn't make big diff)

    # Deal with DipoleFixed cases here
    if pos is not None:
        fixed_position = True
        pos = np.array(pos, float)
        if pos.shape != (3,):
            raise ValueError('pos must be None or a 3-element array-like,'
                             ' got %s' % (pos,))
        logger.info('Fixed position    : %6.1f %6.1f %6.1f mm'
                    % tuple(1000 * pos))
        if ori is not None:
            ori = np.array(ori, float)
            if ori.shape != (3,):
                raise ValueError('oris must be None or a 3-element array-like,'
                                 ' got %s' % (ori,))
            norm = np.sqrt(np.sum(ori * ori))
            if not np.isclose(norm, 1):
                raise ValueError('ori must be a unit vector, got length %s'
                                 % (norm,))
            logger.info('Fixed orientation  : %6.4f %6.4f %6.4f mm'
                        % tuple(ori))
        else:
            logger.info('Free orientation   : <time-varying>')
        fit_n_jobs = 1  # only use 1 job to do the guess fitting
    else:
        fixed_position = False
        # Eventually these could be parameters, but they are just used for
        # the initial grid anyway
        guess_grid = 0.02  # MNE-C uses 0.01, but this is faster w/similar perf
        guess_mindist = max(0.005, min_dist_to_inner_skull)
        guess_exclude = 0.02

        logger.info('Guess grid        : %6.1f mm' % (1000 * guess_grid,))
        if guess_mindist > 0.0:
            logger.info('Guess mindist     : %6.1f mm'
                        % (1000 * guess_mindist,))
        if guess_exclude > 0:
            logger.info('Guess exclude     : %6.1f mm'
                        % (1000 * guess_exclude,))
        logger.info('Using %s MEG coil definitions.'
                    % ("accurate" if accurate else "standard"))
        fit_n_jobs = n_jobs
    if isinstance(cov, string_types):
        logger.info('Noise covariance  : %s' % (cov,))
        cov = read_cov(cov, verbose=False)
    logger.info('')

    _print_coord_trans(mri_head_t)
    _print_coord_trans(info['dev_head_t'])
    logger.info('%d bad channels total' % len(info['bads']))

    # Forward model setup (setup_forward_model from setup.c)
    ch_types = [channel_type(info, idx) for idx in range(info['nchan'])]

    megcoils, compcoils, megnames, meg_info = [], [], [], None
    eegels, eegnames = [], []
    if 'grad' in ch_types or 'mag' in ch_types:
        megcoils, compcoils, megnames, meg_info = \
            _prep_meg_channels(info, exclude='bads',
                               accurate=accurate, verbose=verbose)
    if 'eeg' in ch_types:
        eegels, eegnames = _prep_eeg_channels(info, exclude='bads',
                                              verbose=verbose)

    # Ensure that MEG and/or EEG channels are present
    if len(megcoils + eegels) == 0:
        raise RuntimeError('No MEG or EEG channels found.')

    # Whitener for the data
    logger.info('Decomposing the sensor noise covariance matrix...')
    picks = pick_types(info, meg=True, eeg=True, ref_meg=False)

    # In case we want to more closely match MNE-C for debugging:
    # from .io.pick import pick_info
    # from .cov import prepare_noise_cov
    # info_nb = pick_info(info, picks)
    # cov = prepare_noise_cov(cov, info_nb, info_nb['ch_names'], verbose=False)
    # nzero = (cov['eig'] > 0)
    # n_chan = len(info_nb['ch_names'])
    # whitener = np.zeros((n_chan, n_chan), dtype=np.float)
    # whitener[nzero, nzero] = 1.0 / np.sqrt(cov['eig'][nzero])
    # whitener = np.dot(whitener, cov['eigvec'])

    whitener, _, rank = compute_whitener(cov, info, picks=picks,
                                         return_rank=True)

    # Proceed to computing the fits (make_guess_data)
    if fixed_position:
        guess_src = dict(nuse=1, rr=pos[np.newaxis], inuse=np.array([True]))
        logger.info('Compute forward for dipole location...')
    else:
        logger.info('\n---- Computing the forward solution for the guesses...')
        guess_src = _make_guesses(inner_skull, guess_grid, guess_exclude,
                                  guess_mindist, n_jobs=n_jobs)[0]
        # grid coordinates go from mri to head frame
        transform_surface_to(guess_src, 'head', mri_head_t)
        logger.info('Go through all guess source locations...')

    # inner_skull goes from mri to head frame
    if 'rr' in inner_skull:
        transform_surface_to(inner_skull, 'head', mri_head_t)
    if fixed_position:
        if 'rr' in inner_skull:
            check = _surface_constraint(pos, inner_skull,
                                        min_dist_to_inner_skull)
        else:
            check = _sphere_constraint(
                pos, inner_skull['r0'],
                R_adj=inner_skull['R'] - min_dist_to_inner_skull)
        if check <= 0:
            raise ValueError('fixed position is %0.1fmm outside the inner '
                             'skull boundary' % (-1000 * check,))

    # C code computes guesses w/sphere model for speed, don't bother here
    fwd_data = dict(coils_list=[megcoils, eegels], infos=[meg_info, None],
                    ccoils_list=[compcoils, None], coil_types=['meg', 'eeg'],
                    inner_skull=inner_skull)
    # fwd_data['inner_skull'] in head frame, bem in mri, confusing...
    _prep_field_computation(guess_src['rr'], bem, fwd_data, n_jobs,
                            verbose=False)
    guess_fwd, guess_fwd_orig, guess_fwd_scales = _dipole_forwards(
        fwd_data, whitener, guess_src['rr'], n_jobs=fit_n_jobs)
    # decompose ahead of time
    guess_fwd_svd = [linalg.svd(fwd, overwrite_a=False, full_matrices=False)
                     for fwd in np.array_split(guess_fwd,
                                               len(guess_src['rr']))]
    guess_data = dict(fwd=guess_fwd, fwd_svd=guess_fwd_svd,
                      fwd_orig=guess_fwd_orig, scales=guess_fwd_scales)
    del guess_fwd, guess_fwd_svd, guess_fwd_orig, guess_fwd_scales  # destroyed
    logger.info('[done %d source%s]' % (guess_src['nuse'],
                                        _pl(guess_src['nuse'])))

    # Do actual fits
    data = data[picks]
    ch_names = [info['ch_names'][p] for p in picks]
    proj_op = make_projector(info['projs'], ch_names, info['bads'])[0]
    fun = _fit_dipole_fixed if fixed_position else _fit_dipole
    out = _fit_dipoles(
        fun, min_dist_to_inner_skull, data, times, guess_src['rr'],
        guess_data, fwd_data, whitener, ori, n_jobs, rank)
    assert len(out) == 8
    if fixed_position and ori is not None:
        # DipoleFixed
        data = np.array([out[1], out[3]])
        out_info = deepcopy(info)
        loc = np.concatenate([pos, ori, np.zeros(6)])
        out_info['chs'] = [
            dict(ch_name='dip 01', loc=loc, kind=FIFF.FIFFV_DIPOLE_WAVE,
                 coord_frame=FIFF.FIFFV_COORD_UNKNOWN, unit=FIFF.FIFF_UNIT_AM,
                 coil_type=FIFF.FIFFV_COIL_DIPOLE,
                 unit_mul=0, range=1, cal=1., scanno=1, logno=1),
            dict(ch_name='goodness', loc=np.full(12, np.nan),
                 kind=FIFF.FIFFV_GOODNESS_FIT, unit=FIFF.FIFF_UNIT_AM,
                 coord_frame=FIFF.FIFFV_COORD_UNKNOWN,
                 coil_type=FIFF.FIFFV_COIL_NONE,
                 unit_mul=0, range=1., cal=1., scanno=2, logno=100)]
        for key in ['hpi_meas', 'hpi_results', 'projs']:
            out_info[key] = list()
        for key in ['acq_pars', 'acq_stim', 'description', 'dig',
                    'experimenter', 'hpi_subsystem', 'proj_id', 'proj_name',
                    'subject_info']:
            out_info[key] = None
        out_info['bads'] = []
        out_info._update_redundant()
        out_info._check_consistency()
        dipoles = DipoleFixed(out_info, data, times, evoked.nave,
                              evoked._aspect_kind, evoked.first, evoked.last,
                              comment)
    else:
        dipoles = Dipole(times, out[0], out[1], out[2], out[3], comment,
                         out[4], out[5], out[6])
    residual = evoked.copy().apply_proj()  # set the projs active
    residual.data[picks] = np.dot(proj_op, out[-1])
    logger.info('%d time points fitted' % len(dipoles.times))
    return dipoles, residual


def get_phantom_dipoles(kind='vectorview'):
    """Get standard phantom dipole locations and orientations.

    Parameters
    ----------
    kind : str
        Get the information for the given system:

            ``vectorview`` (default)
              The Neuromag VectorView phantom.
            ``otaniemi``
              The older Neuromag phantom used at Otaniemi.

    Returns
    -------
    pos : ndarray, shape (n_dipoles, 3)
        The dipole positions.
    ori : ndarray, shape (n_dipoles, 3)
        The dipole orientations.

    Notes
    -----
    The Elekta phantoms have a radius of 79.5mm, and HPI coil locations
    in the XY-plane at the axis extrema (e.g., (79.5, 0), (0, -79.5), ...).
    """
    _valid_types = ('vectorview', 'otaniemi')
    if not isinstance(kind, string_types) or kind not in _valid_types:
        raise ValueError('kind must be one of %s, got %s'
                         % (_valid_types, kind,))
    if kind == 'vectorview':
        # these values were pulled from a scanned image provided by
        # Elekta folks
        a = np.array([59.7, 48.6, 35.8, 24.8, 37.2, 27.5, 15.8, 7.9])
        b = np.array([46.1, 41.9, 38.3, 31.5, 13.9, 16.2, 20.0, 19.3])
        x = np.concatenate((a, [0] * 8, -b, [0] * 8))
        y = np.concatenate(([0] * 8, -a, [0] * 8, b))
        c = [22.9, 23.5, 25.5, 23.1, 52.0, 46.4, 41.0, 33.0]
        d = [44.4, 34.0, 21.6, 12.7, 62.4, 51.5, 39.1, 27.9]
        z = np.concatenate((c, c, d, d))
    elif kind == 'otaniemi':
        # these values were pulled from an Neuromag manual
        # (NM20456A, 13.7.1999, p.65)
        a = np.array([56.3, 47.6, 39.0, 30.3])
        b = np.array([32.5, 27.5, 22.5, 17.5])
        c = np.zeros(4)
        x = np.concatenate((a, b, c, c, -a, -b, c, c))
        y = np.concatenate((c, c, -a, -b, c, c, b, a))
        z = np.concatenate((b, a, b, a, b, a, a, b))
    pos = np.vstack((x, y, z)).T / 1000.
    # Locs are always in XZ or YZ, and so are the oris. The oris are
    # also in the same plane and tangential, so it's easy to determine
    # the orientation.
    ori = list()
    for this_pos in pos:
        this_ori = np.zeros(3)
        idx = np.where(this_pos == 0)[0]
        # assert len(idx) == 1
        idx = np.setdiff1d(np.arange(3), idx[0])
        this_ori[idx] = (this_pos[idx][::-1] /
                         np.linalg.norm(this_pos[idx])) * [1, -1]
        # Now we have this quality, which we could uncomment to
        # double-check:
        # np.testing.assert_allclose(np.dot(this_ori, this_pos) /
        #                            np.linalg.norm(this_pos), 0,
        #                            atol=1e-15)
        ori.append(this_ori)
    ori = np.array(ori)
    return pos, ori


def _concatenate_dipoles(dipoles):
    """Concatenate a list of dipoles."""
    times, pos, amplitude, ori, gof = [], [], [], [], []
    for dipole in dipoles:
        times.append(dipole.times)
        pos.append(dipole.pos)
        amplitude.append(dipole.amplitude)
        ori.append(dipole.ori)
        gof.append(dipole.gof)

    return Dipole(np.concatenate(times), np.concatenate(pos),
                  np.concatenate(amplitude), np.concatenate(ori),
                  np.concatenate(gof), name=None)