File: epochs.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (3330 lines) | stat: -rw-r--r-- 138,556 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
# -*- coding: utf-8 -*-

"""Tools for working with epoched data."""

# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Matti Hamalainen <msh@nmr.mgh.harvard.edu>
#          Daniel Strohmeier <daniel.strohmeier@tu-ilmenau.de>
#          Denis Engemann <denis.engemann@gmail.com>
#          Mainak Jas <mainak@neuro.hut.fi>
#
# License: BSD (3-clause)

from collections import OrderedDict, Counter
from copy import deepcopy
import json
import operator
import os.path as op
from distutils.version import LooseVersion

import numpy as np
import scipy

from .io.write import (start_file, start_block, end_file, end_block,
                       write_int, write_float, write_float_matrix,
                       write_double_matrix, write_complex_float_matrix,
                       write_complex_double_matrix, write_id, write_string,
                       _get_split_size)
from .io.meas_info import read_meas_info, write_meas_info, _merge_info
from .io.open import fiff_open, _get_next_fname
from .io.tree import dir_tree_find
from .io.tag import read_tag, read_tag_info
from .io.constants import FIFF
from .io.pick import (pick_types, channel_indices_by_type, channel_type,
                      pick_channels, pick_info, _pick_data_channels,
                      _pick_aux_channels, _DATA_CH_TYPES_SPLIT)
from .io.proj import setup_proj, ProjMixin, _proj_equal
from .io.base import BaseRaw, ToDataFrameMixin, TimeMixin
from .bem import _check_origin
from .evoked import EvokedArray, _check_decim
from .baseline import rescale, _log_rescale
from .channels.channels import (ContainsMixin, UpdateChannelsMixin,
                                SetChannelsMixin, InterpolationMixin)
from .filter import detrend, FilterMixin
from .event import _read_events_fif, make_fixed_length_events
from .fixes import _get_args
from .viz import (plot_epochs, plot_epochs_psd, plot_epochs_psd_topomap,
                  plot_epochs_image, plot_topo_image_epochs, plot_drop_log)
from .utils import (check_fname, logger, verbose, _check_type_picks,
                    _time_mask, check_random_state, warn, _pl, _ensure_int,
                    sizeof_fmt, SizeMixin, copy_function_doc_to_method_doc,
                    _check_pandas_installed, _check_preload)
from .externals.six import iteritems, string_types
from .externals.six.moves import zip


def _save_split(epochs, fname, part_idx, n_parts, fmt):
    """Split epochs."""
    # insert index in filename
    path, base = op.split(fname)
    idx = base.find('.')
    if part_idx > 0:
        fname = op.join(path, '%s-%d.%s' % (base[:idx], part_idx,
                                            base[idx + 1:]))

    next_fname = None
    if part_idx < n_parts - 1:
        next_fname = op.join(path, '%s-%d.%s' % (base[:idx], part_idx + 1,
                                                 base[idx + 1:]))
        next_idx = part_idx + 1

    fid = start_file(fname)

    info = epochs.info
    meas_id = info['meas_id']

    start_block(fid, FIFF.FIFFB_MEAS)
    write_id(fid, FIFF.FIFF_BLOCK_ID)
    if info['meas_id'] is not None:
        write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, info['meas_id'])

    # Write measurement info
    write_meas_info(fid, info)

    # One or more evoked data sets
    start_block(fid, FIFF.FIFFB_PROCESSED_DATA)
    start_block(fid, FIFF.FIFFB_MNE_EPOCHS)

    # write events out after getting data to ensure bad events are dropped
    data = epochs.get_data()

    if fmt not in ['single', 'double']:
        raise ValueError('fmt must be "single" or "double". Got (%s)' % fmt)

    if np.iscomplexobj(data):
        if fmt == 'single':
            write_function = write_complex_float_matrix
        elif fmt == 'double':
            write_function = write_complex_double_matrix
    else:
        if fmt == 'single':
            write_function = write_float_matrix
        elif fmt == 'double':
            write_function = write_double_matrix

    start_block(fid, FIFF.FIFFB_MNE_EVENTS)
    write_int(fid, FIFF.FIFF_MNE_EVENT_LIST, epochs.events.T)
    mapping_ = ';'.join([k + ':' + str(v) for k, v in
                         epochs.event_id.items()])

    write_string(fid, FIFF.FIFF_DESCRIPTION, mapping_)
    end_block(fid, FIFF.FIFFB_MNE_EVENTS)

    # Metadata
    if epochs.metadata is not None:
        start_block(fid, FIFF.FIFFB_MNE_METADATA)
        metadata = epochs.metadata
        if not isinstance(metadata, list):
            metadata = metadata.to_json(orient='records')
        else:  # Pandas DataFrame
            metadata = json.dumps(metadata)
        assert isinstance(metadata, string_types)
        write_string(fid, FIFF.FIFF_DESCRIPTION, metadata)
        end_block(fid, FIFF.FIFFB_MNE_METADATA)

    # First and last sample
    first = int(round(epochs.tmin * info['sfreq']))  # round just to be safe
    last = first + len(epochs.times) - 1
    write_int(fid, FIFF.FIFF_FIRST_SAMPLE, first)
    write_int(fid, FIFF.FIFF_LAST_SAMPLE, last)

    # save baseline
    if epochs.baseline is not None:
        bmin, bmax = epochs.baseline
        bmin = epochs.times[0] if bmin is None else bmin
        bmax = epochs.times[-1] if bmax is None else bmax
        write_float(fid, FIFF.FIFF_MNE_BASELINE_MIN, bmin)
        write_float(fid, FIFF.FIFF_MNE_BASELINE_MAX, bmax)

    # The epochs itself
    decal = np.empty(info['nchan'])
    for k in range(info['nchan']):
        decal[k] = 1.0 / (info['chs'][k]['cal'] *
                          info['chs'][k].get('scale', 1.0))

    data *= decal[np.newaxis, :, np.newaxis]

    write_function(fid, FIFF.FIFF_EPOCH, data)

    # undo modifications to data
    data /= decal[np.newaxis, :, np.newaxis]

    write_string(fid, FIFF.FIFF_MNE_EPOCHS_DROP_LOG,
                 json.dumps(epochs.drop_log))

    write_int(fid, FIFF.FIFF_MNE_EPOCHS_SELECTION,
              epochs.selection)

    # And now write the next file info in case epochs are split on disk
    if next_fname is not None and n_parts > 1:
        start_block(fid, FIFF.FIFFB_REF)
        write_int(fid, FIFF.FIFF_REF_ROLE, FIFF.FIFFV_ROLE_NEXT_FILE)
        write_string(fid, FIFF.FIFF_REF_FILE_NAME, op.basename(next_fname))
        if meas_id is not None:
            write_id(fid, FIFF.FIFF_REF_FILE_ID, meas_id)
        write_int(fid, FIFF.FIFF_REF_FILE_NUM, next_idx)
        end_block(fid, FIFF.FIFFB_REF)

    end_block(fid, FIFF.FIFFB_MNE_EPOCHS)
    end_block(fid, FIFF.FIFFB_PROCESSED_DATA)
    end_block(fid, FIFF.FIFFB_MEAS)
    end_file(fid)


class BaseEpochs(ProjMixin, ContainsMixin, UpdateChannelsMixin,
                 SetChannelsMixin, InterpolationMixin, FilterMixin,
                 ToDataFrameMixin, TimeMixin, SizeMixin):
    """Abstract base class for Epochs-type classes.

    This class provides basic functionality and should never be instantiated
    directly. See Epochs below for an explanation of the parameters.

    Parameters
    ----------
    info : dict
        A copy of the info dict from the raw object.
    data : ndarray | None
        If ``None``, data will be read from the Raw object. If ndarray, must be
        of shape (n_epochs, n_channels, n_times).
    events : array of int, shape (n_events, 3)
        See `Epochs` docstring.
    event_id : int | list of int | dict | None
        See `Epochs` docstring.
    tmin : float
        See `Epochs` docstring.
    tmax : float
        See `Epochs` docstring.
    baseline : None or tuple of length 2 (default (None, 0))
        See `Epochs` docstring.
    raw : Raw object
        An instance of Raw.
    picks : array-like of int | None (default)
        See `Epochs` docstring.
    reject : dict | None
        See `Epochs` docstring.
    flat : dict | None
        See `Epochs` docstring.
    decim : int
        See `Epochs` docstring.
    reject_tmin : scalar | None
        See `Epochs` docstring.
    reject_tmax : scalar | None
        See `Epochs` docstring.
    detrend : int | None
        See `Epochs` docstring.
    proj : bool | 'delayed'
        See `Epochs` docstring.
    on_missing : str
        See `Epochs` docstring.
    preload_at_end : bool
        Load all epochs from disk when creating the object
        or wait before accessing each epoch (more memory
        efficient but can be slower).
    selection : iterable | None
        Iterable of indices of selected epochs. If ``None``, will be
        automatically generated, corresponding to all non-zero events.
    drop_log : list | None
        List of lists of strings indicating which epochs have been marked to be
        ignored.
    filename : str | None
        The filename (if the epochs are read from disk).
    metadata : instance of pandas.DataFrame | None
        See :class:`mne.Epochs` docstring.

        .. versionadded:: 0.16
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more). Defaults to
        raw.verbose.

    Notes
    -----
    The ``BaseEpochs`` class is public to allow for stable type-checking in
    user code (i.e., ``isinstance(my_epochs, BaseEpochs)``) but should not be
    used as a constructor for Epochs objects (use instead :class:`mne.Epochs`).
    """

    def __init__(self, info, data, events, event_id=None, tmin=-0.2, tmax=0.5,
                 baseline=(None, 0), raw=None, picks=None, reject=None,
                 flat=None, decim=1, reject_tmin=None, reject_tmax=None,
                 detrend=None, proj=True, on_missing='error',
                 preload_at_end=False, selection=None, drop_log=None,
                 filename=None, metadata=None, verbose=None):  # noqa: D102
        self.verbose = verbose

        if on_missing not in ['error', 'warning', 'ignore']:
            raise ValueError('on_missing must be one of: error, '
                             'warning, ignore. Got: %s' % on_missing)

        if events is not None:  # RtEpochs can have events=None
            events = np.asarray(events)

        # check out event_id dict
        if event_id is None:  # convert to int to make typing-checks happy
            event_id = list(np.unique(events[:, 2]))
        if isinstance(event_id, dict):
            for key in event_id.keys():
                if not isinstance(key, string_types):
                    raise TypeError('Event names must be of type str, '
                                    'got %s (%s)' % (key, type(key)))
            event_id = dict((key, _ensure_int(val, 'event_id[%s]' % key))
                            for key, val in event_id.items())
        elif isinstance(event_id, list):
            event_id = [_ensure_int(v, 'event_id[%s]' % vi)
                        for vi, v in enumerate(event_id)]
            event_id = dict(zip((str(i) for i in event_id), event_id))
        else:
            event_id = _ensure_int(event_id, 'event_id')
            event_id = {str(event_id): event_id}
        self.event_id = event_id
        del event_id

        if events is not None:  # RtEpochs can have events=None
            if events.dtype.kind not in ['i', 'u']:
                raise ValueError('events must be an array of type int, got '
                                 'type %s' % (events.dtype))
            events = events.astype(int)
            if events.ndim != 2 or events.shape[1] != 3:
                raise ValueError('events must be 2D with 3 columns')
            for key, val in self.event_id.items():
                if val not in events[:, 2]:
                    msg = ('No matching events found for %s '
                           '(event id %i)' % (key, val))
                    if on_missing == 'error':
                        raise ValueError(msg)
                    elif on_missing == 'warning':
                        warn(msg)
                    else:  # on_missing == 'ignore':
                        pass

            values = list(self.event_id.values())
            selected = np.where(np.in1d(events[:, 2], values))[0]
            if selection is None:
                selection = selected
            else:
                selection = np.array(selection, int)
            if selection.shape != (len(selected),):
                raise ValueError('selection must be shape %s got shape %s'
                                 % (selected.shape, selection.shape))
            self.selection = selection
            if drop_log is None:
                self.drop_log = [list() if k in self.selection else ['IGNORED']
                                 for k in range(max(len(events),
                                                    max(self.selection) + 1))]
            else:
                self.drop_log = drop_log
            events = events[selected]
            if len(np.unique(events[:, 0])) != len(events):
                raise RuntimeError('Event time samples were not unique')
            n_events = len(events)
            if n_events > 1:
                if np.diff(events.astype(np.int64)[:, 0]).min() <= 0:
                    warn('The events passed to the Epochs constructor are not '
                         'chronologically ordered.', RuntimeWarning)

            if n_events > 0:
                logger.info('%d matching events found' % n_events)
            else:
                raise ValueError('No desired events found.')
            self.events = events
            del events
        else:
            self.drop_log = list()
            self.selection = np.array([], int)
            # do not set self.events here, let subclass do it

        # check reject_tmin and reject_tmax
        if (reject_tmin is not None) and (reject_tmin < tmin):
            raise ValueError("reject_tmin needs to be None or >= tmin")
        if (reject_tmax is not None) and (reject_tmax > tmax):
            raise ValueError("reject_tmax needs to be None or <= tmax")
        if (reject_tmin is not None) and (reject_tmax is not None):
            if reject_tmin >= reject_tmax:
                raise ValueError('reject_tmin needs to be < reject_tmax')
        if (detrend not in [None, 0, 1]) or isinstance(detrend, bool):
            raise ValueError('detrend must be None, 0, or 1')

        # check that baseline is in available data
        if tmin > tmax:
            raise ValueError('tmin has to be less than or equal to tmax')
        _check_baseline(baseline, tmin, tmax, info['sfreq'])
        logger.info(_log_rescale(baseline))
        self.baseline = baseline
        self.reject_tmin = reject_tmin
        self.reject_tmax = reject_tmax
        self.detrend = detrend
        self._raw = raw
        info._check_consistency()
        self.info = info
        del info
        self._metadata = None
        self.metadata = metadata
        self._current = 0

        if picks is None:
            picks = list(range(len(self.info['ch_names'])))
        else:
            self.info = pick_info(self.info, picks)
        self.picks = _check_type_picks(picks)
        if len(picks) == 0:
            raise ValueError("Picks cannot be empty.")

        if data is None:
            self.preload = False
            self._data = None
        else:
            assert decim == 1
            if data.ndim != 3 or data.shape[2] != \
                    round((tmax - tmin) * self.info['sfreq']) + 1:
                raise RuntimeError('bad data shape')
            self.preload = True
            self._data = data
        self._offset = None

        # Handle times
        sfreq = float(self.info['sfreq'])
        start_idx = int(round(tmin * sfreq))
        self._raw_times = np.arange(start_idx,
                                    int(round(tmax * sfreq)) + 1) / sfreq
        self._set_times(self._raw_times)
        self._decim = 1
        self.decimate(decim)

        # setup epoch rejection
        self.reject = None
        self.flat = None
        self._reject_setup(reject, flat)

        # do the rest
        valid_proj = [True, 'delayed', False]
        if proj not in valid_proj:
            raise ValueError('"proj" must be one of %s, not %s'
                             % (valid_proj, proj))
        if proj == 'delayed':
            self._do_delayed_proj = True
            logger.info('Entering delayed SSP mode.')
        else:
            self._do_delayed_proj = False
        activate = False if self._do_delayed_proj else proj
        self._projector, self.info = setup_proj(self.info, False,
                                                activate=activate)
        if preload_at_end:
            assert self._data is None
            assert self.preload is False
            self.load_data()  # this will do the projection
        elif proj is True and self._projector is not None and data is not None:
            # let's make sure we project if data was provided and proj
            # requested
            # we could do this with np.einsum, but iteration should be
            # more memory safe in most instances
            for ii, epoch in enumerate(self._data):
                self._data[ii] = np.dot(self._projector, epoch)
        self._filename = str(filename) if filename is not None else filename
        self._check_consistency()

    def _check_consistency(self):
        """Check invariants of epochs object."""
        assert len(self.selection) == len(self.events)
        assert len(self.selection) == sum(
            (len(dl) == 0 for dl in self.drop_log))
        assert len(self.drop_log) >= len(self.events)
        assert hasattr(self, '_times_readonly')
        assert not self.times.flags['WRITEABLE']

    def _check_metadata(self, metadata=None, reset_index=False):
        """Check metadata consistency."""
        # reset_index=False will not copy!
        metadata = self.metadata if metadata is None else metadata
        if metadata is not None:
            pd = _check_pandas_installed(strict=False)
            if pd is not False:
                if not isinstance(metadata, pd.DataFrame):
                    raise TypeError('metadata must be a pandas DataFrame, '
                                    'got %s' % (type(metadata),))
                if len(metadata) != len(self.events):
                    raise ValueError('metadata must have the same number of '
                                     'rows (%d) as events (%d)'
                                     % (len(metadata), len(self.events)))
                if reset_index:
                    metadata = metadata.reset_index(drop=True)  # makes a copy
                    metadata.index = self.selection
            else:
                if not isinstance(metadata, list):
                    raise TypeError('metdata must be a list, got %s'
                                    % (type(metadata),))
                if reset_index:
                    metadata = deepcopy(metadata)
        return metadata

    @property
    def metadata(self):
        """Get the metadata."""
        return self._metadata

    @metadata.setter
    @verbose
    def metadata(self, metadata, verbose=None):
        metadata = self._check_metadata(metadata, reset_index=True)
        if metadata is not None:
            if _check_pandas_installed(strict=False):
                n_col = metadata.shape[1]
            else:
                n_col = len(metadata[0])
            n_col = ' with %d columns' % n_col
        else:
            n_col = ''
        if self._metadata is not None:
            action = 'Removing' if metadata is None else 'Replacing'
            action += ' existing'
        else:
            action = 'Not setting' if metadata is None else 'Adding'
        logger.info('%s metadata%s' % (action, n_col))
        self._metadata = metadata

    def load_data(self):
        """Load the data if not already preloaded.

        Returns
        -------
        epochs : instance of Epochs
            The epochs object.

        Notes
        -----
        This function operates in-place.

        .. versionadded:: 0.10.0
        """
        if self.preload:
            return self
        self._data = self._get_data()
        self.preload = True
        self._decim_slice = slice(None, None, None)
        self._decim = 1
        self._raw_times = self.times
        assert self._data.shape[-1] == len(self.times)
        self._raw = None  # shouldn't need it anymore
        return self

    @verbose
    def decimate(self, decim, offset=0, verbose=None):
        """Decimate the epochs.

        .. note:: No filtering is performed. To avoid aliasing, ensure
                  your data are properly lowpassed.

        Parameters
        ----------
        decim : int
            The amount to decimate data.
        offset : int
            Apply an offset to where the decimation starts relative to the
            sample corresponding to t=0. The offset is in samples at the
            current sampling rate.

            .. versionadded:: 0.12

        verbose : bool, str, int, or None
            If not None, override default verbose level (see
            :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
            for more).

        Returns
        -------
        epochs : instance of Epochs
            The decimated Epochs object.

        See Also
        --------
        mne.Evoked.decimate
        mne.Epochs.resample
        mne.io.Raw.resample

        Notes
        -----
        Decimation can be done multiple times. For example,
        ``epochs.decimate(2).decimate(2)`` will be the same as
        ``epochs.decimate(4)``.
        If `decim` is 1, this method does not copy the underlying data.

        .. versionadded:: 0.10.0
        """
        decim, offset, new_sfreq = _check_decim(self.info, decim, offset)
        start_idx = int(round(-self._raw_times[0] * (self.info['sfreq'] *
                                                     self._decim)))
        self._decim *= decim
        i_start = start_idx % self._decim + offset
        decim_slice = slice(i_start, None, self._decim)
        self.info['sfreq'] = new_sfreq
        if self.preload:
            if decim != 1:
                self._data = self._data[:, :, decim_slice].copy()
                self._raw_times = self._raw_times[decim_slice].copy()
            else:
                self._data = np.ascontiguousarray(self._data)
            self._decim_slice = slice(None)
            self._decim = 1
        else:
            self._decim_slice = decim_slice
        self._set_times(self._raw_times[self._decim_slice])
        return self

    @verbose
    def apply_baseline(self, baseline=(None, 0), verbose=None):
        """Baseline correct epochs.

        Parameters
        ----------
        baseline : tuple of length 2
            The time interval to apply baseline correction. If None do not
            apply it. If baseline is (a, b) the interval is between "a (s)" and
            "b (s)". If a is None the beginning of the data is used and if b is
            None then b is set to the end of the interval. If baseline is equal
            to (None, None) all the time interval is used. Correction is
            applied by computing mean of the baseline period and subtracting it
            from the data. The baseline (a, b) includes both endpoints, i.e.
            all timepoints t such that a <= t <= b.
        verbose : bool, str, int, or None
            If not None, override default verbose level (see
            :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
            for more).

        Returns
        -------
        epochs : instance of Epochs
            The baseline-corrected Epochs object.

        Notes
        -----
        Baseline correction can be done multiple times.

        .. versionadded:: 0.10.0
        """
        _check_baseline(baseline, self.tmin, self.tmax, self.info['sfreq'])
        if self.preload:
            picks = _pick_data_channels(self.info, exclude=[],
                                        with_ref_meg=True)
            picks_aux = _pick_aux_channels(self.info, exclude=[])
            picks = np.sort(np.concatenate((picks, picks_aux)))
            rescale(self._data, self.times, baseline, copy=False, picks=picks)
        else:  # logging happens in "rescale" in "if" branch
            logger.info(_log_rescale(baseline))
        self.baseline = baseline
        return self

    def _reject_setup(self, reject, flat):
        """Set self._reject_time and self._channel_type_idx."""
        idx = channel_indices_by_type(self.info)
        reject = deepcopy(reject) if reject is not None else dict()
        flat = deepcopy(flat) if flat is not None else dict()
        for rej, kind in zip((reject, flat), ('reject', 'flat')):
            if not isinstance(rej, dict):
                raise TypeError('reject and flat must be dict or None, not %s'
                                % type(rej))
            bads = set(rej.keys()) - set(idx.keys())
            if len(bads) > 0:
                raise KeyError('Unknown channel types found in %s: %s'
                               % (kind, bads))

        for key in idx.keys():
            # don't throw an error if rejection/flat would do nothing
            if len(idx[key]) == 0 and (np.isfinite(reject.get(key, np.inf)) or
                                       flat.get(key, -1) >= 0):
                # This is where we could eventually add e.g.
                # self.allow_missing_reject_keys check to allow users to
                # provide keys that don't exist in data
                raise ValueError("No %s channel found. Cannot reject based on "
                                 "%s." % (key.upper(), key.upper()))

        # check for invalid values
        for rej, kind in zip((reject, flat), ('Rejection', 'Flat')):
            for key, val in rej.items():
                if val is None or val < 0:
                    raise ValueError('%s value must be a number >= 0, not "%s"'
                                     % (kind, val))

        # now check to see if our rejection and flat are getting more
        # restrictive
        old_reject = self.reject if self.reject is not None else dict()
        old_flat = self.flat if self.flat is not None else dict()
        bad_msg = ('{kind}["{key}"] == {new} {op} {old} (old value), new '
                   '{kind} values must be at least as stringent as '
                   'previous ones')
        for key in set(reject.keys()).union(old_reject.keys()):
            old = old_reject.get(key, np.inf)
            new = reject.get(key, np.inf)
            if new > old:
                raise ValueError(bad_msg.format(kind='reject', key=key,
                                                new=new, old=old, op='>'))
        for key in set(flat.keys()).union(old_flat.keys()):
            old = old_flat.get(key, -np.inf)
            new = flat.get(key, -np.inf)
            if new < old:
                raise ValueError(bad_msg.format(kind='flat', key=key,
                                                new=new, old=old, op='<'))

        # after validation, set parameters
        self._bad_dropped = False
        self._channel_type_idx = idx
        self.reject = reject if len(reject) > 0 else None
        self.flat = flat if len(flat) > 0 else None

        if (self.reject_tmin is None) and (self.reject_tmax is None):
            self._reject_time = None
        else:
            if self.reject_tmin is None:
                reject_imin = None
            else:
                idxs = np.nonzero(self.times >= self.reject_tmin)[0]
                reject_imin = idxs[0]
            if self.reject_tmax is None:
                reject_imax = None
            else:
                idxs = np.nonzero(self.times <= self.reject_tmax)[0]
                reject_imax = idxs[-1]
            self._reject_time = slice(reject_imin, reject_imax)

    @verbose
    def _is_good_epoch(self, data, verbose=None):
        """Determine if epoch is good."""
        if isinstance(data, string_types):
            return False, [data]
        if data is None:
            return False, ['NO_DATA']
        n_times = len(self.times)
        if data.shape[1] < n_times:
            # epoch is too short ie at the end of the data
            return False, ['TOO_SHORT']
        if self.reject is None and self.flat is None:
            return True, None
        else:
            if self._reject_time is not None:
                data = data[:, self._reject_time]

            return _is_good(data, self.ch_names, self._channel_type_idx,
                            self.reject, self.flat, full_report=True,
                            ignore_chs=self.info['bads'])

    @verbose
    def _detrend_offset_decim(self, epoch, verbose=None):
        """Aux Function: detrend, baseline correct, offset, decim.

        Note: operates inplace
        """
        if (epoch is None) or isinstance(epoch, string_types):
            return epoch

        # Detrend
        if self.detrend is not None:
            picks = _pick_data_channels(self.info, exclude=[])
            epoch[picks] = detrend(epoch[picks], self.detrend, axis=1)

        # Baseline correct
        picks = pick_types(self.info, meg=True, eeg=True, stim=False,
                           ref_meg=True, eog=True, ecg=True, seeg=True,
                           emg=True, bio=True, ecog=True, fnirs=True,
                           exclude=[])
        epoch[picks] = rescale(epoch[picks], self._raw_times, self.baseline,
                               copy=False, verbose=False)

        # handle offset
        if self._offset is not None:
            epoch += self._offset

        # Decimate if necessary (i.e., epoch not preloaded)
        epoch = epoch[:, self._decim_slice]
        return epoch

    def iter_evoked(self):
        """Iterate over epochs as a sequence of Evoked objects.

        The Evoked objects yielded will each contain a single epoch (i.e., no
        averaging is performed).

        This method resets the object iteration state to the first epoch.
        """
        self._current = 0

        while True:
            out = self.next(True)
            if out is None:
                return  # properly signal the end of iteration
            data, event_id = out
            tmin = self.times[0]
            info = deepcopy(self.info)

            yield EvokedArray(data, info, tmin, comment=str(event_id))

    def subtract_evoked(self, evoked=None):
        """Subtract an evoked response from each epoch.

        Can be used to exclude the evoked response when analyzing induced
        activity, see e.g. [1].

        References
        ----------
        [1] David et al. "Mechanisms of evoked and induced responses in
        MEG/EEG", NeuroImage, vol. 31, no. 4, pp. 1580-1591, July 2006.

        Parameters
        ----------
        evoked : instance of Evoked | None
            The evoked response to subtract. If None, the evoked response
            is computed from Epochs itself.

        Returns
        -------
        self : instance of Epochs
            The modified instance (instance is also modified inplace).
        """
        logger.info('Subtracting Evoked from Epochs')
        if evoked is None:
            picks = _pick_data_channels(self.info, exclude=[])
            evoked = self.average(picks)

        # find the indices of the channels to use
        picks = pick_channels(evoked.ch_names, include=self.ch_names)

        # make sure the omitted channels are not data channels
        if len(picks) < len(self.ch_names):
            sel_ch = [evoked.ch_names[ii] for ii in picks]
            diff_ch = list(set(self.ch_names).difference(sel_ch))
            diff_idx = [self.ch_names.index(ch) for ch in diff_ch]
            diff_types = [channel_type(self.info, idx) for idx in diff_idx]
            bad_idx = [diff_types.index(t) for t in diff_types if t in
                       _DATA_CH_TYPES_SPLIT]
            if len(bad_idx) > 0:
                bad_str = ', '.join([diff_ch[ii] for ii in bad_idx])
                raise ValueError('The following data channels are missing '
                                 'in the evoked response: %s' % bad_str)
            logger.info('    The following channels are not included in the '
                        'subtraction: %s' % ', '.join(diff_ch))

        # make sure the times match
        if (len(self.times) != len(evoked.times) or
                np.max(np.abs(self.times - evoked.times)) >= 1e-7):
            raise ValueError('Epochs and Evoked object do not contain '
                             'the same time points.')

        # handle SSPs
        if not self.proj and evoked.proj:
            warn('Evoked has SSP applied while Epochs has not.')
        if self.proj and not evoked.proj:
            evoked = evoked.copy().apply_proj()

        # find the indices of the channels to use in Epochs
        ep_picks = [self.ch_names.index(evoked.ch_names[ii]) for ii in picks]

        # do the subtraction
        if self.preload:
            self._data[:, ep_picks, :] -= evoked.data[picks][None, :, :]
        else:
            if self._offset is None:
                self._offset = np.zeros((len(self.ch_names), len(self.times)),
                                        dtype=np.float)
            self._offset[ep_picks] -= evoked.data[picks]
        logger.info('[done]')

        return self

    def __next__(self, *args, **kwargs):
        """Provide a wrapper for Py3k."""
        return self.next(*args, **kwargs)

    def average(self, picks=None, method="mean"):
        """Compute an average over epochs.

        Parameters
        ----------
        picks : array-like of int | None
            If None only MEG, EEG, SEEG, ECoG, and fNIRS channels are kept
            otherwise the channels indices in picks are kept.
        method : str | callable
            How to combine the data. If "mean"/"median", the mean/median
            are returned.
            Otherwise, must be a callable which, when passed an array of shape
            (n_epochs, n_channels, n_time) returns an array of shape
            (n_channels, n_time).
            Note that due to file type limitations, the kind for all
            these will be "average".

        Returns
        -------
        evoked : instance of Evoked | dict of Evoked
            The averaged epochs.

        Notes
        -----
        Computes an average of all epochs in the instance, even if
        they correspond to different conditions. To average by condition,
        do ``epochs[condition].average()`` for each condition separately.

        When picks is None and epochs contain only ICA channels, no channels
        are selected, resulting in an error. This is because ICA channels
        are not considered data channels (they are of misc type) and only data
        channels are selected when picks is None.

        The `method` parameter allows e.g. robust averaging.
        For example, one could do:

            >>> from scipy.stats import trim_mean  # doctest:+SKIP
            >>> trim = lambda x: trim_mean(x, 10, axis=0)  # doctest:+SKIP
            >>> epochs.average(method=trim)  # doctest:+SKIP

        This would compute the trimmed mean.

        """
        return self._compute_aggregate(picks=picks, mode=method)

    def standard_error(self, picks=None):
        """Compute standard error over epochs.

        Parameters
        ----------
        picks : array-like of int | None
            If None only MEG, EEG, SEEG, ECoG, and fNIRS channels are kept
            otherwise the channels indices in picks are kept.

        Returns
        -------
        evoked : instance of Evoked
            The standard error over epochs.
        """
        return self._compute_aggregate(picks, "std")

    def _compute_aggregate(self, picks, mode='mean'):
        """Compute the mean or std over epochs and return Evoked."""
        # if instance contains ICA channels they won't be included unless picks
        # is specified
        if picks is None:
            check_ICA = [x.startswith('ICA') for x in self.ch_names]
            if np.all(check_ICA):
                raise TypeError('picks must be specified (i.e. not None) for '
                                'ICA channel data')
            elif np.any(check_ICA):
                warn('ICA channels will not be included unless explicitly '
                     'selected in picks')

        n_channels = len(self.ch_names)
        n_times = len(self.times)

        if self.preload:
            n_events = len(self.events)

            if mode == "mean":
                def fun(data):
                    return np.mean(data, axis=0)
            elif mode == "std":
                def fun(data):
                    return np.std(data, axis=0)
            elif callable(mode):
                fun = mode
            else:
                raise ValueError("mode must be mean, median, std, or callable"
                                 ", got %s (type %s)." % (mode, type(mode)))
            data = fun(self._data)
            assert len(self.events) == len(self._data)
            if data.shape != self._data.shape[1:]:
                    raise RuntimeError("You passed a function that resulted "
                                       "in data of shape {}, but it should be "
                                       "{}.".format(data.shape,
                                                    self._data.shape[1:]))
        else:
            if mode not in {"mean", "std"}:
                raise ValueError("If data are not preloaded, can only compute "
                                 "mean or standard deviation.")
            data = np.zeros((n_channels, n_times))
            n_events = 0
            for e in self:
                data += e
                n_events += 1

            if n_events > 0:
                data /= n_events
            else:
                data.fill(np.nan)

            # convert to stderr if requested, could do in one pass but do in
            # two (slower) in case there are large numbers
            if mode == "std":
                data_mean = data.copy()
                data.fill(0.)
                for e in self:
                    data += (e - data_mean) ** 2
                data = np.sqrt(data / n_events)

        if mode == "std":
            kind = 'standard_error'
            data /= np.sqrt(n_events)
        else:
            kind = "average"

        return self._evoked_from_epoch_data(data, self.info, picks, n_events,
                                            kind, self._name)

    @property
    def _name(self):
        """Give a nice string representation based on event ids."""
        if len(self.event_id) == 1:
            comment = next(iter(self.event_id.keys()))
        else:
            count = Counter(self.events[:, 2])
            comments = list()
            for key, value in self.event_id.items():
                comments.append('%.2f * %s' % (
                    float(count[value]) / len(self.events), key))
            comment = ' + '.join(comments)
        return comment

    def _evoked_from_epoch_data(self, data, info, picks, n_events, kind,
                                comment):
        """Create an evoked object from epoch data."""
        info = deepcopy(info)
        evoked = EvokedArray(data, info, tmin=self.times[0], comment=comment,
                             nave=n_events, kind=kind, verbose=self.verbose)
        # XXX: above constructor doesn't recreate the times object precisely
        evoked.times = self.times.copy()

        # pick channels
        if picks is None:
            picks = _pick_data_channels(evoked.info, exclude=[])

        ch_names = [evoked.ch_names[p] for p in picks]
        evoked.pick_channels(ch_names)

        if len(evoked.info['ch_names']) == 0:
            raise ValueError('No data channel found when averaging.')

        if evoked.nave < 1:
            warn('evoked object is empty (based on less than 1 epoch)')

        return evoked

    @property
    def ch_names(self):
        """Channel names."""
        return self.info['ch_names']

    @copy_function_doc_to_method_doc(plot_epochs)
    def plot(self, picks=None, scalings=None, n_epochs=20, n_channels=20,
             title=None, events=None, event_colors=None, show=True,
             block=False, decim='auto', noise_cov=None):
        return plot_epochs(self, picks=picks, scalings=scalings,
                           n_epochs=n_epochs, n_channels=n_channels,
                           title=title, events=events,
                           event_colors=event_colors, show=show, block=block,
                           decim=decim, noise_cov=noise_cov)

    @copy_function_doc_to_method_doc(plot_epochs_psd)
    def plot_psd(self, fmin=0, fmax=np.inf, tmin=None, tmax=None, proj=False,
                 bandwidth=None, adaptive=False, low_bias=True,
                 normalization='length', picks=None, ax=None, color='black',
                 area_mode='std', area_alpha=0.33, dB=True, n_jobs=1,
                 show=True, verbose=None):
        return plot_epochs_psd(self, fmin=fmin, fmax=fmax, tmin=tmin,
                               tmax=tmax, proj=proj, bandwidth=bandwidth,
                               adaptive=adaptive, low_bias=low_bias,
                               normalization=normalization, picks=picks, ax=ax,
                               color=color, area_mode=area_mode,
                               area_alpha=area_alpha, dB=dB, n_jobs=n_jobs,
                               show=show, verbose=verbose)

    @copy_function_doc_to_method_doc(plot_epochs_psd_topomap)
    def plot_psd_topomap(self, bands=None, vmin=None, vmax=None, tmin=None,
                         tmax=None, proj=False, bandwidth=None, adaptive=False,
                         low_bias=True, normalization='length', ch_type=None,
                         layout=None, cmap='RdBu_r', agg_fun=None, dB=True,
                         n_jobs=1, normalize=False, cbar_fmt='%0.3f',
                         outlines='head', axes=None, show=True, verbose=None):
        return plot_epochs_psd_topomap(
            self, bands=bands, vmin=vmin, vmax=vmax, tmin=tmin, tmax=tmax,
            proj=proj, bandwidth=bandwidth, adaptive=adaptive,
            low_bias=low_bias, normalization=normalization, ch_type=ch_type,
            layout=layout, cmap=cmap, agg_fun=agg_fun, dB=dB, n_jobs=n_jobs,
            normalize=normalize, cbar_fmt=cbar_fmt, outlines=outlines,
            axes=axes, show=show, verbose=verbose)

    @copy_function_doc_to_method_doc(plot_topo_image_epochs)
    def plot_topo_image(self, layout=None, sigma=0., vmin=None, vmax=None,
                        colorbar=True, order=None, cmap='RdBu_r',
                        layout_scale=.95, title=None, scalings=None,
                        border='none', fig_facecolor='k', fig_background=None,
                        font_color='w', show=True):
        return plot_topo_image_epochs(
            self, layout=layout, sigma=sigma, vmin=vmin, vmax=vmax,
            colorbar=colorbar, order=order, cmap=cmap,
            layout_scale=layout_scale, title=title, scalings=scalings,
            border=border, fig_facecolor=fig_facecolor,
            fig_background=fig_background, font_color=font_color, show=show)

    @verbose
    def drop_bad(self, reject='existing', flat='existing', verbose=None):
        """Drop bad epochs without retaining the epochs data.

        Should be used before slicing operations.

        .. warning:: This operation is slow since all epochs have to be read
                     from disk. To avoid reading epochs from disk multiple
                     times, use :func:`mne.Epochs.load_data()`.

        Parameters
        ----------
        reject : dict | str | None
            Rejection parameters based on peak-to-peak amplitude.
            Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg'.
            If reject is None then no rejection is done. If 'existing',
            then the rejection parameters set at instantiation are used.
        flat : dict | str | None
            Rejection parameters based on flatness of signal.
            Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg', and values
            are floats that set the minimum acceptable peak-to-peak amplitude.
            If flat is None then no rejection is done. If 'existing',
            then the flat parameters set at instantiation are used.
        verbose : bool, str, int, or None
            If not None, override default verbose level (see
            :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
            for more). Defaults to self.verbose.

        Returns
        -------
        epochs : instance of Epochs
            The epochs with bad epochs dropped. Operates in-place.

        Notes
        -----
        Dropping bad epochs can be done multiple times with different
        ``reject`` and ``flat`` parameters. However, once an epoch is
        dropped, it is dropped forever, so if more lenient thresholds may
        subsequently be applied, `epochs.copy` should be used.
        """
        if reject == 'existing':
            if flat == 'existing' and self._bad_dropped:
                return
            reject = self.reject
        if flat == 'existing':
            flat = self.flat
        if any(isinstance(rej, string_types) and rej != 'existing' for
               rej in (reject, flat)):
            raise ValueError('reject and flat, if strings, must be "existing"')
        self._reject_setup(reject, flat)
        self._get_data(out=False)
        return self

    def drop_log_stats(self, ignore=('IGNORED',)):
        """Compute the channel stats based on a drop_log from Epochs.

        Parameters
        ----------
        ignore : list
            The drop reasons to ignore.

        Returns
        -------
        perc : float
            Total percentage of epochs dropped.

        See Also
        --------
        plot_drop_log
        """
        return _drop_log_stats(self.drop_log, ignore)

    @copy_function_doc_to_method_doc(plot_drop_log)
    def plot_drop_log(self, threshold=0, n_max_plot=20, subject='Unknown',
                      color=(0.9, 0.9, 0.9), width=0.8, ignore=('IGNORED',),
                      show=True):
        if not self._bad_dropped:
            raise ValueError("You cannot use plot_drop_log since bad "
                             "epochs have not yet been dropped. "
                             "Use epochs.drop_bad().")
        return plot_drop_log(self.drop_log, threshold, n_max_plot, subject,
                             color=color, width=width, ignore=ignore,
                             show=show)

    @copy_function_doc_to_method_doc(plot_epochs_image)
    def plot_image(self, picks=None, sigma=0., vmin=None, vmax=None,
                   colorbar=True, order=None, show=True, units=None,
                   scalings=None, cmap=None, fig=None, axes=None,
                   overlay_times=None, combine=None, group_by=None,
                   evoked=True, ts_args=dict(), title=None):
        return plot_epochs_image(self, picks=picks, sigma=sigma, vmin=vmin,
                                 vmax=vmax, colorbar=colorbar, order=order,
                                 show=show, units=units, scalings=scalings,
                                 cmap=cmap, fig=fig, axes=axes,
                                 overlay_times=overlay_times, combine=combine,
                                 group_by=group_by, evoked=evoked,
                                 ts_args=ts_args, title=title)

    @verbose
    def drop(self, indices, reason='USER', verbose=None):
        """Drop epochs based on indices or boolean mask.

        .. note:: The indices refer to the current set of undropped epochs
                  rather than the complete set of dropped and undropped epochs.
                  They are therefore not necessarily consistent with any
                  external indices (e.g., behavioral logs). To drop epochs
                  based on external criteria, do not use the ``preload=True``
                  flag when constructing an Epochs object, and call this
                  method before calling the :func:`mne.Epochs.drop_bad` or
                  :func:`mne.Epochs.load_data` methods.

        Parameters
        ----------
        indices : array of ints or bools
            Set epochs to remove by specifying indices to remove or a boolean
            mask to apply (where True values get removed). Events are
            correspondingly modified.
        reason : str
            Reason for dropping the epochs ('ECG', 'timeout', 'blink' etc).
            Default: 'USER'.
        verbose : bool, str, int, or None
            If not None, override default verbose level (see
            :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
            for more). Defaults to self.verbose.

        Returns
        -------
        epochs : instance of Epochs
            The epochs with indices dropped. Operates in-place.
        """
        indices = np.atleast_1d(indices)

        if indices.ndim > 1:
            raise ValueError("indices must be a scalar or a 1-d array")

        if indices.dtype == bool:
            indices = np.where(indices)[0]
        try_idx = np.where(indices < 0, indices + len(self.events), indices)

        out_of_bounds = (try_idx < 0) | (try_idx >= len(self.events))
        if out_of_bounds.any():
            first = indices[out_of_bounds][0]
            raise IndexError("Epoch index %d is out of bounds" % first)
        keep = np.setdiff1d(np.arange(len(self.events)), try_idx)
        self._getitem(keep, reason, copy=False, drop_event_id=False)
        count = len(try_idx)
        logger.info('Dropped %d epoch%s' % (count, _pl(count)))
        return self

    def _get_epoch_from_raw(self, idx, verbose=None):
        """Get a given epoch from disk."""
        raise NotImplementedError

    def _project_epoch(self, epoch):
        """Process a raw epoch based on the delayed param."""
        # whenever requested, the first epoch is being projected.
        if (epoch is None) or isinstance(epoch, string_types):
            # can happen if t < 0 or reject based on annotations
            return epoch
        proj = self._do_delayed_proj or self.proj
        if self._projector is not None and proj is True:
            epoch = np.dot(self._projector, epoch)
        return epoch

    @verbose
    def _get_data(self, out=True, verbose=None):
        """Load all data, dropping bad epochs along the way.

        Parameters
        ----------
        out : bool
            Return the data. Setting this to False is used to reject bad
            epochs without caching all the data, which saves memory.
        verbose : bool, str, int, or None
            If not None, override default verbose level (see
            :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
            for more). Defaults to self.verbose.
        """
        n_events = len(self.events)
        # in case there are no good events
        if self.preload:
            # we will store our result in our existing array
            data = self._data
        else:
            # we start out with an empty array, allocate only if necessary
            data = np.empty((0, len(self.info['ch_names']), len(self.times)))
            logger.info('Loading data for %s events and %s original time '
                        'points ...' % (n_events, len(self._raw_times)))
        if self._bad_dropped:
            if not out:
                return
            if self.preload:
                return data

            # we need to load from disk, drop, and return data
            for idx in range(n_events):
                # faster to pre-allocate memory here
                epoch_noproj = self._get_epoch_from_raw(idx)
                epoch_noproj = self._detrend_offset_decim(epoch_noproj)
                if self._do_delayed_proj:
                    epoch_out = epoch_noproj
                else:
                    epoch_out = self._project_epoch(epoch_noproj)
                if idx == 0:
                    data = np.empty((n_events, len(self.ch_names),
                                     len(self.times)), dtype=epoch_out.dtype)
                data[idx] = epoch_out
        else:
            # bads need to be dropped, this might occur after a preload
            # e.g., when calling drop_bad w/new params
            good_idx = []
            n_out = 0
            assert n_events == len(self.selection)
            for idx, sel in enumerate(self.selection):
                if self.preload:  # from memory
                    if self._do_delayed_proj:
                        epoch_noproj = self._data[idx]
                        epoch = self._project_epoch(epoch_noproj)
                    else:
                        epoch_noproj = None
                        epoch = self._data[idx]
                else:  # from disk
                    epoch_noproj = self._get_epoch_from_raw(idx)
                    epoch_noproj = self._detrend_offset_decim(epoch_noproj)
                    epoch = self._project_epoch(epoch_noproj)

                epoch_out = epoch_noproj if self._do_delayed_proj else epoch
                is_good, offending_reason = self._is_good_epoch(epoch)
                if not is_good:
                    self.drop_log[sel] += offending_reason
                    continue
                good_idx.append(idx)

                # store the epoch if there is a reason to (output or update)
                if out or self.preload:
                    # faster to pre-allocate, then trim as necessary
                    if n_out == 0 and not self.preload:
                        data = np.empty((n_events, epoch_out.shape[0],
                                         epoch_out.shape[1]),
                                        dtype=epoch_out.dtype, order='C')
                    data[n_out] = epoch_out
                    n_out += 1

            self._bad_dropped = True
            logger.info("%d bad epochs dropped" % (n_events - len(good_idx)))

            # Now update our properties
            self._getitem(good_idx, None, copy=False, drop_event_id=False)

            # adjust the data size if there is a reason to (output or update)
            if out or self.preload:
                if data.flags['OWNDATA'] and data.flags['C_CONTIGUOUS']:
                    data.resize((n_out,) + data.shape[1:], refcheck=False)
                else:
                    data = data[:n_out]
                    if self.preload:
                        self._data = data

        return data if out else None

    def get_data(self):
        """Get all epochs as a 3D array.

        Returns
        -------
        data : array of shape (n_epochs, n_channels, n_times)
            A view on epochs data.
        """
        return self._get_data()

    def __len__(self):
        """Return the number of epochs.

        Returns
        -------
        n_epochs : int
            The number of remaining epochs.

        Notes
        -----
        This function only works if bad epochs have been dropped.

        Examples
        --------
        This can be used as::

            >>> epochs.drop_bad()  # doctest: +SKIP
            >>> len(epochs)  # doctest: +SKIP
            43
            >>> len(epochs.events)  # doctest: +SKIP
            43

        """
        if not self._bad_dropped:
            raise RuntimeError('Since bad epochs have not been dropped, the '
                               'length of the Epochs is not known. Load the '
                               'Epochs with preload=True, or call '
                               'Epochs.drop_bad(). To find the number '
                               'of events in the Epochs, use '
                               'len(Epochs.events).')
        return len(self.events)

    def __iter__(self):
        """Facilitate iteration over epochs.

        This method resets the object iteration state to the first epoch.

        Notes
        -----
        This enables the use of this Python pattern::

            >>> for epoch in epochs:  # doctest: +SKIP
            >>>     print(epoch)  # doctest: +SKIP

        Where ``epoch`` is given by successive outputs of
        :func:`mne.Epochs.next`.
        """
        self._current = 0
        while True:
            x = self.next()
            if x is None:
                return
            yield x

    def next(self, return_event_id=False):
        """Iterate over epoch data.

        Parameters
        ----------
        return_event_id : bool
            If True, return both the epoch data and an event_id.

        Returns
        -------
        epoch : array of shape (n_channels, n_times)
            The epoch data.
        event_id : int
            The event id. Only returned if ``return_event_id`` is ``True``.
        """
        if self.preload:
            if self._current >= len(self._data):
                return  # signal the end
            epoch = self._data[self._current]
            self._current += 1
        else:
            is_good = False
            while not is_good:
                if self._current >= len(self.events):
                    return  # signal the end properly
                epoch_noproj = self._get_epoch_from_raw(self._current)
                epoch_noproj = self._detrend_offset_decim(epoch_noproj)
                epoch = self._project_epoch(epoch_noproj)
                self._current += 1
                is_good, _ = self._is_good_epoch(epoch)
            # If delayed-ssp mode, pass 'virgin' data after rejection decision.
            if self._do_delayed_proj:
                epoch = epoch_noproj

        if not return_event_id:
            return epoch
        else:
            return epoch, self.events[self._current - 1][-1]

        return epoch if not return_event_id else epoch, self.event_id

    @property
    def times(self):
        """Time vector in seconds."""
        return self._times_readonly

    def _set_times(self, times):
        """Set self._times_readonly (and make it read only)."""
        # naming used to indicate that it shouldn't be
        # changed directly, but rather via this method
        self._times_readonly = times.copy()
        self._times_readonly.flags['WRITEABLE'] = False

    @property
    def tmin(self):
        """First time point."""
        return self.times[0]

    @property
    def filename(self):
        """The filename."""
        return self._filename

    @property
    def tmax(self):
        """Last time point."""
        return self.times[-1]

    def __repr__(self):
        """Build string representation."""
        s = ' %s events ' % len(self.events)
        s += '(all good)' if self._bad_dropped else '(good & bad)'
        s += ', %g - %g sec' % (self.tmin, self.tmax)
        s += ', baseline '
        if self.baseline is None:
            s += 'off'
        else:
            s += '[%s, %s]' % tuple(['None' if b is None else ('%g' % b)
                                     for b in self.baseline])
        s += ', ~%s' % (sizeof_fmt(self._size),)
        s += ', data%s loaded' % ('' if self.preload else ' not')
        s += ', with metadata' if self.metadata is not None else ''
        counts = ['%r: %i' % (k, sum(self.events[:, 2] == v))
                  for k, v in sorted(self.event_id.items())]
        if len(self.event_id) > 0:
            s += ',' + '\n '.join([''] + counts)
        class_name = self.__class__.__name__
        class_name = 'Epochs' if class_name == 'BaseEpochs' else class_name
        return '<%s  |  %s>' % (class_name, s)

    def _keys_to_idx(self, keys):
        """Find entries in event dict."""
        keys = [keys] if not isinstance(keys, (list, tuple)) else keys
        try:
            # Assume it's a condition name
            return np.where(np.any(
                np.array([self.events[:, 2] == self.event_id[k]
                          for k in _hid_match(self.event_id, keys)]),
                axis=0))[0]
        except KeyError as err:
            # Could we in principle use metadata with these Epochs and keys?
            if (len(keys) != 1 or self.metadata is None):
                # If not, raise original error
                raise
            msg = str(err.args[0])  # message for KeyError
            pd = _check_pandas_installed(strict=False)
            # See if the query can be done
            if pd is not False:
                self._check_metadata()
                try:
                    # Try metadata
                    mask = self.metadata.eval(keys[0], engine='python').values
                except Exception as exp:
                    msg += (' The epochs.metadata Pandas query did not '
                            'yield any results: %s' % (exp.args[0],))
                else:
                    return np.where(mask)[0]
            else:
                # If not, warn this might be a problem
                msg += (' The epochs.metadata Pandas query could not '
                        'be performed, consider installing Pandas.')
            raise KeyError(msg)

    def __getitem__(self, item):
        """Return an Epochs object with a copied subset of epochs.

        Parameters
        ----------
        item : slice, array-like, str, or list
            See below for use cases.

        Returns
        -------
        epochs : instance of Epochs
            See below for use cases.

        Notes
        -----
        Epochs can be accessed as ``epochs[...]`` in several ways:

            1. ``epochs[idx]``: Return ``Epochs`` object with a subset of
               epochs (supports single index and python-style slicing).

            2. ``epochs['name']``: Return ``Epochs`` object with a copy of the
               subset of epochs corresponding to an experimental condition as
               specified by 'name'.

               If conditions are tagged by names separated by '/' (e.g.
               'audio/left', 'audio/right'), and 'name' is not in itself an
               event key, this selects every event whose condition contains
               the 'name' tag (e.g., 'left' matches 'audio/left' and
               'visual/left'; but not 'audio_left'). Note that tags selection
               is insensitive to order: tags like 'auditory/left' and
               'left/auditory' will be treated the same way when accessed.

            3. ``epochs[['name_1', 'name_2', ... ]]``: Return ``Epochs`` object
               with a copy of the subset of epochs corresponding to multiple
               experimental conditions as specified by
               ``'name_1', 'name_2', ...`` .

               If conditions are separated by '/', selects every item
               containing every list tag (e.g. ['audio', 'left'] selects
               'audio/left' and 'audio/center/left', but not 'audio/right').

            4. ``epochs['pandas query']``: Return ``Epochs`` object with a
               copy of the subset of epochs (and matching metadata) that match
               ``pandas query`` called with ``self.metadata.eval``, e.g.::

                   epochs["col_a > 2 and col_b == 'foo'"]

               This is only called if Pandas is installed and ``self.metadata``
               is a :class:`pandas.DataFrame`.

               .. versionadded:: 0.16
        """
        return self._getitem(item)

    def _getitem(self, item, reason='IGNORED', copy=True, drop_event_id=True,
                 select_data=True, return_indices=False):
        """
        Select epochs from current object.

        Parameters
        ----------
        item: slice, array-like, str, or list
            see `__getitem__` for details.
        reason: str
            entry in `drop_log` for unselected epochs
        copy: bool
            return a copy of the current object
        drop_event_id: bool
            remove non-existing event-ids after selection
        select_data: bool
            apply selection to data
            (use `select_data=False` if subclasses do not have a
             valid `_data` field)
        return_indices: bool
            return the indices of selected epochs from the original object)
            in addition to the new `Epochs` objects
        Returns
        -------
        `Epochs` or tuple(Epochs, np.ndarray) if `return_indices` is True

        object with subset of epochs (and optionally array with kept
        epoch indices)
        """
        data = self._data
        del self._data
        epochs = self.copy() if copy else self
        self._data, epochs._data = data, data
        del self

        if isinstance(item, string_types):
            item = [item]

        # Convert string to indices
        if isinstance(item, (list, tuple)) and len(item) > 0 and \
                isinstance(item[0], string_types):
            select = epochs._keys_to_idx(item)
        elif isinstance(item, slice):
            select = item
        else:
            select = np.atleast_1d(item)
            if len(select) == 0:
                select = np.array([], int)

        key_selection = epochs.selection[select]
        if reason is not None:
            for k in np.setdiff1d(epochs.selection, key_selection):
                epochs.drop_log[k] = [reason]
        epochs.selection = key_selection
        epochs.events = np.atleast_2d(epochs.events[select])
        if epochs.metadata is not None:
            pd = _check_pandas_installed(strict=False)
            if pd is not False:
                metadata = epochs.metadata.iloc[select]
                metadata.index = epochs.selection
            else:
                metadata = np.array(epochs.metadata, 'object')[select].tolist()

            # will reset the index for us
            BaseEpochs.metadata.fset(epochs, metadata, verbose=False)
        if epochs.preload and select_data:
            # ensure that each Epochs instance owns its own data so we can
            # resize later if necessary
            epochs._data = np.require(epochs._data[select], requirements=['O'])
        if drop_event_id:
            # update event id to reflect new content of epochs
            epochs.event_id = dict((k, v) for k, v in epochs.event_id.items()
                                   if v in epochs.events[:, 2])
        if return_indices:
            return epochs, select
        else:
            return epochs

    def crop(self, tmin=None, tmax=None):
        """Crop a time interval from the epochs.

        Parameters
        ----------
        tmin : float | None
            Start time of selection in seconds.
        tmax : float | None
            End time of selection in seconds.

        Returns
        -------
        epochs : instance of Epochs
            The cropped epochs.

        Notes
        -----
        Unlike Python slices, MNE time intervals include both their end points;
        crop(tmin, tmax) returns the interval tmin <= t <= tmax.

        Note that the object is modified in place.
        """
        # XXX this could be made to work on non-preloaded data...
        _check_preload(self, 'Modifying data of epochs')

        if tmin is None:
            tmin = self.tmin
        elif tmin < self.tmin:
            warn('tmin is not in epochs time interval. tmin is set to '
                 'epochs.tmin')
            tmin = self.tmin

        if tmax is None:
            tmax = self.tmax
        elif tmax > self.tmax:
            warn('tmax is not in epochs time interval. tmax is set to '
                 'epochs.tmax')
            tmax = self.tmax

        tmask = _time_mask(self.times, tmin, tmax, sfreq=self.info['sfreq'])
        self._set_times(self.times[tmask])
        self._raw_times = self._raw_times[tmask]
        self._data = self._data[:, :, tmask]
        return self

    def copy(self):
        """Return copy of Epochs instance."""
        raw = self._raw
        del self._raw
        new = deepcopy(self)
        self._raw = raw
        new._raw = raw
        new._set_times(new.times)  # sets RO
        return new

    @verbose
    def save(self, fname, split_size='2GB', fmt='single', verbose=True):
        """Save epochs in a fif file.

        Parameters
        ----------
        fname : str
            The name of the file, which should end with -epo.fif or
            -epo.fif.gz.
        split_size : string | int
            Large raw files are automatically split into multiple pieces. This
            parameter specifies the maximum size of each piece. If the
            parameter is an integer, it specifies the size in Bytes. It is
            also possible to pass a human-readable string, e.g., 100MB.
            Note: Due to FIFF file limitations, the maximum split size is 2GB.

            .. versionadded:: 0.10.0
        fmt : str
            Format to save data. Valid options are 'double' or
            'single' for 64- or 32-bit float, or for 128- or
            64-bit complex numbers respectively. Note: Data are processed with
            double precision. Choosing single-precision, the saved data
            will slightly differ due to the reduction in precision.

            .. versionadded:: 0.17
        verbose : bool, str, int, or None
            If not None, override default verbose level (see
            :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
            for more).

        Notes
        -----
        Bad epochs will be dropped before saving the epochs to disk.
        """
        check_fname(fname, 'epochs', ('-epo.fif', '-epo.fif.gz',
                                      '_epo.fif', '_epo.fif.gz'))
        split_size = _get_split_size(split_size)

        if fmt not in ('single', 'double'):
            raise ValueError('fmt must be "single" or "double". Got (%s).' %
                             fmt)

        # to know the length accurately. The get_data() call would drop
        # bad epochs anyway
        self.drop_bad()
        if len(self) == 0:
            warn('Saving epochs with no data')
            total_size = 0
        else:
            d = self[0].get_data()
            # this should be guaranteed by subclasses
            assert d.dtype in ('>f8', '<f8', '>c16', '<c16')
            total_size = d.nbytes * len(self)
        self._check_consistency()
        if fmt == "single":
            total_size //= 2  # 64bit data converted to 32bit before writing.
        n_parts = max(int(np.ceil(total_size / float(split_size))), 1)
        epoch_idxs = np.array_split(np.arange(len(self)), n_parts)

        for part_idx, epoch_idx in enumerate(epoch_idxs):
            this_epochs = self[epoch_idx] if n_parts > 1 else self
            # avoid missing event_ids in splits
            this_epochs.event_id = self.event_id
            _save_split(this_epochs, fname, part_idx, n_parts, fmt)

    def equalize_event_counts(self, event_ids, method='mintime'):
        """Equalize the number of trials in each condition.

        It tries to make the remaining epochs occurring as close as possible in
        time. This method works based on the idea that if there happened to be
        some time-varying (like on the scale of minutes) noise characteristics
        during a recording, they could be compensated for (to some extent) in
        the equalization process. This method thus seeks to reduce any of
        those effects by minimizing the differences in the times of the events
        in the two sets of epochs. For example, if one had event times
        [1, 2, 3, 4, 120, 121] and the other one had [3.5, 4.5, 120.5, 121.5],
        it would remove events at times [1, 2] in the first epochs and not
        [20, 21].

        Parameters
        ----------
        event_ids : list
            The event types to equalize. Each entry in the list can either be
            a str (single event) or a list of str. In the case where one of
            the entries is a list of str, event_ids in that list will be
            grouped together before equalizing trial counts across conditions.
            In the case where partial matching is used (using '/' in
            `event_ids`), `event_ids` will be matched according to the
            provided tags, that is, processing works as if the event_ids
            matched by the provided tags had been supplied instead.
            The event_ids must identify nonoverlapping subsets of the epochs.
        method : str
            If 'truncate', events will be truncated from the end of each event
            list. If 'mintime', timing differences between each event list
            will be minimized.

        Returns
        -------
        epochs : instance of Epochs
            The modified Epochs instance.
        indices : array of int
            Indices from the original events list that were dropped.

        Notes
        -----
        For example (if epochs.event_id was {'Left': 1, 'Right': 2,
        'Nonspatial':3}:

            epochs.equalize_event_counts([['Left', 'Right'], 'Nonspatial'])

        would equalize the number of trials in the 'Nonspatial' condition with
        the total number of trials in the 'Left' and 'Right' conditions.

        If multiple indices are provided (e.g. 'Left' and 'Right' in the
        example above), it is not guaranteed that after equalization, the
        conditions will contribute evenly. E.g., it is possible to end up
        with 70 'Nonspatial' trials, 69 'Left' and 1 'Right'.
        """
        if len(event_ids) == 0:
            raise ValueError('event_ids must have at least one element')
        if not self._bad_dropped:
            self.drop_bad()
        # figure out how to equalize
        eq_inds = list()

        # deal with hierarchical tags
        ids = self.event_id
        orig_ids = list(event_ids)
        tagging = False
        if "/" in "".join(ids):
            # make string inputs a list of length 1
            event_ids = [[x] if isinstance(x, string_types) else x
                         for x in event_ids]
            for ids_ in event_ids:  # check if tagging is attempted
                if any([id_ not in ids for id_ in ids_]):
                    tagging = True
            # 1. treat everything that's not in event_id as a tag
            # 2a. for tags, find all the event_ids matched by the tags
            # 2b. for non-tag ids, just pass them directly
            # 3. do this for every input
            event_ids = [[k for k in ids if all((tag in k.split("/")
                         for tag in id_))]  # find ids matching all tags
                         if all(id__ not in ids for id__ in id_)
                         else id_  # straight pass for non-tag inputs
                         for id_ in event_ids]
            for ii, id_ in enumerate(event_ids):
                if len(id_) == 0:
                    raise KeyError(orig_ids[ii] + "not found in the "
                                   "epoch object's event_id.")
                elif len(set([sub_id in ids for sub_id in id_])) != 1:
                    err = ("Don't mix hierarchical and regular event_ids"
                           " like in \'%s\'." % ", ".join(id_))
                    raise ValueError(err)

            # raise for non-orthogonal tags
            if tagging is True:
                events_ = [set(self[x].events[:, 0]) for x in event_ids]
                doubles = events_[0].intersection(events_[1])
                if len(doubles):
                    raise ValueError("The two sets of epochs are "
                                     "overlapping. Provide an "
                                     "orthogonal selection.")

        for eq in event_ids:
            eq_inds.append(self._keys_to_idx(eq))

        event_times = [self.events[e, 0] for e in eq_inds]
        indices = _get_drop_indices(event_times, method)
        # need to re-index indices
        indices = np.concatenate([e[idx] for e, idx in zip(eq_inds, indices)])
        self.drop(indices, reason='EQUALIZED_COUNT')
        # actually remove the indices
        return self, indices

    def shift_time(self, tshift, relative=True):
        """Shift time scale in epoched data.

        Parameters
        ----------
        tshift : float
            The amount of time shift to be applied if relative is True
            else the first time point. When relative is True, positive value
            of tshift moves the data forward while negative tshift moves it
            backward.
        relative : bool
            If true, move the time backwards or forwards by specified amount.
            Else, set the starting time point to the value of tshift.

        Notes
        -----
        Maximum accuracy of time shift is 1 / epochs.info['sfreq']
        """
        _check_preload(self, 'shift_time')
        times = self.times
        sfreq = self.info['sfreq']
        old_first = int(self.tmin * sfreq)

        offset = old_first if relative else 0

        first = int(tshift * sfreq) + offset
        last = first + len(times) - 1
        self._set_times(np.arange(first, last + 1, dtype=np.float) / sfreq)


def _hid_match(event_id, keys):
    """Match event IDs using HID selection.

    Parameters
    ----------
    event_id : dict
        The event ID dictionary.
    keys : list | str
        The event ID or subset (for HID), or list of such items.

    Returns
    -------
    use_keys : list
        The full keys that fit the selection criteria.
    """
    # form the hierarchical event ID mapping
    use_keys = []
    for key in keys:
        if not isinstance(key, string_types):
            raise KeyError('keys must be strings, got %s (%s)'
                           % (type(key), key))
        use_keys.extend(k for k in event_id.keys()
                        if set(key.split('/')).issubset(k.split('/')))
    if len(use_keys) == 0:
        raise KeyError('Event "%s" is not in Epochs.' % key)
    use_keys = list(set(use_keys))  # deduplicate if necessary
    return use_keys


def _check_baseline(baseline, tmin, tmax, sfreq):
    """Check for a valid baseline."""
    if baseline is not None:
        if not isinstance(baseline, tuple) or len(baseline) != 2:
            raise ValueError('`baseline=%s` is an invalid argument, must be '
                             'a tuple of length 2 or None' % str(baseline))
        baseline_tmin, baseline_tmax = baseline
        tstep = 1. / float(sfreq)
        if baseline_tmin is None:
            baseline_tmin = tmin
        baseline_tmin = float(baseline_tmin)
        if baseline_tmax is None:
            baseline_tmax = tmax
        baseline_tmax = float(baseline_tmax)
        if baseline_tmin < tmin - tstep:
            raise ValueError(
                "Baseline interval (tmin = %s) is outside of epoch "
                "data (tmin = %s)" % (baseline_tmin, tmin))
        if baseline_tmax > tmax + tstep:
            raise ValueError(
                "Baseline interval (tmax = %s) is outside of epoch "
                "data (tmax = %s)" % (baseline_tmax, tmax))
        if baseline_tmin > baseline_tmax:
            raise ValueError(
                "Baseline min (%s) must be less than baseline max (%s)"
                % (baseline_tmin, baseline_tmax))


def _drop_log_stats(drop_log, ignore=('IGNORED',)):
    """Compute drop log stats.

    Parameters
    ----------
    drop_log : list of lists
        Epoch drop log from Epochs.drop_log.
    ignore : list
        The drop reasons to ignore.

    Returns
    -------
    perc : float
        Total percentage of epochs dropped.
    """
    if not isinstance(drop_log, list) or not isinstance(drop_log[0], list):
        raise ValueError('drop_log must be a list of lists')
    perc = 100 * np.mean([len(d) > 0 for d in drop_log
                          if not any(r in ignore for r in d)])
    return perc


class Epochs(BaseEpochs):
    """Epochs extracted from a Raw instance.

    Parameters
    ----------
    raw : Raw object
        An instance of Raw.
    events : array of int, shape (n_events, 3)
        The events typically returned by the read_events function.
        If some events don't match the events of interest as specified
        by event_id, they will be marked as 'IGNORED' in the drop log.
    event_id : int | list of int | dict | None
        The id of the event to consider. If dict,
        the keys can later be used to access associated events. Example:
        dict(auditory=1, visual=3). If int, a dict will be created with
        the id as string. If a list, all events with the IDs specified
        in the list are used. If None, all events will be used with
        and a dict is created with string integer names corresponding
        to the event id integers.
    tmin : float
        Start time before event. If nothing is provided, defaults to -0.2
    tmax : float
        End time after event. If nothing is provided, defaults to 0.5
    baseline : None or tuple of length 2 (default (None, 0))
        The time interval to apply baseline correction. If None do not apply
        it. If baseline is (a, b) the interval is between "a (s)" and "b (s)".
        If a is None the beginning of the data is used and if b is None then b
        is set to the end of the interval. If baseline is equal to (None, None)
        all the time interval is used. Correction is applied by computing mean
        of the baseline period and subtracting it from the data. The baseline
        (a, b) includes both endpoints, i.e. all timepoints t such that
        a <= t <= b.
    picks : array-like of int | None (default)
        Indices of channels to include (if None, all channels are used).
    preload : boolean
        Load all epochs from disk when creating the object
        or wait before accessing each epoch (more memory
        efficient but can be slower).
    reject : dict | None
        Rejection parameters based on peak-to-peak amplitude.
        Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg'.
        If reject is None then no rejection is done. Example::

            reject = dict(grad=4000e-13, # T / m (gradiometers)
                          mag=4e-12, # T (magnetometers)
                          eeg=40e-6, # V (EEG channels)
                          eog=250e-6 # V (EOG channels)
                          )

    flat : dict | None
        Rejection parameters based on flatness of signal.
        Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg', and values
        are floats that set the minimum acceptable peak-to-peak amplitude.
        If flat is None then no rejection is done.
    proj : bool | 'delayed'
        Apply SSP projection vectors. If proj is 'delayed' and reject is not
        None the single epochs will be projected before the rejection
        decision, but used in unprojected state if they are kept.
        This way deciding which projection vectors are good can be postponed
        to the evoked stage without resulting in lower epoch counts and
        without producing results different from early SSP application
        given comparable parameters. Note that in this case baselining,
        detrending and temporal decimation will be postponed.
        If proj is False no projections will be applied which is the
        recommended value if SSPs are not used for cleaning the data.
    decim : int
        Factor by which to downsample the data from the raw file upon import.
        Warning: This simply selects every nth sample, data is not filtered
        here. If data is not properly filtered, aliasing artifacts may occur.
    reject_tmin : scalar | None
        Start of the time window used to reject epochs (with the default None,
        the window will start with tmin).
    reject_tmax : scalar | None
        End of the time window used to reject epochs (with the default None,
        the window will end with tmax).
    detrend : int | None
        If 0 or 1, the data channels (MEG and EEG) will be detrended when
        loaded. 0 is a constant (DC) detrend, 1 is a linear detrend. None
        is no detrending. Note that detrending is performed before baseline
        correction. If no DC offset is preferred (zeroth order detrending),
        either turn off baseline correction, as this may introduce a DC
        shift, or set baseline correction to use the entire time interval
        (will yield equivalent results but be slower).
    on_missing : str
        What to do if one or several event ids are not found in the recording.
        Valid keys are 'error' | 'warning' | 'ignore'
        Default is 'error'. If on_missing is 'warning' it will proceed but
        warn, if 'ignore' it will proceed silently. Note.
        If none of the event ids are found in the data, an error will be
        automatically generated irrespective of this parameter.
    reject_by_annotation : bool
        Whether to reject based on annotations. If True (default), epochs
        overlapping with segments whose description begins with ``'bad'`` are
        rejected. If False, no rejection based on annotations is performed.
    metadata : instance of pandas.DataFrame | None
        A :class:`pandas.DataFrame` specifying more complex metadata about
        events. If given, ``len(metadata)`` must equal ``len(events)``.
        The DataFrame may have values of type (str | int | float).
        If metadata is given, then pandas-style queries may be used to select
        subsets of data, see :meth:`mne.Epochs.__getitem__`.
        When a subset of the epochs is created in this (or any other
        supported) manner, the metadata object is subsetted in the same manner.
        MNE will modify the row indices to match ``epochs.selection``.

        .. versionadded:: 0.16
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more). Defaults to
        raw.verbose.

    Attributes
    ----------
    info : instance of Info
        Measurement info.
    event_id : dict
        Names of conditions corresponding to event_ids.
    ch_names : list of string
        List of channel names.
    selection : array
        List of indices of selected events (not dropped or ignored etc.). For
        example, if the original event array had 4 events and the second event
        has been dropped, this attribute would be np.array([0, 2, 3]).
    preload : bool
        Indicates whether epochs are in memory.
    drop_log : list of lists
        A list of the same length as the event array used to initialize the
        Epochs object. If the i-th original event is still part of the
        selection, drop_log[i] will be an empty list; otherwise it will be
        a list of the reasons the event is not longer in the selection, e.g.:

        'IGNORED' if it isn't part of the current subset defined by the user;
        'NO_DATA' or 'TOO_SHORT' if epoch didn't contain enough data;
        names of channels that exceeded the amplitude threshold;
        'EQUALIZED_COUNTS' (see equalize_event_counts);
        or 'USER' for user-defined reasons (see drop method).
    filename : str
        The filename of the object.
    times :  ndarray
        Time vector in seconds. Goes from `tmin` to `tmax`. Time interval
        between consecutive time samples is equal to the inverse of the
        sampling frequency.
    verbose : bool, str, int, or None
        See above.

    See Also
    --------
    mne.epochs.combine_event_ids
    mne.Epochs.equalize_event_counts

    Notes
    -----
    When accessing data, Epochs are detrended, baseline-corrected, and
    decimated, then projectors are (optionally) applied.

    For indexing and slicing using ``epochs[...]``, see
    :meth:`mne.Epochs.__getitem__`.

    All methods for iteration over objects (using :meth:`mne.Epochs.__iter__`,
    :meth:`mne.Epochs.iter_evoked` or :meth:`mne.Epochs.next`) use the same
    internal state.
    """

    @verbose
    def __init__(self, raw, events, event_id=None, tmin=-0.2, tmax=0.5,
                 baseline=(None, 0), picks=None, preload=False, reject=None,
                 flat=None, proj=True, decim=1, reject_tmin=None,
                 reject_tmax=None, detrend=None, on_missing='error',
                 reject_by_annotation=True, metadata=None,
                 verbose=None):  # noqa: D102
        if not isinstance(raw, BaseRaw):
            raise ValueError('The first argument to `Epochs` must be an '
                             'instance of mne.io.BaseRaw')
        info = deepcopy(raw.info)

        # proj is on when applied in Raw
        proj = proj or raw.proj

        self.reject_by_annotation = reject_by_annotation
        # call BaseEpochs constructor
        super(Epochs, self).__init__(
            info, None, events, event_id, tmin, tmax, metadata=metadata,
            baseline=baseline, raw=raw, picks=picks, reject=reject,
            flat=flat, decim=decim, reject_tmin=reject_tmin,
            reject_tmax=reject_tmax, detrend=detrend,
            proj=proj, on_missing=on_missing, preload_at_end=preload,
            verbose=verbose)

    @verbose
    def _get_epoch_from_raw(self, idx, verbose=None):
        """Load one epoch from disk.

        Returns
        -------
        data : array | str | None
            If string it's details on rejection reason.
            If None it means no data.
        """
        if self._raw is None:
            # This should never happen, as raw=None only if preload=True
            raise ValueError('An error has occurred, no valid raw file found.'
                             ' Please report this to the mne-python '
                             'developers.')
        sfreq = self._raw.info['sfreq']
        event_samp = self.events[idx, 0]
        # Read a data segment
        first_samp = self._raw.first_samp
        start = int(round(event_samp + self._raw_times[0] * sfreq))
        start -= first_samp
        stop = start + len(self._raw_times)
        data = self._raw._check_bad_segment(start, stop, self.picks,
                                            self.reject_by_annotation)
        return data


class EpochsArray(BaseEpochs):
    """Epochs object from numpy array.

    Parameters
    ----------
    data : array, shape (n_epochs, n_channels, n_times)
        The channels' time series for each epoch. See notes for proper units of
        measure.
    info : instance of Info
        Info dictionary. Consider using ``create_info`` to populate
        this structure.
    events : None | array of int, shape (n_events, 3)
        The events typically returned by the read_events function.
        If some events don't match the events of interest as specified
        by event_id, they will be marked as 'IGNORED' in the drop log.
        If None (default), all event values are set to 1 and event time-samples
        are set to range(n_epochs).
    tmin : float
        Start time before event. If nothing provided, defaults to 0.
    event_id : int | list of int | dict | None
        The id of the event to consider. If dict,
        the keys can later be used to access associated events. Example:
        dict(auditory=1, visual=3). If int, a dict will be created with
        the id as string. If a list, all events with the IDs specified
        in the list are used. If None, all events will be used with
        and a dict is created with string integer names corresponding
        to the event id integers.
    reject : dict | None
        Rejection parameters based on peak-to-peak amplitude.
        Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg'.
        If reject is None then no rejection is done. Example::

            reject = dict(grad=4000e-13, # T / m (gradiometers)
                          mag=4e-12, # T (magnetometers)
                          eeg=40e-6, # V (EEG channels)
                          eog=250e-6 # V (EOG channels)
                          )

    flat : dict | None
        Rejection parameters based on flatness of signal.
        Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg', and values
        are floats that set the minimum acceptable peak-to-peak amplitude.
        If flat is None then no rejection is done.
    reject_tmin : scalar | None
        Start of the time window used to reject epochs (with the default None,
        the window will start with tmin).
    reject_tmax : scalar | None
        End of the time window used to reject epochs (with the default None,
        the window will end with tmax).
    baseline : None or tuple of length 2 (default None)
        The time interval to apply baseline correction. If None do not apply
        it. If baseline is (a, b) the interval is between "a (s)" and "b (s)".
        If a is None the beginning of the data is used and if b is None then b
        is set to the end of the interval. If baseline is equal to (None, None)
        all the time interval is used. Correction is applied by computing mean
        of the baseline period and subtracting it from the data. The baseline
        (a, b) includes both endpoints, i.e. all timepoints t such that
        a <= t <= b.
    proj : bool | 'delayed'
        Apply SSP projection vectors. See :class:`mne.Epochs` for details.
    on_missing : str
        See :class:`mne.Epochs` docstring for details.
    metadata : instance of pandas.DataFrame | None
        See :class:`mne.Epochs` docstring for details.

        .. versionadded:: 0.16
    selection : ndarray | None
        The selection compared to the original set of epochs.
        Can be None to use ``np.arange(len(events))``.

        .. versionadded:: 0.16
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Notes
    -----
    Proper units of measure:

    * V: eeg, eog, seeg, emg, ecg, bio, ecog
    * T: mag
    * T/m: grad
    * M: hbo, hbr
    * Am: dipole
    * AU: misc

    See Also
    --------
    create_info
    EvokedArray
    io.RawArray
    """

    @verbose
    def __init__(self, data, info, events=None, tmin=0, event_id=None,
                 reject=None, flat=None, reject_tmin=None,
                 reject_tmax=None, baseline=None, proj=True,
                 on_missing='error', metadata=None, selection=None,
                 verbose=None):  # noqa: D102
        dtype = np.complex128 if np.any(np.iscomplex(data)) else np.float64
        data = np.asanyarray(data, dtype=dtype)
        if data.ndim != 3:
            raise ValueError('Data must be a 3D array of shape (n_epochs, '
                             'n_channels, n_samples)')

        if len(info['ch_names']) != data.shape[1]:
            raise ValueError('Info and data must have same number of '
                             'channels.')
        if events is None:
            n_epochs = len(data)
            events = np.c_[np.arange(n_epochs), np.zeros(n_epochs, int),
                           np.ones(n_epochs, int)]
        if data.shape[0] != len(events):
            raise ValueError('The number of epochs and the number of events'
                             'must match')
        info = info.copy()  # do not modify original info
        tmax = (data.shape[2] - 1) / info['sfreq'] + tmin
        if event_id is None:  # convert to int to make typing-checks happy
            event_id = dict((str(e), int(e)) for e in np.unique(events[:, 2]))
        super(EpochsArray, self).__init__(
            info, data, events, event_id, tmin, tmax, baseline, reject=reject,
            flat=flat, reject_tmin=reject_tmin, reject_tmax=reject_tmax,
            decim=1, metadata=metadata, selection=selection, proj=proj,
            on_missing=on_missing)
        if len(events) != np.in1d(self.events[:, 2],
                                  list(self.event_id.values())).sum():
            raise ValueError('The events must only contain event numbers from '
                             'event_id')
        for ii, e in enumerate(self._data):
            # This is safe without assignment b/c there is no decim
            self._detrend_offset_decim(e)
        self.drop_bad()


def combine_event_ids(epochs, old_event_ids, new_event_id, copy=True):
    """Collapse event_ids from an epochs instance into a new event_id.

    Parameters
    ----------
    epochs : instance of Epochs
        The epochs to operate on.
    old_event_ids : str, or list
        Conditions to collapse together.
    new_event_id : dict, or int
        A one-element dict (or a single integer) for the new
        condition. Note that for safety, this cannot be any
        existing id (in epochs.event_id.values()).
    copy : bool
        Whether to return a new instance or modify in place.

    Notes
    -----
    This For example (if epochs.event_id was {'Left': 1, 'Right': 2}:

        combine_event_ids(epochs, ['Left', 'Right'], {'Directional': 12})

    would create a 'Directional' entry in epochs.event_id replacing
    'Left' and 'Right' (combining their trials).
    """
    epochs = epochs.copy() if copy else epochs
    old_event_ids = np.asanyarray(old_event_ids)
    if isinstance(new_event_id, int):
        new_event_id = {str(new_event_id): new_event_id}
    else:
        if not isinstance(new_event_id, dict):
            raise ValueError('new_event_id must be a dict or int')
        if not len(list(new_event_id.keys())) == 1:
            raise ValueError('new_event_id dict must have one entry')
    new_event_num = list(new_event_id.values())[0]
    new_event_num = operator.index(new_event_num)
    if new_event_num in epochs.event_id.values():
        raise ValueError('new_event_id value must not already exist')
    # could use .pop() here, but if a latter one doesn't exist, we're
    # in trouble, so run them all here and pop() later
    old_event_nums = np.array([epochs.event_id[key] for key in old_event_ids])
    # find the ones to replace
    inds = np.any(epochs.events[:, 2][:, np.newaxis] ==
                  old_event_nums[np.newaxis, :], axis=1)
    # replace the event numbers in the events list
    epochs.events[inds, 2] = new_event_num
    # delete old entries
    for key in old_event_ids:
        epochs.event_id.pop(key)
    # add the new entry
    epochs.event_id.update(new_event_id)
    return epochs


def equalize_epoch_counts(epochs_list, method='mintime'):
    """Equalize the number of trials in multiple Epoch instances.

    It tries to make the remaining epochs occurring as close as possible in
    time. This method works based on the idea that if there happened to be some
    time-varying (like on the scale of minutes) noise characteristics during
    a recording, they could be compensated for (to some extent) in the
    equalization process. This method thus seeks to reduce any of those effects
    by minimizing the differences in the times of the events in the two sets of
    epochs. For example, if one had event times [1, 2, 3, 4, 120, 121] and the
    other one had [3.5, 4.5, 120.5, 121.5], it would remove events at times
    [1, 2] in the first epochs and not [120, 121].

    Note that this operates on the Epochs instances in-place.

    Example:

        equalize_epoch_counts(epochs1, epochs2)

    Parameters
    ----------
    epochs_list : list of Epochs instances
        The Epochs instances to equalize trial counts for.
    method : str
        If 'truncate', events will be truncated from the end of each event
        list. If 'mintime', timing differences between each event list will be
        minimized.
    """
    if not all(isinstance(e, BaseEpochs) for e in epochs_list):
        raise ValueError('All inputs must be Epochs instances')

    # make sure bad epochs are dropped
    for e in epochs_list:
        if not e._bad_dropped:
            e.drop_bad()
    event_times = [e.events[:, 0] for e in epochs_list]
    indices = _get_drop_indices(event_times, method)
    for e, inds in zip(epochs_list, indices):
        e.drop(inds, reason='EQUALIZED_COUNT')


def _get_drop_indices(event_times, method):
    """Get indices to drop from multiple event timing lists."""
    small_idx = np.argmin([e.shape[0] for e in event_times])
    small_e_times = event_times[small_idx]
    if method not in ['mintime', 'truncate']:
        raise ValueError('method must be either mintime or truncate, not '
                         '%s' % method)
    indices = list()
    for e in event_times:
        if method == 'mintime':
            mask = _minimize_time_diff(small_e_times, e)
        else:
            mask = np.ones(e.shape[0], dtype=bool)
            mask[small_e_times.shape[0]:] = False
        indices.append(np.where(np.logical_not(mask))[0])

    return indices


def _fix_fill(fill):
    """Fix bug on old scipy."""
    if LooseVersion(scipy.__version__) < LooseVersion('0.12'):
        fill = fill[:, np.newaxis]
    return fill


def _minimize_time_diff(t_shorter, t_longer):
    """Find a boolean mask to minimize timing differences."""
    from scipy.interpolate import interp1d
    keep = np.ones((len(t_longer)), dtype=bool)
    if len(t_shorter) == 0:
        keep.fill(False)
        return keep
    scores = np.ones((len(t_longer)))
    x1 = np.arange(len(t_shorter))
    # The first set of keep masks to test
    kwargs = dict(copy=False, bounds_error=False)
    # this is a speed tweak, only exists for certain versions of scipy
    if 'assume_sorted' in _get_args(interp1d.__init__):
        kwargs['assume_sorted'] = True
    shorter_interp = interp1d(x1, t_shorter, fill_value=t_shorter[-1],
                              **kwargs)
    for ii in range(len(t_longer) - len(t_shorter)):
        scores.fill(np.inf)
        # set up the keep masks to test, eliminating any rows that are already
        # gone
        keep_mask = ~np.eye(len(t_longer), dtype=bool)[keep]
        keep_mask[:, ~keep] = False
        # Check every possible removal to see if it minimizes
        x2 = np.arange(len(t_longer) - ii - 1)
        t_keeps = np.array([t_longer[km] for km in keep_mask])
        longer_interp = interp1d(x2, t_keeps, axis=1,
                                 fill_value=_fix_fill(t_keeps[:, -1]),
                                 **kwargs)
        d1 = longer_interp(x1) - t_shorter
        d2 = shorter_interp(x2) - t_keeps
        scores[keep] = np.abs(d1, d1).sum(axis=1) + np.abs(d2, d2).sum(axis=1)
        keep[np.argmin(scores)] = False
    return keep


@verbose
def _is_good(e, ch_names, channel_type_idx, reject, flat, full_report=False,
             ignore_chs=[], verbose=None):
    """Test if data segment e is good according to reject and flat.

    If full_report=True, it will give True/False as well as a list of all
    offending channels.
    """
    bad_list = list()
    has_printed = False
    checkable = np.ones(len(ch_names), dtype=bool)
    checkable[np.array([c in ignore_chs
                        for c in ch_names], dtype=bool)] = False
    for refl, f, t in zip([reject, flat], [np.greater, np.less], ['', 'flat']):
        if refl is not None:
            for key, thresh in iteritems(refl):
                idx = channel_type_idx[key]
                name = key.upper()
                if len(idx) > 0:
                    e_idx = e[idx]
                    deltas = np.max(e_idx, axis=1) - np.min(e_idx, axis=1)
                    checkable_idx = checkable[idx]
                    idx_deltas = np.where(np.logical_and(f(deltas, thresh),
                                                         checkable_idx))[0]

                    if len(idx_deltas) > 0:
                        ch_name = [ch_names[idx[i]] for i in idx_deltas]
                        if (not has_printed):
                            logger.info('    Rejecting %s epoch based on %s : '
                                        '%s' % (t, name, ch_name))
                            has_printed = True
                        if not full_report:
                            return False
                        else:
                            bad_list.extend(ch_name)

    if not full_report:
        return True
    else:
        if bad_list == []:
            return True, None
        else:
            return False, bad_list


def _read_one_epoch_file(f, tree, preload):
    """Read a single FIF file."""
    with f as fid:
        #   Read the measurement info
        info, meas = read_meas_info(fid, tree, clean_bads=True)

        events, mappings = _read_events_fif(fid, tree)

        #   Metadata
        metadata = None
        metadata_tree = dir_tree_find(tree, FIFF.FIFFB_MNE_METADATA)
        if len(metadata_tree) > 0:
            for dd in metadata_tree[0]['directory']:
                kind = dd.kind
                pos = dd.pos
                if kind == FIFF.FIFF_DESCRIPTION:
                    metadata = read_tag(fid, pos).data
                    pd = _check_pandas_installed(strict=False)
                    # use json.loads because this preserves ordering
                    # (which is necessary for round-trip equivalence)
                    metadata = json.loads(metadata,
                                          object_pairs_hook=OrderedDict)
                    assert isinstance(metadata, list)
                    if pd is not False:
                        metadata = pd.DataFrame.from_records(metadata)
                        assert isinstance(metadata, pd.DataFrame)
                    break

        #   Locate the data of interest
        processed = dir_tree_find(meas, FIFF.FIFFB_PROCESSED_DATA)
        if len(processed) == 0:
            raise ValueError('Could not find processed data')

        epochs_node = dir_tree_find(tree, FIFF.FIFFB_MNE_EPOCHS)
        if len(epochs_node) == 0:
            # before version 0.11 we errantly saved with this tag instead of
            # an MNE tag
            epochs_node = dir_tree_find(tree, FIFF.FIFFB_MNE_EPOCHS)
            if len(epochs_node) == 0:
                epochs_node = dir_tree_find(tree, 122)  # 122 used before v0.11
                if len(epochs_node) == 0:
                    raise ValueError('Could not find epochs data')

        my_epochs = epochs_node[0]

        # Now find the data in the block
        data = None
        data_tag = None
        bmin, bmax = None, None
        baseline = None
        selection = None
        drop_log = None
        for k in range(my_epochs['nent']):
            kind = my_epochs['directory'][k].kind
            pos = my_epochs['directory'][k].pos
            if kind == FIFF.FIFF_FIRST_SAMPLE:
                tag = read_tag(fid, pos)
                first = int(tag.data)
            elif kind == FIFF.FIFF_LAST_SAMPLE:
                tag = read_tag(fid, pos)
                last = int(tag.data)
            elif kind == FIFF.FIFF_EPOCH:
                # delay reading until later
                fid.seek(pos, 0)
                data_tag = read_tag_info(fid)
                data_tag.pos = pos
                data_tag.type = data_tag.type ^ (1 << 30)
            elif kind in [FIFF.FIFF_MNE_BASELINE_MIN, 304]:
                # Constant 304 was used before v0.11
                tag = read_tag(fid, pos)
                bmin = float(tag.data)
            elif kind in [FIFF.FIFF_MNE_BASELINE_MAX, 305]:
                # Constant 305 was used before v0.11
                tag = read_tag(fid, pos)
                bmax = float(tag.data)
            elif kind == FIFF.FIFF_MNE_EPOCHS_SELECTION:
                tag = read_tag(fid, pos)
                selection = np.array(tag.data)
            elif kind == FIFF.FIFF_MNE_EPOCHS_DROP_LOG:
                tag = read_tag(fid, pos)
                drop_log = json.loads(tag.data)

        if bmin is not None or bmax is not None:
            baseline = (bmin, bmax)

        n_samp = last - first + 1
        logger.info('    Found the data of interest:')
        logger.info('        t = %10.2f ... %10.2f ms'
                    % (1000 * first / info['sfreq'],
                       1000 * last / info['sfreq']))
        if info['comps'] is not None:
            logger.info('        %d CTF compensation matrices available'
                        % len(info['comps']))

        # Inspect the data
        if data_tag is None:
            raise ValueError('Epochs data not found')
        epoch_shape = (len(info['ch_names']), n_samp)
        size_expected = len(events) * np.prod(epoch_shape)
        # on read double-precision is always used
        if data_tag.type == FIFF.FIFFT_FLOAT:
            datatype = np.float64
            size_actual = data_tag.size // 4 - 4
        elif data_tag.type == FIFF.FIFFT_DOUBLE:
            datatype = np.float64
            size_actual = data_tag.size // 8 - 2
        elif data_tag.type == FIFF.FIFFT_COMPLEX_FLOAT:
            datatype = np.complex128
            size_actual = data_tag.size // 8 - 2
        elif data_tag.type == FIFF.FIFFT_COMPLEX_DOUBLE:
            datatype = np.complex128
            size_actual = data_tag.size // 16 - 1

        if not size_actual == size_expected:
            raise ValueError('Incorrect number of samples (%d instead of %d)'
                             % (size_actual, size_expected))

        # Calibration factors
        cals = np.array([[info['chs'][k]['cal'] *
                          info['chs'][k].get('scale', 1.0)]
                         for k in range(info['nchan'])], np.float64)

        # Read the data
        if preload:
            data = read_tag(fid, data_tag.pos).data.astype(datatype)
            data *= cals[np.newaxis, :, :]

        # Put it all together
        tmin = first / info['sfreq']
        tmax = last / info['sfreq']
        event_id = (dict((str(e), e) for e in np.unique(events[:, 2]))
                    if mappings is None else mappings)
        # In case epochs didn't have a FIFF.FIFF_MNE_EPOCHS_SELECTION tag
        # (version < 0.8):
        if selection is None:
            selection = np.arange(len(events))
        if drop_log is None:
            drop_log = [[] for _ in range(len(events))]

    return (info, data, data_tag, events, event_id, metadata, tmin, tmax,
            baseline, selection, drop_log, epoch_shape, cals)


@verbose
def read_epochs(fname, proj=True, preload=True, verbose=None):
    """Read epochs from a fif file.

    Parameters
    ----------
    fname : str
        The name of the file, which should end with -epo.fif or -epo.fif.gz.
    proj : bool | 'delayed'
        Apply SSP projection vectors. If proj is 'delayed' and reject is not
        None the single epochs will be projected before the rejection
        decision, but used in unprojected state if they are kept.
        This way deciding which projection vectors are good can be postponed
        to the evoked stage without resulting in lower epoch counts and
        without producing results different from early SSP application
        given comparable parameters. Note that in this case baselining,
        detrending and temporal decimation will be postponed.
        If proj is False no projections will be applied which is the
        recommended value if SSPs are not used for cleaning the data.
    preload : bool
        If True, read all epochs from disk immediately. If False, epochs will
        be read on demand.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    epochs : instance of Epochs
        The epochs
    """
    return EpochsFIF(fname, proj, preload, verbose)


class _RawContainer(object):
    """Helper for a raw data container."""

    def __init__(self, fid, data_tag, event_samps, epoch_shape,
                 cals):  # noqa: D102
        self.fid = fid
        self.data_tag = data_tag
        self.event_samps = event_samps
        self.epoch_shape = epoch_shape
        self.cals = cals
        self.proj = False

    def __del__(self):  # noqa: D105
        self.fid.close()


class EpochsFIF(BaseEpochs):
    """Epochs read from disk.

    Parameters
    ----------
    fname : str
        The name of the file, which should end with -epo.fif or -epo.fif.gz.
    proj : bool | 'delayed'
        Apply SSP projection vectors. If proj is 'delayed' and reject is not
        None the single epochs will be projected before the rejection
        decision, but used in unprojected state if they are kept.
        This way deciding which projection vectors are good can be postponed
        to the evoked stage without resulting in lower epoch counts and
        without producing results different from early SSP application
        given comparable parameters. Note that in this case baselining,
        detrending and temporal decimation will be postponed.
        If proj is False no projections will be applied which is the
        recommended value if SSPs are not used for cleaning the data.
    preload : bool
        If True, read all epochs from disk immediately. If False, epochs will
        be read on demand.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more). Defaults to
        raw.verbose.

    See Also
    --------
    mne.Epochs
    mne.epochs.combine_event_ids
    mne.Epochs.equalize_event_counts
    """

    @verbose
    def __init__(self, fname, proj=True, preload=True,
                 verbose=None):  # noqa: D102
        check_fname(fname, 'epochs', ('-epo.fif', '-epo.fif.gz',
                                      '_epo.fif', '_epo.fif.gz'))
        fnames = [fname]
        ep_list = list()
        raw = list()
        for fname in fnames:
            logger.info('Reading %s ...' % fname)
            fid, tree, _ = fiff_open(fname)
            next_fname = _get_next_fname(fid, fname, tree)
            (info, data, data_tag, events, event_id, metadata, tmin, tmax,
             baseline, selection, drop_log, epoch_shape, cals) = \
                _read_one_epoch_file(fid, tree, preload)

            # here we ignore missing events, since users should already be
            # aware of missing events if they have saved data that way
            epoch = BaseEpochs(
                info, data, events, event_id, tmin, tmax, baseline,
                metadata=metadata, on_missing='ignore',
                selection=selection, drop_log=drop_log,
                proj=False, verbose=False)
            ep_list.append(epoch)
            if not preload:
                # store everything we need to index back to the original data
                raw.append(_RawContainer(fiff_open(fname)[0], data_tag,
                                         events[:, 0].copy(), epoch_shape,
                                         cals))

            if next_fname is not None:
                fnames.append(next_fname)

        (info, data, events, event_id, tmin, tmax, metadata, baseline,
         selection, drop_log, _) = \
            _concatenate_epochs(ep_list, with_data=preload, add_offset=False)
        # we need this uniqueness for non-preloaded data to work properly
        if len(np.unique(events[:, 0])) != len(events):
            raise RuntimeError('Event time samples were not unique')

        # correct the drop log
        assert len(drop_log) % len(fnames) == 0
        step = len(drop_log) // len(fnames)
        offsets = np.arange(step, len(drop_log) + 1, step)
        for i1, i2 in zip(offsets[:-1], offsets[1:]):
            other_log = drop_log[i1:i2]
            for k, (a, b) in enumerate(zip(drop_log, other_log)):
                    if a == ['IGNORED'] and b != ['IGNORED']:
                        drop_log[k] = b
        drop_log = drop_log[:step]

        # call BaseEpochs constructor
        super(EpochsFIF, self).__init__(
            info, data, events, event_id, tmin, tmax, baseline, raw=raw,
            proj=proj, preload_at_end=False, on_missing='ignore',
            selection=selection, drop_log=drop_log, filename=fname,
            metadata=metadata, verbose=verbose)
        # use the private property instead of drop_bad so that epochs
        # are not all read from disk for preload=False
        self._bad_dropped = True

    @verbose
    def _get_epoch_from_raw(self, idx, verbose=None):
        """Load one epoch from disk."""
        # Find the right file and offset to use
        event_samp = self.events[idx, 0]
        for raw in self._raw:
            idx = np.where(raw.event_samps == event_samp)[0]
            if len(idx) == 1:
                idx = idx[0]
                size = np.prod(raw.epoch_shape) * 4
                offset = idx * size
                break
        else:
            # read the correct subset of the data
            raise RuntimeError('Correct epoch could not be found, please '
                               'contact mne-python developers')
        # the following is equivalent to this, but faster:
        #
        # >>> data = read_tag(raw.fid, raw.data_tag.pos).data.astype(float)
        # >>> data *= raw.cals[np.newaxis, :, :]
        # >>> data = data[idx]
        #
        # Eventually this could be refactored in io/tag.py if other functions
        # could make use of it

        raw.fid.seek(raw.data_tag.pos + offset + 16, 0)  # 16 = Tag header
        data = np.frombuffer(raw.fid.read(size), '>f4').astype(np.float64)
        data.shape = raw.epoch_shape
        data *= raw.cals
        return data


def bootstrap(epochs, random_state=None):
    """Compute epochs selected by bootstrapping.

    Parameters
    ----------
    epochs : Epochs instance
        epochs data to be bootstrapped
    random_state : None | int | np.random.RandomState
        To specify the random generator state

    Returns
    -------
    epochs : Epochs instance
        The bootstrap samples
    """
    if not epochs.preload:
        raise RuntimeError('Modifying data of epochs is only supported '
                           'when preloading is used. Use preload=True '
                           'in the constructor.')

    rng = check_random_state(random_state)
    epochs_bootstrap = epochs.copy()
    n_events = len(epochs_bootstrap.events)
    idx = rng.randint(0, n_events, n_events)
    epochs_bootstrap = epochs_bootstrap[idx]
    return epochs_bootstrap


def _check_merge_epochs(epochs_list):
    """Aux function."""
    if len(set(tuple(epochs.event_id.items()) for epochs in epochs_list)) != 1:
        raise NotImplementedError("Epochs with unequal values for event_id")
    if len(set(epochs.tmin for epochs in epochs_list)) != 1:
        raise NotImplementedError("Epochs with unequal values for tmin")
    if len(set(epochs.tmax for epochs in epochs_list)) != 1:
        raise NotImplementedError("Epochs with unequal values for tmax")
    if len(set(epochs.baseline for epochs in epochs_list)) != 1:
        raise NotImplementedError("Epochs with unequal values for baseline")


@verbose
def add_channels_epochs(epochs_list, verbose=None):
    """Concatenate channels, info and data from two Epochs objects.

    Parameters
    ----------
    epochs_list : list of Epochs
        Epochs object to concatenate.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more). Defaults to
        True if any of the input epochs have verbose=True.

    Returns
    -------
    epochs : instance of Epochs
        Concatenated epochs.
    """
    if not all(e.preload for e in epochs_list):
        raise ValueError('All epochs must be preloaded.')

    info = _merge_info([epochs.info for epochs in epochs_list])
    data = [epochs.get_data() for epochs in epochs_list]
    _check_merge_epochs(epochs_list)
    for d in data:
        if len(d) != len(data[0]):
            raise ValueError('all epochs must be of the same length')

    data = np.concatenate(data, axis=1)

    if len(info['chs']) != data.shape[1]:
        err = "Data shape does not match channel number in measurement info"
        raise RuntimeError(err)

    events = epochs_list[0].events.copy()
    all_same = all(np.array_equal(events, epochs.events)
                   for epochs in epochs_list[1:])
    if not all_same:
        raise ValueError('Events must be the same.')

    proj = any(e.proj for e in epochs_list)

    if verbose is None:
        verbose = any(e.verbose for e in epochs_list)

    epochs = epochs_list[0].copy()
    epochs.info = info
    epochs.picks = None
    epochs.verbose = verbose
    epochs.events = events
    epochs.preload = True
    epochs._bad_dropped = True
    epochs._data = data
    epochs._projector, epochs.info = setup_proj(epochs.info, False,
                                                activate=proj)
    return epochs


def _compare_epochs_infos(info1, info2, ind):
    """Compare infos."""
    info1._check_consistency()
    info2._check_consistency()
    if info1['nchan'] != info2['nchan']:
        raise ValueError('epochs[%d][\'info\'][\'nchan\'] must match' % ind)
    if info1['bads'] != info2['bads']:
        raise ValueError('epochs[%d][\'info\'][\'bads\'] must match' % ind)
    if info1['sfreq'] != info2['sfreq']:
        raise ValueError('epochs[%d][\'info\'][\'sfreq\'] must match' % ind)
    if set(info1['ch_names']) != set(info2['ch_names']):
        raise ValueError('epochs[%d][\'info\'][\'ch_names\'] must match' % ind)
    if len(info2['projs']) != len(info1['projs']):
        raise ValueError('SSP projectors in epochs files must be the same')
    if any(not _proj_equal(p1, p2) for p1, p2 in
           zip(info2['projs'], info1['projs'])):
        raise ValueError('SSP projectors in epochs files must be the same')
    if (info1['dev_head_t'] is None) != (info2['dev_head_t'] is None) or \
            (info1['dev_head_t'] is not None and not
             np.allclose(info1['dev_head_t']['trans'],
                         info2['dev_head_t']['trans'], rtol=1e-6)):
        raise ValueError('epochs[%d][\'info\'][\'dev_head_t\'] must match. '
                         'The epochs probably come from different runs, and '
                         'are therefore associated with different head '
                         'positions. Manually change info[\'dev_head_t\'] to '
                         'avoid this message but beware that this means the '
                         'MEG sensors will not be properly spatially aligned. '
                         'See mne.preprocessing.maxwell_filter to realign the '
                         'runs to a common head position.' % ind)


def _concatenate_epochs(epochs_list, with_data=True, add_offset=True):
    """Auxiliary function for concatenating epochs."""
    if not isinstance(epochs_list, (list, tuple)):
        raise TypeError('epochs_list must be a list or tuple, got %s'
                        % (type(epochs_list),))
    for ei, epochs in enumerate(epochs_list):
        if not isinstance(epochs, BaseEpochs):
            raise TypeError('epochs_list[%d] must be an instance of Epochs, '
                            'got %s' % (ei, type(epochs)))
    out = epochs_list[0]
    data = [out.get_data()] if with_data else None
    events = [out.events]
    metadata = [out.metadata]
    baseline, tmin, tmax = out.baseline, out.tmin, out.tmax
    info = deepcopy(out.info)
    verbose = out.verbose
    drop_log = deepcopy(out.drop_log)
    event_id = deepcopy(out.event_id)
    selection = out.selection
    # offset is the last epoch + tmax + 10 second
    events_offset = (np.max(out.events[:, 0]) +
                     int((10 + tmax) * epochs.info['sfreq']))
    for ii, epochs in enumerate(epochs_list[1:]):
        _compare_epochs_infos(epochs.info, info, ii)
        if not np.allclose(epochs.times, epochs_list[0].times):
            raise ValueError('Epochs must have same times')

        if epochs.baseline != baseline:
            raise ValueError('Baseline must be same for all epochs')

        # compare event_id
        common_keys = list(set(event_id).intersection(set(epochs.event_id)))
        for key in common_keys:
            if not event_id[key] == epochs.event_id[key]:
                msg = ('event_id values must be the same for identical keys '
                       'for all concatenated epochs. Key "{}" maps to {} in '
                       'some epochs and to {} in others.')
                raise ValueError(msg.format(key, event_id[key],
                                            epochs.event_id[key]))

        if with_data:
            data.append(epochs.get_data())
        evs = epochs.events.copy()
        # add offset
        if add_offset:
            evs[:, 0] += events_offset
        # Update offset for the next iteration.
        # offset is the last epoch + tmax + 10 second
        events_offset += (np.max(epochs.events[:, 0]) +
                          int((10 + tmax) * epochs.info['sfreq']))
        events.append(evs)
        selection = np.concatenate((selection, epochs.selection))
        drop_log.extend(epochs.drop_log)
        event_id.update(epochs.event_id)
        metadata.append(epochs.metadata)
    events = np.concatenate(events, axis=0)

    # Create metadata object (or make it None)
    n_have = sum(this_meta is not None for this_meta in metadata)
    if n_have == 0:
        metadata = None
    elif n_have != len(metadata):
        raise ValueError('%d of %d epochs instances have metadata, either '
                         'all or none must have metadata'
                         % (n_have, len(metadata)))
    else:
        pd = _check_pandas_installed(strict=False)
        if pd is not False:
            metadata = pd.concat(metadata)
        else:  # dict of dicts
            metadata = sum(metadata, list())
    if with_data:
        data = np.concatenate(data, axis=0)
    return (info, data, events, event_id, tmin, tmax, metadata, baseline,
            selection, drop_log, verbose)


def _finish_concat(info, data, events, event_id, tmin, tmax, metadata,
                   baseline, selection, drop_log, verbose):
    """Finish concatenation for epochs not read from disk."""
    selection = np.where([len(d) == 0 for d in drop_log])[0]
    out = BaseEpochs(
        info, data, events, event_id, tmin, tmax, baseline=baseline,
        selection=selection, drop_log=drop_log, proj=False,
        on_missing='ignore', metadata=metadata, verbose=verbose)
    out.drop_bad()
    return out


def concatenate_epochs(epochs_list, add_offset=True):
    """Concatenate a list of epochs into one epochs object.

    Parameters
    ----------
    epochs_list : list
        list of Epochs instances to concatenate (in order).
    add_offset : bool
        If True, a fixed offset is added to the event times from different
        Epochs sets, such that they are easy to distinguish after the
        concatenation.
        If False, the event times are unaltered during the concatenation.

    Returns
    -------
    epochs : instance of Epochs
        The result of the concatenation (first Epochs instance passed in).

    Notes
    -----
    .. versionadded:: 0.9.0
    """
    return _finish_concat(*_concatenate_epochs(epochs_list,
                                               add_offset=add_offset))


@verbose
def average_movements(epochs, head_pos=None, orig_sfreq=None, picks=None,
                      origin='auto', weight_all=True, int_order=8, ext_order=3,
                      destination=None, ignore_ref=False, return_mapping=False,
                      mag_scale=100., verbose=None):
    u"""Average data using Maxwell filtering, transforming using head positions.

    Parameters
    ----------
    epochs : instance of Epochs
        The epochs to operate on.
    head_pos : array | tuple | None
        The array should be of shape ``(N, 10)``, holding the position
        parameters as returned by e.g. `read_head_pos`. For backward
        compatibility, this can also be a tuple of ``(trans, rot t)``
        as returned by `head_pos_to_trans_rot_t`.
    orig_sfreq : float | None
        The original sample frequency of the data (that matches the
        event sample numbers in ``epochs.events``). Can be ``None``
        if data have not been decimated or resampled.
    picks : array-like of int | None
        If None only MEG, EEG, SEEG, ECoG, and fNIRS channels are kept
        otherwise the channels indices in picks are kept.
    origin : array-like, shape (3,) | str
        Origin of internal and external multipolar moment space in head
        coords and in meters. The default is ``'auto'``, which means
        a head-digitization-based origin fit.
    weight_all : bool
        If True, all channels are weighted by the SSS basis weights.
        If False, only MEG channels are weighted, other channels
        receive uniform weight per epoch.
    int_order : int
        Order of internal component of spherical expansion.
    ext_order : int
        Order of external component of spherical expansion.
    regularize : str | None
        Basis regularization type, must be "in" or None.
        See :func:`mne.preprocessing.maxwell_filter` for details.
        Regularization is chosen based only on the destination position.
    destination : str | array-like, shape (3,) | None
        The destination location for the head. Can be ``None``, which
        will not change the head position, or a string path to a FIF file
        containing a MEG device<->head transformation, or a 3-element array
        giving the coordinates to translate to (with no rotations).
        For example, ``destination=(0, 0, 0.04)`` would translate the bases
        as ``--trans default`` would in MaxFilter™ (i.e., to the default
        head location).

        .. versionadded:: 0.12

    ignore_ref : bool
        If True, do not include reference channels in compensation. This
        option should be True for KIT files, since Maxwell filtering
        with reference channels is not currently supported.
    return_mapping : bool
        If True, return the mapping matrix.
    mag_scale : float | str
        The magenetometer scale-factor used to bring the magnetometers
        to approximately the same order of magnitude as the gradiometers
        (default 100.), as they have different units (T vs T/m).
        Can be ``'auto'`` to use the reciprocal of the physical distance
        between the gradiometer pickup loops (e.g., 0.0168 m yields
        59.5 for VectorView).

        .. versionadded:: 0.13

    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    evoked : instance of Evoked
        The averaged epochs.

    See Also
    --------
    mne.preprocessing.maxwell_filter
    mne.chpi.read_head_pos

    Notes
    -----
    The Maxwell filtering version of this algorithm is described in [1]_,
    in section V.B "Virtual signals and movement correction", equations
    40-44. For additional validation, see [2]_.

    Regularization has not been added because in testing it appears to
    decrease dipole localization accuracy relative to using all components.
    Fine calibration and cross-talk cancellation, however, could be added
    to this algorithm based on user demand.

    .. versionadded:: 0.11

    References
    ----------
    .. [1] Taulu S. and Kajola M. "Presentation of electromagnetic
           multichannel data: The signal space separation method,"
           Journal of Applied Physics, vol. 97, pp. 124905 1-10, 2005.

    .. [2] Wehner DT, Hämäläinen MS, Mody M, Ahlfors SP. "Head movements
           of children in MEG: Quantification, effects on source
           estimation, and compensation. NeuroImage 40:541–550, 2008.
    """  # noqa: E501
    from .preprocessing.maxwell import (_trans_sss_basis, _reset_meg_bads,
                                        _check_usable, _col_norm_pinv,
                                        _get_n_moments, _get_mf_picks,
                                        _prep_mf_coils, _check_destination,
                                        _remove_meg_projs, _get_coil_scale)
    if head_pos is None:
        raise TypeError('head_pos must be provided and cannot be None')
    from .chpi import head_pos_to_trans_rot_t
    if not isinstance(epochs, BaseEpochs):
        raise TypeError('epochs must be an instance of Epochs, not %s'
                        % (type(epochs),))
    orig_sfreq = epochs.info['sfreq'] if orig_sfreq is None else orig_sfreq
    orig_sfreq = float(orig_sfreq)
    if isinstance(head_pos, np.ndarray):
        head_pos = head_pos_to_trans_rot_t(head_pos)
    trn, rot, t = head_pos
    del head_pos
    _check_usable(epochs)
    origin = _check_origin(origin, epochs.info, 'head')
    recon_trans = _check_destination(destination, epochs.info, True)

    logger.info('Aligning and averaging up to %s epochs'
                % (len(epochs.events)))
    if not np.array_equal(epochs.events[:, 0], np.unique(epochs.events[:, 0])):
        raise RuntimeError('Epochs must have monotonically increasing events')
    meg_picks, mag_picks, grad_picks, good_picks, _ = \
        _get_mf_picks(epochs.info, int_order, ext_order, ignore_ref)
    coil_scale, mag_scale = _get_coil_scale(
        meg_picks, mag_picks, grad_picks, mag_scale, epochs.info)
    n_channels, n_times = len(epochs.ch_names), len(epochs.times)
    other_picks = np.setdiff1d(np.arange(n_channels), meg_picks)
    data = np.zeros((n_channels, n_times))
    count = 0
    # keep only MEG w/bad channels marked in "info_from"
    info_from = pick_info(epochs.info, good_picks, copy=True)
    all_coils_recon = _prep_mf_coils(epochs.info, ignore_ref=ignore_ref)
    all_coils = _prep_mf_coils(info_from, ignore_ref=ignore_ref)
    # remove MEG bads in "to" info
    info_to = deepcopy(epochs.info)
    _reset_meg_bads(info_to)
    # set up variables
    w_sum = 0.
    n_in, n_out = _get_n_moments([int_order, ext_order])
    S_decomp = 0.  # this will end up being a weighted average
    last_trans = None
    decomp_coil_scale = coil_scale[good_picks]
    exp = dict(int_order=int_order, ext_order=ext_order, head_frame=True,
               origin=origin)
    for ei, epoch in enumerate(epochs):
        event_time = epochs.events[epochs._current - 1, 0] / orig_sfreq
        use_idx = np.where(t <= event_time)[0]
        if len(use_idx) == 0:
            trans = epochs.info['dev_head_t']['trans']
        else:
            use_idx = use_idx[-1]
            trans = np.vstack([np.hstack([rot[use_idx], trn[[use_idx]].T]),
                               [[0., 0., 0., 1.]]])
        loc_str = ', '.join('%0.1f' % tr for tr in (trans[:3, 3] * 1000))
        if last_trans is None or not np.allclose(last_trans, trans):
            logger.info('    Processing epoch %s (device location: %s mm)'
                        % (ei + 1, loc_str))
            reuse = False
            last_trans = trans
        else:
            logger.info('    Processing epoch %s (device location: same)'
                        % (ei + 1,))
            reuse = True
        epoch = epoch.copy()  # because we operate inplace
        if not reuse:
            S = _trans_sss_basis(exp, all_coils, trans,
                                 coil_scale=decomp_coil_scale)
            # Get the weight from the un-regularized version
            weight = np.sqrt(np.sum(S * S))  # frobenius norm (eq. 44)
            # XXX Eventually we could do cross-talk and fine-cal here
            S *= weight
        S_decomp += S  # eq. 41
        epoch[slice(None) if weight_all else meg_picks] *= weight
        data += epoch  # eq. 42
        w_sum += weight
        count += 1
    del info_from
    mapping = None
    if count == 0:
        data.fill(np.nan)
    else:
        data[meg_picks] /= w_sum
        data[other_picks] /= w_sum if weight_all else count
        # Finalize weighted average decomp matrix
        S_decomp /= w_sum
        # Get recon matrix
        # (We would need to include external here for regularization to work)
        exp['ext_order'] = 0
        S_recon = _trans_sss_basis(exp, all_coils_recon, recon_trans)
        exp['ext_order'] = ext_order
        # We could determine regularization on basis of destination basis
        # matrix, restricted to good channels, as regularizing individual
        # matrices within the loop above does not seem to work. But in
        # testing this seemed to decrease localization quality in most cases,
        # so we do not provide the option here.
        S_recon /= coil_scale
        # Invert
        pS_ave = _col_norm_pinv(S_decomp)[0][:n_in]
        pS_ave *= decomp_coil_scale.T
        # Get mapping matrix
        mapping = np.dot(S_recon, pS_ave)
        # Apply mapping
        data[meg_picks] = np.dot(mapping, data[good_picks])
    info_to['dev_head_t'] = recon_trans  # set the reconstruction transform
    evoked = epochs._evoked_from_epoch_data(data, info_to, picks,
                                            n_events=count, kind='average',
                                            comment=epochs._name)
    _remove_meg_projs(evoked)  # remove MEG projectors, they won't apply now
    logger.info('Created Evoked dataset from %s epochs' % (count,))
    return (evoked, mapping) if return_mapping else evoked


@verbose
def _segment_raw(raw, segment_length=1., verbose=None, **kwargs):
    """Divide continuous raw data into equal-sized consecutive epochs.

    Parameters
    ----------
    raw : instance of Raw
        Raw data to divide into segments.
    segment_length : float
        Length of each segment in seconds. Defaults to 1.
    verbose: bool
        Whether to report what is being done by printing text.
    **kwargs
        Any additional keyword arguments are passed to ``Epochs`` constructor.

    Returns
    -------
    epochs : instance of ``Epochs``
        Segmented data.
    """
    events = make_fixed_length_events(raw, 1, duration=segment_length)
    return Epochs(raw, events, event_id=[1], tmin=0., tmax=segment_length,
                  verbose=verbose, baseline=None, **kwargs)