File: event.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (1382 lines) | stat: -rw-r--r-- 53,183 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
"""IO with fif files containing events."""

# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Matti Hamalainen <msh@nmr.mgh.harvard.edu>
#          Teon Brooks <teon.brooks@gmail.com>
#          Clement Moutard <clement.moutard@polytechnique.org>
#
# License: BSD (3-clause)

import numpy as np
from os.path import splitext


from .utils import (check_fname, logger, verbose, _get_stim_channel, warn,
                    _validate_type)
from .io.constants import FIFF
from .io.tree import dir_tree_find
from .io.tag import read_tag
from .io.open import fiff_open
from .io.write import write_int, start_block, start_file, end_block, end_file
from .io.pick import pick_channels
from .externals.six import string_types


def pick_events(events, include=None, exclude=None, step=False):
    """Select some events.

    Parameters
    ----------
    events : ndarray
        Array as returned by mne.find_events.
    include : int | list | None
        A event id to include or a list of them.
        If None all events are included.
    exclude : int | list | None
        A event id to exclude or a list of them.
        If None no event is excluded. If include is not None
        the exclude parameter is ignored.
    step : bool
        If True (default is False), events have a step format according
        to the argument output='step' in the function find_events().
        In this case, the two last columns are considered in inclusion/
        exclusion criteria.

    Returns
    -------
    events : array, shape (n_events, 3)
        The list of events
    """
    if include is not None:
        if not isinstance(include, list):
            include = [include]
        mask = np.zeros(len(events), dtype=np.bool)
        for e in include:
            mask = np.logical_or(mask, events[:, 2] == e)
            if step:
                mask = np.logical_or(mask, events[:, 1] == e)
        events = events[mask]
    elif exclude is not None:
        if not isinstance(exclude, list):
            exclude = [exclude]
        mask = np.ones(len(events), dtype=np.bool)
        for e in exclude:
            mask = np.logical_and(mask, events[:, 2] != e)
            if step:
                mask = np.logical_and(mask, events[:, 1] != e)
        events = events[mask]
    else:
        events = np.copy(events)

    if len(events) == 0:
        raise RuntimeError("No events found")

    return events


def define_target_events(events, reference_id, target_id, sfreq, tmin, tmax,
                         new_id=None, fill_na=None):
    """Define new events by co-occurrence of existing events.

    This function can be used to evaluate events depending on the
    temporal lag to another event. For example, this can be used to
    analyze evoked responses which were followed by a button press within
    a defined time window.

    Parameters
    ----------
    events : ndarray
        Array as returned by mne.find_events.
    reference_id : int
        The reference event. The event defining the epoch of interest.
    target_id : int
        The target event. The event co-occurring in within a certain time
        window around the reference event.
    sfreq : float
        The sampling frequency of the data.
    tmin : float
        The lower limit in seconds from the target event.
    tmax : float
        The upper limit border in seconds from the target event.
    new_id : int
        new_id for the new event
    fill_na : int | None
        Fill event to be inserted if target is not available within the time
        window specified. If None, the 'null' events will be dropped.

    Returns
    -------
    new_events : ndarray
        The new defined events
    lag : ndarray
        time lag between reference and target in milliseconds.
    """
    if new_id is None:
        new_id = reference_id

    tsample = 1e3 / sfreq
    imin = int(tmin * sfreq)
    imax = int(tmax * sfreq)

    new_events = []
    lag = []
    for event in events.copy().astype(int):
        if event[2] == reference_id:
            lower = event[0] + imin
            upper = event[0] + imax
            res = events[(events[:, 0] > lower) &
                         (events[:, 0] < upper) & (events[:, 2] == target_id)]
            if res.any():
                lag += [event[0] - res[0][0]]
                event[2] = new_id
                new_events += [event]
            elif fill_na is not None:
                event[2] = fill_na
                new_events += [event]
                lag.append(np.nan)

    new_events = np.array(new_events)

    with np.errstate(invalid='ignore'):  # casting nans
        lag = np.abs(lag, dtype='f8')
    if lag.any():
        lag *= tsample
    else:
        lag = np.array([])

    return new_events if new_events.any() else np.array([]), lag


def _read_events_fif(fid, tree):
    """Aux function."""
    #   Find the desired block
    events = dir_tree_find(tree, FIFF.FIFFB_MNE_EVENTS)

    if len(events) == 0:
        fid.close()
        raise ValueError('Could not find event data')

    events = events[0]

    for d in events['directory']:
        kind = d.kind
        pos = d.pos
        if kind == FIFF.FIFF_MNE_EVENT_LIST:
            tag = read_tag(fid, pos)
            event_list = tag.data
            break
    else:
        raise ValueError('Could not find any events')

    mappings = dir_tree_find(tree, FIFF.FIFFB_MNE_EVENTS)
    mappings = mappings[0]

    for d in mappings['directory']:
        kind = d.kind
        pos = d.pos
        if kind == FIFF.FIFF_DESCRIPTION:
            tag = read_tag(fid, pos)
            mappings = tag.data
            break
    else:
        mappings = None

    if mappings is not None:  # deal with ':' in keys
        m_ = [[s[::-1] for s in m[::-1].split(':', 1)]
              for m in mappings.split(';')]
        mappings = dict((k, int(v)) for v, k in m_)
    event_list = event_list.reshape(len(event_list) // 3, 3)
    return event_list, mappings


def read_events(filename, include=None, exclude=None, mask=None,
                mask_type='and'):
    """Read events from fif or text file.

    See :ref:`tut_epoching_and_averaging` as well as :ref:`ex_read_events`
    for more information about events.

    Parameters
    ----------
    filename : string
        Name of the input file.
        If the extension is .fif, events are read assuming
        the file is in FIF format, otherwise (e.g., .eve,
        .lst, .txt) events are read as coming from text.
        Note that new format event files do not contain
        the "time" column (used to be the second column).
    include : int | list | None
        A event id to include or a list of them.
        If None all events are included.
    exclude : int | list | None
        A event id to exclude or a list of them.
        If None no event is excluded. If include is not None
        the exclude parameter is ignored.
    mask : int | None
        The value of the digital mask to apply to the stim channel values.
        If None (default), no masking is performed.
    mask_type: 'and' | 'not_and'
        The type of operation between the mask and the trigger.
        Choose 'and' (default) for MNE-C masking behavior.

        .. versionadded:: 0.13

    Returns
    -------
    events: array, shape (n_events, 3)
        The list of events

    See Also
    --------
    find_events, write_events

    Notes
    -----
    This function will discard the offset line (i.e., first line with zero
    event number) if it is present in a text file.

    For more information on ``mask`` and ``mask_type``, see
    :func:`mne.find_events`.
    """
    check_fname(filename, 'events', ('.eve', '-eve.fif', '-eve.fif.gz',
                                     '-eve.lst', '-eve.txt', '_eve.fif',
                                     '_eve.fif.gz', '_eve.lst', '_eve.txt'))

    ext = splitext(filename)[1].lower()
    if ext == '.fif' or ext == '.gz':
        fid, tree, _ = fiff_open(filename)
        with fid as f:
            event_list, _ = _read_events_fif(f, tree)
        # hack fix for windows to avoid bincount problems
        event_list = event_list.astype(int)
    else:
        #  Have to read this in as float64 then convert because old style
        #  eve/lst files had a second float column that will raise errors
        lines = np.loadtxt(filename, dtype=np.float64).astype(int)
        if len(lines) == 0:
            raise ValueError('No text lines found')

        if lines.ndim == 1:  # Special case for only one event
            lines = lines[np.newaxis, :]

        if len(lines[0]) == 4:  # Old format eve/lst
            goods = [0, 2, 3]  # Omit "time" variable
        elif len(lines[0]) == 3:
            goods = [0, 1, 2]
        else:
            raise ValueError('Unknown number of columns in event text file')

        event_list = lines[:, goods]
        if (mask is not None and event_list.shape[0] > 0 and
                event_list[0, 2] == 0):
            event_list = event_list[1:]
            warn('first row of event file discarded (zero-valued)')

    event_list = pick_events(event_list, include, exclude)
    unmasked_len = event_list.shape[0]
    if mask is not None:
        event_list = _mask_trigs(event_list, mask, mask_type)
        masked_len = event_list.shape[0]
        if masked_len < unmasked_len:
            warn('{0} of {1} events masked'.format(unmasked_len - masked_len,
                                                   unmasked_len))
    return event_list


def write_events(filename, event_list):
    """Write events to file.

    Parameters
    ----------
    filename : string
        Name of the output file.
        If the extension is .fif, events are written in
        binary FIF format, otherwise (e.g., .eve, .lst,
        .txt) events are written as plain text.
        Note that new format event files do not contain
        the "time" column (used to be the second column).

    event_list : array, shape (n_events, 3)
        The list of events

    See Also
    --------
    read_events
    """
    check_fname(filename, 'events', ('.eve', '-eve.fif', '-eve.fif.gz',
                                     '-eve.lst', '-eve.txt', '_eve.fif',
                                     '_eve.fif.gz', '_eve.lst', '_eve.txt'))

    ext = splitext(filename)[1].lower()
    if ext == '.fif' or ext == '.gz':
        #   Start writing...
        fid = start_file(filename)

        start_block(fid, FIFF.FIFFB_MNE_EVENTS)
        write_int(fid, FIFF.FIFF_MNE_EVENT_LIST, event_list.T)
        end_block(fid, FIFF.FIFFB_MNE_EVENTS)

        end_file(fid)
    else:
        f = open(filename, 'w')
        for e in event_list:
            f.write('%6d %6d %3d\n' % tuple(e))
        f.close()


def _find_stim_steps(data, first_samp, pad_start=None, pad_stop=None, merge=0):
    changed = np.diff(data, axis=1) != 0
    idx = np.where(np.all(changed, axis=0))[0]
    if len(idx) == 0:
        return np.empty((0, 3), dtype='int32')

    pre_step = data[0, idx]
    idx += 1
    post_step = data[0, idx]
    idx += first_samp
    steps = np.c_[idx, pre_step, post_step]

    if pad_start is not None:
        v = steps[0, 1]
        if v != pad_start:
            steps = np.insert(steps, 0, [0, pad_start, v], axis=0)

    if pad_stop is not None:
        v = steps[-1, 2]
        if v != pad_stop:
            last_idx = len(data[0]) + first_samp
            steps = np.append(steps, [[last_idx, v, pad_stop]], axis=0)

    if merge != 0:
        diff = np.diff(steps[:, 0])
        idx = (diff <= abs(merge))
        if np.any(idx):
            where = np.where(idx)[0]
            keep = np.logical_not(idx)
            if merge > 0:
                # drop the earlier event
                steps[where + 1, 1] = steps[where, 1]
                keep = np.append(keep, True)
            else:
                # drop the later event
                steps[where, 2] = steps[where + 1, 2]
                keep = np.insert(keep, 0, True)

            is_step = (steps[:, 1] != steps[:, 2])
            keep = np.logical_and(keep, is_step)
            steps = steps[keep]

    return steps


def find_stim_steps(raw, pad_start=None, pad_stop=None, merge=0,
                    stim_channel=None):
    """Find all steps in data from a stim channel.

    Parameters
    ----------
    raw : Raw object
        The raw data.
    pad_start: None | int
        Values to assume outside of the stim channel (e.g., if pad_start=0 and
        the stim channel starts with value 5, an event of [0, 0, 5] will be
        inserted at the beginning). With None, no steps will be inserted.
    pad_stop : None | int
        Values to assume outside of the stim channel, see ``pad_start``.
    merge : int
        Merge steps occurring in neighboring samples. The integer value
        indicates over how many samples events should be merged, and the sign
        indicates in which direction they should be merged (negative means
        towards the earlier event, positive towards the later event).
    stim_channel : None | string | list of string
        Name of the stim channel or all the stim channels
        affected by the trigger. If None, the config variables
        'MNE_STIM_CHANNEL', 'MNE_STIM_CHANNEL_1', 'MNE_STIM_CHANNEL_2',
        etc. are read. If these are not found, it will default to
        'STI101' or 'STI 014', whichever is present.

    Returns
    -------
    steps : array, shape = (n_samples, 3)
        For each step in the stim channel the values [sample, v_from, v_to].
        The first column contains the event time in samples (the first sample
        with the new value). The second column contains the stim channel value
        before the step, and the third column contains value after the step.

    See Also
    --------
    find_events : More sophisticated options for finding events in a Raw file.
    """
    # pull stim channel from config if necessary
    stim_channel = _get_stim_channel(stim_channel, raw.info)

    picks = pick_channels(raw.info['ch_names'], include=stim_channel)
    if len(picks) == 0:
        raise ValueError('No stim channel found to extract event triggers.')
    data, _ = raw[picks, :]
    if np.any(data < 0):
        warn('Trigger channel contains negative values, using absolute value.')
        data = np.abs(data)  # make sure trig channel is positive
    data = data.astype(np.int)

    return _find_stim_steps(data, raw.first_samp, pad_start=pad_start,
                            pad_stop=pad_stop, merge=merge)


@verbose
def _find_events(data, first_samp, verbose=None, output='onset',
                 consecutive='increasing', min_samples=0, mask=None,
                 uint_cast=False, mask_type='and', initial_event=False):
    """Help find events."""
    assert data.shape[0] == 1  # data should be only a row vector

    if min_samples > 0:
        merge = int(min_samples // 1)
        if merge == min_samples:
            merge -= 1
    else:
        merge = 0

    data = data.astype(np.int)
    if uint_cast:
        data = data.astype(np.uint16).astype(np.int)
    if data.min() < 0:
        warn('Trigger channel contains negative values, using absolute '
             'value. If data were acquired on a Neuromag system with '
             'STI016 active, consider using uint_cast=True to work around '
             'an acquisition bug')
        data = np.abs(data)  # make sure trig channel is positive

    events = _find_stim_steps(data, first_samp, pad_stop=0, merge=merge)
    initial_value = data[0, 0]
    if initial_value != 0:
        if initial_event:
            events = np.insert(events, 0, [0, 0, initial_value], axis=0)
        else:
            logger.info('Trigger channel has a non-zero initial value of {} '
                        '(consider using initial_event=True to detect this '
                        'event)'.format(initial_value))

    events = _mask_trigs(events, mask, mask_type)

    # Determine event onsets and offsets
    if consecutive == 'increasing':
        onsets = (events[:, 2] > events[:, 1])
        offsets = np.logical_and(np.logical_or(onsets, (events[:, 2] == 0)),
                                 (events[:, 1] > 0))
    elif consecutive:
        onsets = (events[:, 2] > 0)
        offsets = (events[:, 1] > 0)
    else:
        onsets = (events[:, 1] == 0)
        offsets = (events[:, 2] == 0)

    onset_idx = np.where(onsets)[0]
    offset_idx = np.where(offsets)[0]

    if len(onset_idx) == 0 or len(offset_idx) == 0:
        return np.empty((0, 3), dtype='int32')

    # delete orphaned onsets/offsets
    if onset_idx[0] > offset_idx[0]:
        logger.info("Removing orphaned offset at the beginning of the file.")
        offset_idx = np.delete(offset_idx, 0)

    if onset_idx[-1] > offset_idx[-1]:
        logger.info("Removing orphaned onset at the end of the file.")
        onset_idx = np.delete(onset_idx, -1)

    if output == 'onset':
        events = events[onset_idx]
    elif output == 'step':
        idx = np.union1d(onset_idx, offset_idx)
        events = events[idx]
    elif output == 'offset':
        event_id = events[onset_idx, 2]
        events = events[offset_idx]
        events[:, 1] = events[:, 2]
        events[:, 2] = event_id
        events[:, 0] -= 1
    else:
        raise ValueError("Invalid output parameter %r" % output)

    logger.info("%s events found" % len(events))
    logger.info("Event IDs: %s" % np.unique(events[:, 2]))

    return events


def _find_unique_events(events):
    """Uniquify events (ie remove duplicated rows."""
    e = np.ascontiguousarray(events).view(
        np.dtype((np.void, events.dtype.itemsize * events.shape[1])))
    _, idx = np.unique(e, return_index=True)
    n_dupes = len(events) - len(idx)
    if n_dupes > 0:
        warn("Some events are duplicated in your different stim channels."
             " %d events were ignored during deduplication." % n_dupes)
    return events[idx]


@verbose
def find_events(raw, stim_channel=None, output='onset',
                consecutive='increasing', min_duration=0,
                shortest_event=2, mask=None, uint_cast=False,
                mask_type='and', initial_event=False, verbose=None):
    """Find events from raw file.

    See :ref:`tut_epoching_and_averaging` as well as :ref:`ex_read_events`
    for more information about events.

    Parameters
    ----------
    raw : Raw object
        The raw data.
    stim_channel : None | string | list of string
        Name of the stim channel or all the stim channels
        affected by triggers. If None, the config variables
        'MNE_STIM_CHANNEL', 'MNE_STIM_CHANNEL_1', 'MNE_STIM_CHANNEL_2',
        etc. are read. If these are not found, it will fall back to
        'STI 014' if present, then fall back to the first channel of type
        'stim', if present. If multiple channels are provided
        then the returned events are the union of all the events
        extracted from individual stim channels.
    output : 'onset' | 'offset' | 'step'
        Whether to report when events start, when events end, or both.
    consecutive : bool | 'increasing'
        If True, consider instances where the value of the events
        channel changes without first returning to zero as multiple
        events. If False, report only instances where the value of the
        events channel changes from/to zero. If 'increasing', report
        adjacent events only when the second event code is greater than
        the first.
    min_duration : float
        The minimum duration of a change in the events channel required
        to consider it as an event (in seconds).
    shortest_event : int
        Minimum number of samples an event must last (default is 2). If the
        duration is less than this an exception will be raised.
    mask : int | None
        The value of the digital mask to apply to the stim channel values.
        If None (default), no masking is performed.
    uint_cast : bool
        If True (default False), do a cast to ``uint16`` on the channel
        data. This can be used to fix a bug with STI101 and STI014 in
        Neuromag acquisition setups that use channel STI016 (channel 16
        turns data into e.g. -32768), similar to ``mne_fix_stim14 --32``
        in MNE-C.

        .. versionadded:: 0.12
    mask_type: 'and' | 'not_and'
        The type of operation between the mask and the trigger.
        Choose 'and' (default) for MNE-C masking behavior.

        .. versionadded:: 0.13
    initial_event : bool
        If True (default False), an event is created if the stim channel has a
        value different from 0 as its first sample. This is useful if an event
        at t=0s is present.

        .. versionadded:: 0.16
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    events : array, shape = (n_events, 3)
        All events that were found. The first column contains the event time
        in samples and the third column contains the event id. For output =
        'onset' or 'step', the second column contains the value of the stim
        channel immediately before the event/step. For output = 'offset',
        the second column contains the value of the stim channel after the
        event offset.

    See Also
    --------
    find_stim_steps : Find all the steps in the stim channel.
    read_events : Read events from disk.
    write_events : Write events to disk.

    Notes
    -----
    .. warning:: If you are working with downsampled data, events computed
                 before decimation are no longer valid. Please recompute
                 your events after decimation, but note this reduces the
                 precision of event timing.

    Examples
    --------
    Consider data with a stim channel that looks like::

        [0, 32, 32, 33, 32, 0]

    By default, find_events returns all samples at which the value of the
    stim channel increases::

        >>> print(find_events(raw)) # doctest: +SKIP
        [[ 1  0 32]
         [ 3 32 33]]

    If consecutive is False, find_events only returns the samples at which
    the stim channel changes from zero to a non-zero value::

        >>> print(find_events(raw, consecutive=False)) # doctest: +SKIP
        [[ 1  0 32]]

    If consecutive is True, find_events returns samples at which the
    event changes, regardless of whether it first returns to zero::

        >>> print(find_events(raw, consecutive=True)) # doctest: +SKIP
        [[ 1  0 32]
         [ 3 32 33]
         [ 4 33 32]]

    If output is 'offset', find_events returns the last sample of each event
    instead of the first one::

        >>> print(find_events(raw, consecutive=True, # doctest: +SKIP
        ...                   output='offset'))
        [[ 2 33 32]
         [ 3 32 33]
         [ 4  0 32]]

    If output is 'step', find_events returns the samples at which an event
    starts or ends::

        >>> print(find_events(raw, consecutive=True, # doctest: +SKIP
        ...                   output='step'))
        [[ 1  0 32]
         [ 3 32 33]
         [ 4 33 32]
         [ 5 32  0]]

    To ignore spurious events, it is also possible to specify a minimum
    event duration. Assuming our events channel has a sample rate of
    1000 Hz::

        >>> print(find_events(raw, consecutive=True, # doctest: +SKIP
        ...                   min_duration=0.002))
        [[ 1  0 32]]

    For the digital mask, if mask_type is set to 'and' it will take the
    binary representation of the digital mask, e.g. 5 -> '00000101', and will
    allow the values to pass where mask is one, e.g.::

              7 '0000111' <- trigger value
             37 '0100101' <- mask
         ----------------
              5 '0000101'

    For the digital mask, if mask_type is set to 'not_and' it will take the
    binary representation of the digital mask, e.g. 5 -> '00000101', and will
    block the values where mask is one, e.g.::

              7 '0000111' <- trigger value
             37 '0100101' <- mask
         ----------------
              2 '0000010'

    """
    min_samples = min_duration * raw.info['sfreq']

    # pull stim channel from config if necessary
    stim_channel = _get_stim_channel(stim_channel, raw.info)

    picks = pick_channels(raw.info['ch_names'], include=stim_channel)
    if len(picks) == 0:
        raise ValueError('No stim channel found to extract event triggers.')
    data, _ = raw[picks, :]

    events_list = []
    for d in data:
        events = _find_events(d[np.newaxis, :], raw.first_samp,
                              verbose=verbose, output=output,
                              consecutive=consecutive, min_samples=min_samples,
                              mask=mask, uint_cast=uint_cast,
                              mask_type=mask_type, initial_event=initial_event)
        # add safety check for spurious events (for ex. from neuromag syst.) by
        # checking the number of low sample events
        n_short_events = np.sum(np.diff(events[:, 0]) < shortest_event)
        if n_short_events > 0:
            raise ValueError("You have %i events shorter than the "
                             "shortest_event. These are very unusual and you "
                             "may want to set min_duration to a larger value "
                             "e.g. x / raw.info['sfreq']. Where x = 1 sample "
                             "shorter than the shortest event "
                             "length." % (n_short_events))

        events_list.append(events)

    events = np.concatenate(events_list, axis=0)
    events = _find_unique_events(events)
    events = events[np.argsort(events[:, 0])]
    return events


def _mask_trigs(events, mask, mask_type):
    """Mask digital trigger values."""
    if not isinstance(mask_type, string_types) or \
            mask_type not in ('not_and', 'and'):
        raise ValueError('mask_type must be "not_and" or "and", got %s'
                         % (mask_type,))
    if mask is not None:
        _validate_type(mask, "int", "mask", "int or None")
    n_events = len(events)
    if n_events == 0:
        return events.copy()

    if mask is not None:
        if mask_type == 'not_and':
            mask = np.bitwise_not(mask)
        elif mask_type != 'and':
            raise ValueError("'mask_type' should be either 'and'"
                             " or 'not_and', instead of '%s'" % mask_type)
        events[:, 1:] = np.bitwise_and(events[:, 1:], mask)
    events = events[events[:, 1] != events[:, 2]]

    return events


def merge_events(events, ids, new_id, replace_events=True):
    """Merge a set of events.

    Parameters
    ----------
    events : array, shape (n_events_in, 3)
        Events.
    ids : array of int
        The ids of events to merge.
    new_id : int
        The new id.
    replace_events : bool
        If True (default), old event ids are replaced. Otherwise,
        new events will be added to the old event list.

    Returns
    -------
    new_events: array, shape (n_events_out, 3)
        The new events

    Examples
    --------
    Here is quick example of the behavior::

        >>> events = [[134, 0, 1], [341, 0, 2], [502, 0, 3]]
        >>> merge_events(events, [1, 2], 12, replace_events=True)
        array([[134,   0,  12],
               [341,   0,  12],
               [502,   0,   3]])
        >>> merge_events(events, [1, 2], 12, replace_events=False)
        array([[134,   0,   1],
               [134,   0,  12],
               [341,   0,   2],
               [341,   0,  12],
               [502,   0,   3]])

    Notes
    -----
    Rather than merging events you can use hierarchical event_id
    in Epochs. For example, here::

        >>> event_id = {'auditory/left': 1, 'auditory/right': 2}

    And the condition 'auditory' would correspond to either 1 or 2.
    """
    events = np.asarray(events)
    events_out = events.copy()
    idx_touched = []  # to keep track of the original events we can keep
    for col in [1, 2]:
        for i in ids:
            mask = events[:, col] == i
            events_out[mask, col] = new_id
            idx_touched.append(np.where(mask)[0])
    if not replace_events:
        idx_touched = np.unique(np.concatenate(idx_touched))
        events_out = np.concatenate((events_out, events[idx_touched]), axis=0)
        # Now sort in lexical order
        events_out = events_out[np.lexsort(events_out.T[::-1])]
    return events_out


def shift_time_events(events, ids, tshift, sfreq):
    """Shift an event.

    Parameters
    ----------
    events : array, shape=(n_events, 3)
        The events
    ids : array int
        The ids of events to shift.
    tshift : float
        Time-shift event. Use positive value tshift for forward shifting
        the event and negative value for backward shift.
    sfreq : float
        The sampling frequency of the data.

    Returns
    -------
    new_events : array
        The new events.
    """
    events = events.copy()
    for ii in ids:
        events[events[:, 2] == ii, 0] += int(tshift * sfreq)
    return events


def make_fixed_length_events(raw, id=1, start=0, stop=None, duration=1.,
                             first_samp=True):
    """Make a set of events separated by a fixed duration.

    Parameters
    ----------
    raw : instance of Raw
        A raw object to use the data from.
    id : int
        The id to use (default 1).
    start : float
        Time of first event.
    stop : float | None
        Maximum time of last event. If None, events extend to the end
        of the recording.
    duration: float
        The duration to separate events by.
    first_samp: bool
        If True (default), times will have raw.first_samp added to them, as
        in :func:`mne.find_events`. This behavior is not desirable if the
        returned events will be combined with event times that already
        have ``raw.first_samp`` added to them, e.g. event times that come
        from :func:`mne.find_events`.

    Returns
    -------
    new_events : array
        The new events.
    """
    from .io.base import BaseRaw
    _validate_type(raw, BaseRaw, "raw")
    _validate_type(id, int, "id")
    _validate_type(duration, "numeric", "duration")

    start = raw.time_as_index(start, use_rounding=True)[0]
    if stop is not None:
        stop = raw.time_as_index(stop, use_rounding=True)[0]
    else:
        stop = raw.last_samp + 1
    if first_samp:
        start = start + raw.first_samp
        stop = min([stop + raw.first_samp, raw.last_samp + 1])
    else:
        stop = min([stop, len(raw.times)])
    # Make sure we don't go out the end of the file:
    stop -= int(np.round(raw.info['sfreq'] * duration))
    # This should be inclusive due to how we generally use start and stop...
    ts = np.arange(start, stop + 1, raw.info['sfreq'] * duration).astype(int)
    n_events = len(ts)
    if n_events == 0:
        raise ValueError('No events produced, check the values of start, '
                         'stop, and duration')
    events = np.c_[ts, np.zeros(n_events, dtype=int),
                   id * np.ones(n_events, dtype=int)]
    return events


def concatenate_events(events, first_samps, last_samps):
    """Concatenate event lists to be compatible with concatenate_raws.

    This is useful, for example, if you processed and/or changed
    events in raw files separately before combining them using
    :func:`mne.concatenate_raws`.

    Parameters
    ----------
    events : list of arrays
        List of event arrays, typically each extracted from a
        corresponding raw file that is being concatenated.
    first_samps : list or array of int
        First sample numbers of the raw files concatenated.
    last_samps : list or array of int
        Last sample numbers of the raw files concatenated.

    Returns
    -------
    events : array
        The concatenated events.

    See Also
    --------
    mne.concatenate_raws
    """
    _validate_type(events, list, "events")
    if not (len(events) == len(last_samps) and
            len(events) == len(first_samps)):
        raise ValueError('events, first_samps, and last_samps must all have '
                         'the same lengths')
    first_samps = np.array(first_samps)
    last_samps = np.array(last_samps)
    n_samps = np.cumsum(last_samps - first_samps + 1)
    events_out = events[0]
    for e, f, n in zip(events[1:], first_samps[1:], n_samps[:-1]):
        # remove any skip since it doesn't exist in concatenated files
        e2 = e.copy()
        e2[:, 0] -= f
        # add offset due to previous files, plus original file offset
        e2[:, 0] += n + first_samps[0]
        events_out = np.concatenate((events_out, e2), axis=0)

    return events_out


class AcqParserFIF(object):
    """Parser for Elekta data acquisition settings.

    This class parses parameters (e.g. events and averaging categories) that
    are defined in the Elekta TRIUX/VectorView data acquisition software (DACQ)
    and stored in ``info['acq_pars']``. It can be used to reaverage raw data
    according to DACQ settings and modify original averaging settings if
    necessary.

    Parameters
    ----------
    info : Info
        An instance of Info where the DACQ parameters will be taken from.

    Attributes
    ----------
    categories : list
        List of averaging categories marked active in DACQ.
    events : list
        List of events that are in use (referenced by some averaging category).
    reject : dict
        Rejection criteria from DACQ that can be used with mne.Epochs.
        Note that mne does not support all DACQ rejection criteria
        (e.g. spike, slope).
    flat : dict
        Flatness rejection criteria from DACQ that can be used with mne.Epochs.
    acq_dict : dict
        All DACQ parameters.

    See Also
    --------
    mne.io.Raw.acqparser : access the parser through a Raw attribute

    Notes
    -----
    Any averaging category (also non-active ones) can be accessed by indexing
    as ``acqparserfif['category_name']``.
    """

    # DACQ variables always start with one of these
    _acq_var_magic = ['ERF', 'DEF', 'ACQ', 'TCP']

    # averager related DACQ variable names (without preceding 'ERF')
    # old versions (DACQ < 3.4)
    _dacq_vars_compat = ('megMax', 'megMin', 'megNoise', 'megSlope',
                         'megSpike', 'eegMax', 'eegMin', 'eegNoise',
                         'eegSlope', 'eegSpike', 'eogMax', 'ecgMax', 'ncateg',
                         'nevent', 'stimSource', 'triggerMap', 'update',
                         'artefIgnore', 'averUpdate')

    _event_vars_compat = ('Comment', 'Delay')

    _cat_vars = ('Comment', 'Display', 'Start', 'State', 'End', 'Event',
                 'Nave', 'ReqEvent', 'ReqWhen', 'ReqWithin', 'SubAve')

    # new versions only (DACQ >= 3.4)
    _dacq_vars = _dacq_vars_compat + ('magMax', 'magMin', 'magNoise',
                                      'magSlope', 'magSpike', 'version')

    _event_vars = _event_vars_compat + ('Name', 'Channel', 'NewBits',
                                        'OldBits', 'NewMask', 'OldMask')

    def __init__(self, info):  # noqa: D102
        acq_pars = info['acq_pars']
        if not acq_pars:
            raise ValueError('No acquisition parameters')
        self.acq_dict = dict(self._acqpars_gen(acq_pars))
        if 'ERFversion' in self.acq_dict:
            self.compat = False  # DACQ ver >= 3.4
        elif 'ERFncateg' in self.acq_dict:  # probably DACQ < 3.4
                self.compat = True
        else:
            raise ValueError('Cannot parse acquisition parameters')
        dacq_vars = self._dacq_vars_compat if self.compat else self._dacq_vars
        # set instance variables
        for var in dacq_vars:
            val = self.acq_dict['ERF' + var]
            if var[:3] in ['mag', 'meg', 'eeg', 'eog', 'ecg']:
                val = float(val)
            elif var in ['ncateg', 'nevent']:
                val = int(val)
            setattr(self, var.lower(), val)
        self.stimsource = (
            'Internal' if self.stimsource == '1' else 'External')
        # collect all events and categories
        self._events = self._events_from_acq_pars()
        self._categories = self._categories_from_acq_pars()
        # mark events that are used by a category
        for cat in self._categories.values():
            if cat['event']:
                self._events[cat['event']]['in_use'] = True
            if cat['reqevent']:
                self._events[cat['reqevent']]['in_use'] = True
        # make mne rejection dicts based on the averager parameters
        self.reject = {'grad': self.megmax, 'eeg': self.eegmax,
                       'eog': self.eogmax, 'ecg': self.ecgmax}
        if not self.compat:
            self.reject['mag'] = self.magmax
        self.reject = {k: float(v) for k, v in self.reject.items()
                       if float(v) > 0}
        self.flat = {'grad': self.megmin, 'eeg': self.eegmin}
        if not self.compat:
            self.flat['mag'] = self.magmin
        self.flat = {k: float(v) for k, v in self.flat.items()
                     if float(v) > 0}

    def __repr__(self):  # noqa: D105
        s = '<AcqParserFIF | '
        s += 'categories: %d ' % self.ncateg
        cats_in_use = len(self._categories_in_use)
        s += '(%d in use), ' % cats_in_use
        s += 'events: %d ' % self.nevent
        evs_in_use = len(self._events_in_use)
        s += '(%d in use)' % evs_in_use
        if self.categories:
            s += '\nAveraging categories:'
            for cat in self.categories:
                s += '\n%d: "%s"' % (cat['index'], cat['comment'])
        s += '>'
        return s

    def __getitem__(self, item):
        """Return an averaging category, or list of categories.

        Parameters
        ----------
        item : str or list of str
            Name of the category (comment field in DACQ).

        Returns
        -------
        conds : dict or list of dict, each with following keys:
            comment: str
                The comment field in DACQ.
            state : bool
                Whether the category was marked enabled in DACQ.
            index : int
                The index of the category in DACQ. Indices start from 1.
            event : int
                DACQ index of the reference event (trigger event, zero time for
                the corresponding epochs). Note that the event indices start
                from 1.
            start : float
                Start time of epoch relative to the reference event.
            end : float
                End time of epoch relative to the reference event.
            reqevent : int
                Index of the required (conditional) event.
            reqwhen : int
                Whether the required event is required before (1) or after (2)
                the reference event.
            reqwithin : float
                The time range within which the required event must occur,
                before or after the reference event.
            display : bool
                Whether the category was displayed online in DACQ.
            nave : int
                Desired number of averages. DACQ stops collecting averages once
                this number is reached.
            subave : int
                Whether to compute normal and alternating subaverages, and
                how many epochs to include. See the Elekta data acquisition
                manual for details. Currently the class does not offer any
                facility for computing subaverages, but it can be done manually
                by the user after collecting the epochs.

        """
        if isinstance(item, str):
            item = [item]
        else:
            _validate_type(item, list, "Keys", "category names")
        cats = list()
        for it in item:
            if it in self._categories:
                cats.append(self._categories[it])
            else:
                raise KeyError('No such category')
        return cats[0] if len(cats) == 1 else cats

    def __len__(self):
        """Return number of averaging categories marked active in DACQ."""
        return len(self.categories)

    def _events_from_acq_pars(self):
        """Collect DACQ events into a dict.

        Events are keyed by number starting from 1 (DACQ index of event).
        Each event is itself represented by a dict containing the event
        parameters.
        """
        # lookup table for event number -> bits for old DACQ versions
        _compat_event_lookup = {1: 1, 2: 2, 3: 4, 4: 8, 5: 16, 6: 32, 7: 3,
                                8: 5, 9: 6, 10: 7, 11: 9, 12: 10, 13: 11,
                                14: 12, 15: 13, 16: 14, 17: 15}
        events = dict()
        for evnum in range(1, self.nevent + 1):
            evnum_s = str(evnum).zfill(2)  # '01', '02' etc.
            evdi = dict()
            event_vars = (self._event_vars_compat if self.compat
                          else self._event_vars)
            for var in event_vars:
                # name of DACQ variable, e.g. 'ERFeventNewBits01'
                acq_key = 'ERFevent' + var + evnum_s
                # corresponding dict key, e.g. 'newbits'
                dict_key = var.lower()
                val = self.acq_dict[acq_key]
                # type convert numeric values
                if dict_key in ['newbits', 'oldbits', 'newmask', 'oldmask']:
                    val = int(val)
                elif dict_key in ['delay']:
                    val = float(val)
                evdi[dict_key] = val
                evdi['in_use'] = False  # __init__() will set this
            evdi['index'] = evnum
            if self.compat:
                evdi['name'] = str(evnum)
                evdi['oldmask'] = 63
                evdi['newmask'] = 63
                evdi['oldbits'] = 0
                evdi['newbits'] = _compat_event_lookup[evnum]
            events[evnum] = evdi
        return events

    def _acqpars_gen(self, acq_pars):
        """Yield key/value pairs from ``info['acq_pars'])``."""
        key, val = '', ''
        for line in acq_pars.split():
            if any([line.startswith(x) for x in self._acq_var_magic]):
                key = line
                val = ''
            else:
                if not key:
                    raise ValueError('Cannot parse acquisition parameters')
                # DACQ splits items with spaces into multiple lines
                val += ' ' + line if val else line
            yield key, val

    def _categories_from_acq_pars(self):
        """Collect DACQ averaging categories into a dict.

        Categories are keyed by the comment field in DACQ. Each category is
        itself represented a dict containing the category parameters.
        """
        cats = dict()
        for catnum in [str(x).zfill(2) for x in range(1, self.nevent + 1)]:
            catdi = dict()
            # read all category variables
            for var in self._cat_vars:
                acq_key = 'ERFcat' + var + catnum
                class_key = var.lower()
                val = self.acq_dict[acq_key]
                catdi[class_key] = val
            # some type conversions
            catdi['display'] = (catdi['display'] == '1')
            catdi['state'] = (catdi['state'] == '1')
            for key in ['start', 'end', 'reqwithin']:
                catdi[key] = float(catdi[key])
            for key in ['nave', 'event', 'reqevent', 'reqwhen', 'subave']:
                catdi[key] = int(catdi[key])
            # some convenient extra (non-DACQ) vars
            catdi['index'] = int(catnum)  # index of category in DACQ list
            cats[catdi['comment']] = catdi
        return cats

    def _events_mne_to_dacq(self, mne_events):
        """Create list of DACQ events based on mne trigger transitions list.

        mne_events is typically given by mne.find_events (use consecutive=True
        to get all transitions). Output consists of rows in the form
        [t, 0, event_codes] where t is time in samples and event_codes is all
        DACQ events compatible with the transition, bitwise ORed together:
        e.g. [t1, 0, 5] means that events 1 and 3 occurred at time t1,
        as 2**(1 - 1) + 2**(3 - 1) = 5.
        """
        events_ = mne_events.copy()
        events_[:, 1:3] = 0
        for n, ev in self._events.items():
            if ev['in_use']:
                pre_ok = (
                    np.bitwise_and(ev['oldmask'],
                                   mne_events[:, 1]) == ev['oldbits'])
                post_ok = (
                    np.bitwise_and(ev['newmask'],
                                   mne_events[:, 2]) == ev['newbits'])
                ok_ind = np.where(pre_ok & post_ok)
                events_[ok_ind, 2] |= 1 << (n - 1)
        return events_

    def _mne_events_to_category_t0(self, cat, mne_events, sfreq):
        """Translate mne_events to epoch zero times (t0).

        First mne events (trigger transitions) are converted into DACQ events.
        Then the zero times for the epochs are obtained by considering the
        reference and conditional (required) events and the delay to stimulus.
        """
        cat_ev = cat['event']
        cat_reqev = cat['reqevent']
        # first convert mne events to dacq event list
        events = self._events_mne_to_dacq(mne_events)
        # next, take req. events and delays into account
        times = events[:, 0]
        # indices of times where ref. event occurs
        refEvents_inds = np.where(events[:, 2] & (1 << cat_ev - 1))[0]
        refEvents_t = times[refEvents_inds]
        if cat_reqev:
            # indices of times where req. event occurs
            reqEvents_inds = np.where(events[:, 2] & (
                1 << cat_reqev - 1))[0]
            reqEvents_t = times[reqEvents_inds]
            # relative (to refevent) time window where req. event
            # must occur (e.g. [0 .2])
            twin = [0, (-1)**(cat['reqwhen']) * cat['reqwithin']]
            win = np.round(np.array(sorted(twin)) * sfreq)  # to samples
            refEvents_wins = refEvents_t[:, None] + win
            req_acc = np.zeros(refEvents_inds.shape, dtype=bool)
            for t in reqEvents_t:
                # mark time windows where req. condition is satisfied
                reqEvent_in_win = np.logical_and(
                    t >= refEvents_wins[:, 0], t <= refEvents_wins[:, 1])
                req_acc |= reqEvent_in_win
            # drop ref. events where req. event condition is not satisfied
            refEvents_inds = refEvents_inds[np.where(req_acc)]
            refEvents_t = times[refEvents_inds]
        # adjust for trigger-stimulus delay by delaying the ref. event
        refEvents_t += int(np.round(self._events[cat_ev]['delay'] * sfreq))
        return refEvents_t

    @property
    def categories(self):
        """Return list of averaging categories ordered by DACQ index.

        Only returns categories marked active in DACQ.
        """
        cats = sorted(self._categories_in_use.values(),
                      key=lambda cat: cat['index'])
        return cats

    @property
    def events(self):
        """Return events ordered by DACQ index.

        Only returns events that are in use (referred to by a category).
        """
        evs = sorted(self._events_in_use.values(), key=lambda ev: ev['index'])
        return evs

    @property
    def _categories_in_use(self):
        return {k: v for k, v in self._categories.items() if v['state']}

    @property
    def _events_in_use(self):
        return {k: v for k, v in self._events.items() if v['in_use']}

    def get_condition(self, raw, condition=None, stim_channel=None, mask=None,
                      uint_cast=None, mask_type='and', delayed_lookup=True):
        """Get averaging parameters for a condition (averaging category).

        Output is designed to be used with the Epochs class to extract the
        corresponding epochs.

        Parameters
        ----------
        raw : Raw object
            An instance of Raw.
        condition : None | str | dict | list of dict
            Condition or a list of conditions. Conditions can be strings
            (DACQ comment field, e.g. 'Auditory left') or category dicts
            (e.g. acqp['Auditory left'], where acqp is an instance of
            AcqParserFIF). If None, get all conditions marked active in
            DACQ.
        stim_channel : None | string | list of string
            Name of the stim channel or all the stim channels
            affected by the trigger. If None, the config variables
            'MNE_STIM_CHANNEL', 'MNE_STIM_CHANNEL_1', 'MNE_STIM_CHANNEL_2',
            etc. are read. If these are not found, it will fall back to
            'STI101' or 'STI 014' if present, then fall back to the first
            channel of type 'stim', if present.
        mask : int | None
            The value of the digital mask to apply to the stim channel values.
            If None (default), no masking is performed.
        uint_cast : bool
            If True (default False), do a cast to ``uint16`` on the channel
            data. This can be used to fix a bug with STI101 and STI014 in
            Neuromag acquisition setups that use channel STI016 (channel 16
            turns data into e.g. -32768), similar to ``mne_fix_stim14 --32``
            in MNE-C.
        mask_type: 'and' | 'not_and'
            The type of operation between the mask and the trigger.
            Choose 'and' for MNE-C masking behavior.
        delayed_lookup: bool
            If True, use the 'delayed lookup' procedure implemented in Elekta
            software. When a trigger transition occurs, the lookup of
            the new trigger value will not happen immediately at the following
            sample, but with a 1-sample delay. This allows a slight
            asynchrony between trigger onsets, when they are intended to be
            synchronous. If you have accurate hardware and want to detect
            transitions with a resolution of one sample, use
            delayed_lookup=False.

        Returns
        -------
        conds_data : dict or list of dict, each with following keys:
            events : array, shape (n_epochs_out, 3)
                List of zero time points (t0) for the epochs matching the
                condition. Use as the ``events`` parameter to Epochs. Note
                that these are not (necessarily) actual events.
            event_id : dict
                Name of condition and index compatible with ``events``.
                Should be passed as the ``event_id`` parameter to Epochs.
            tmin : float
                Epoch starting time relative to t0. Use as the ``tmin``
                parameter to Epochs.
            tmax : float
                Epoch ending time relative to t0. Use as the ``tmax``
                parameter to Epochs.

        """
        if condition is None:
            condition = self.categories  # get all
        if not isinstance(condition, list):
            condition = [condition]  # single cond -> listify
        conds_data = list()
        for cat in condition:
            if isinstance(cat, str):
                cat = self[cat]
            mne_events = find_events(raw, stim_channel=stim_channel, mask=mask,
                                     mask_type=mask_type, output='step',
                                     uint_cast=uint_cast, consecutive=True,
                                     verbose=False, shortest_event=1)
            if delayed_lookup:
                ind = np.where(np.diff(mne_events[:, 0]) == 1)[0]
                if 1 in np.diff(ind):
                    raise ValueError('There are several subsequent '
                                     'transitions on the trigger channel. '
                                     'This will not work well with '
                                     'delayed_lookup=True. You may want to '
                                     'check your trigger data and '
                                     'set delayed_lookup=False.')
                mne_events[ind, 2] = mne_events[ind + 1, 2]
                mne_events = np.delete(mne_events, ind + 1, axis=0)
            sfreq = raw.info['sfreq']
            cat_t0_ = self._mne_events_to_category_t0(cat, mne_events, sfreq)
            # make it compatible with the usual events array
            cat_t0 = np.c_[cat_t0_, np.zeros(cat_t0_.shape),
                           cat['index'] * np.ones(cat_t0_.shape)
                           ].astype(np.uint32)
            cat_id = {cat['comment']: cat['index']}
            tmin, tmax = cat['start'], cat['end']
            conds_data.append(dict(events=cat_t0, event_id=cat_id,
                                   tmin=tmin, tmax=tmax))
        return conds_data[0] if len(conds_data) == 1 else conds_data