1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
|
# -*- coding: utf-8 -*-
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
# Denis Engemann <denis.engemann@gmail.com>
# Andrew Dykstra <andrew.r.dykstra@gmail.com>
# Mads Jensen <mje.mads@gmail.com>
# Jona Sassenhagen <jona.sassenhagen@gmail.com>
#
# License: BSD (3-clause)
from copy import deepcopy
import numpy as np
from .baseline import rescale
from .channels.channels import (ContainsMixin, UpdateChannelsMixin,
SetChannelsMixin, InterpolationMixin,
equalize_channels)
from .channels.layout import _merge_grad_data, _pair_grad_sensors
from .filter import detrend, FilterMixin
from .utils import (check_fname, logger, verbose, _time_mask, warn, sizeof_fmt,
SizeMixin, copy_function_doc_to_method_doc, _validate_type)
from .viz import (plot_evoked, plot_evoked_topomap, plot_evoked_field,
plot_evoked_image, plot_evoked_topo)
from .viz.evoked import plot_evoked_white, plot_evoked_joint
from .viz.topomap import _topomap_animation
from .externals.six import string_types
from .io.constants import FIFF
from .io.open import fiff_open
from .io.tag import read_tag
from .io.tree import dir_tree_find
from .io.pick import channel_type, pick_types, _pick_data_channels
from .io.meas_info import read_meas_info, write_meas_info
from .io.proj import ProjMixin
from .io.write import (start_file, start_block, end_file, end_block,
write_int, write_string, write_float_matrix,
write_id)
from .io.base import ToDataFrameMixin, TimeMixin, _check_maxshield
_aspect_dict = {'average': FIFF.FIFFV_ASPECT_AVERAGE,
'standard_error': FIFF.FIFFV_ASPECT_STD_ERR}
_aspect_rev = {str(FIFF.FIFFV_ASPECT_AVERAGE): 'average',
str(FIFF.FIFFV_ASPECT_STD_ERR): 'standard_error'}
class Evoked(ProjMixin, ContainsMixin, UpdateChannelsMixin,
SetChannelsMixin, InterpolationMixin, FilterMixin,
ToDataFrameMixin, TimeMixin, SizeMixin):
"""Evoked data.
Parameters
----------
fname : string
Name of evoked/average FIF file to load.
If None no data is loaded.
condition : int, or str
Dataset ID number (int) or comment/name (str). Optional if there is
only one data set in file.
proj : bool, optional
Apply SSP projection vectors
kind : str
Either 'average' or 'standard_error'. The type of data to read.
Only used if 'condition' is a str.
allow_maxshield : bool | str (default False)
If True, allow loading of data that has been recorded with internal
active compensation (MaxShield). Data recorded with MaxShield should
generally not be loaded directly, but should first be processed using
SSS/tSSS to remove the compensation signals that may also affect brain
activity. Can also be "yes" to load without eliciting a warning.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Attributes
----------
info : dict
Measurement info.
ch_names : list of string
List of channels' names.
nave : int
Number of averaged epochs.
kind : str
Type of data, either average or standard_error.
first : int
First time sample.
last : int
Last time sample.
comment : string
Comment on dataset. Can be the condition.
times : array
Array of time instants in seconds.
data : array of shape (n_channels, n_times)
Evoked response.
times : ndarray
Time vector in seconds. Goes from `tmin` to `tmax`. Time interval
between consecutive time samples is equal to the inverse of the
sampling frequency.
verbose : bool, str, int, or None.
See above.
Notes
-----
Evoked objects contain a single condition only.
"""
@verbose
def __init__(self, fname, condition=None, proj=True,
kind='average', allow_maxshield=False,
verbose=None): # noqa: D102
_validate_type(proj, bool, "'proj'")
# Read the requested data
self.info, self.nave, self._aspect_kind, self.first, self.last, \
self.comment, self.times, self.data = _read_evoked(
fname, condition, kind, allow_maxshield)
self.kind = _aspect_rev.get(str(self._aspect_kind), 'Unknown')
self.verbose = verbose
self.preload = True
# project and baseline correct
if proj:
self.apply_proj()
@property
def data(self):
"""The data matrix."""
return self._data
@data.setter
def data(self, data):
"""Set the data matrix."""
self._data = data
@verbose
def apply_baseline(self, baseline=(None, 0), verbose=None):
"""Baseline correct evoked data.
Parameters
----------
baseline : tuple of length 2
The time interval to apply baseline correction. If None do not
apply it. If baseline is (a, b) the interval is between "a (s)" and
"b (s)". If a is None the beginning of the data is used and if b is
None then b is set to the end of the interval. If baseline is equal
to (None, None) all the time interval is used. Correction is
applied by computing mean of the baseline period and subtracting it
from the data. The baseline (a, b) includes both endpoints, i.e.
all timepoints t such that a <= t <= b.
verbose : bool, str, int, or None
If not None, override default verbose level (see
:func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
for more).
Returns
-------
evoked : instance of Evoked
The baseline-corrected Evoked object.
Notes
-----
Baseline correction can be done multiple times.
.. versionadded:: 0.13.0
"""
self.data = rescale(self.data, self.times, baseline, copy=False)
return self
def save(self, fname):
"""Save dataset to file.
Parameters
----------
fname : string
The name of the file, which should end with -ave.fif or
-ave.fif.gz.
Notes
-----
To write multiple conditions into a single file, use
:func:`mne.write_evokeds`.
"""
write_evokeds(fname, self)
def __repr__(self): # noqa: D105
_kind_swap = dict(average='mean', standard_error='SEM')
s = "'%s' (%s, N=%s)" % (self.comment, _kind_swap[self.kind],
self.nave)
s += ", [%0.5g, %0.5g] sec" % (self.times[0], self.times[-1])
s += ", %s ch" % self.data.shape[0]
s += ", ~%s" % (sizeof_fmt(self._size),)
return "<Evoked | %s>" % s
@property
def ch_names(self):
"""Channel names."""
return self.info['ch_names']
def crop(self, tmin=None, tmax=None):
"""Crop data to a given time interval.
Parameters
----------
tmin : float | None
Start time of selection in seconds.
tmax : float | None
End time of selection in seconds.
Returns
-------
evoked : instance of Evoked
The cropped Evoked object.
Notes
-----
Unlike Python slices, MNE time intervals include both their end points;
crop(tmin, tmax) returns the interval tmin <= t <= tmax.
"""
mask = _time_mask(self.times, tmin, tmax, sfreq=self.info['sfreq'])
self.times = self.times[mask]
self.first = int(self.times[0] * self.info['sfreq'])
self.last = len(self.times) + self.first - 1
self.data = self.data[:, mask]
return self
def decimate(self, decim, offset=0):
"""Decimate the evoked data.
.. note:: No filtering is performed. To avoid aliasing, ensure
your data are properly lowpassed.
Parameters
----------
decim : int
The amount to decimate data.
offset : int
Apply an offset to where the decimation starts relative to the
sample corresponding to t=0. The offset is in samples at the
current sampling rate.
Returns
-------
evoked : instance of Evoked
The decimated Evoked object.
See Also
--------
Epochs.decimate
Epochs.resample
mne.io.Raw.resample
Notes
-----
Decimation can be done multiple times. For example,
``evoked.decimate(2).decimate(2)`` will be the same as
``evoked.decimate(4)``.
.. versionadded:: 0.13.0
"""
decim, offset, new_sfreq = _check_decim(self.info, decim, offset)
start_idx = int(round(self.times[0] * (self.info['sfreq'] * decim)))
i_start = start_idx % decim + offset
decim_slice = slice(i_start, None, decim)
self.info['sfreq'] = new_sfreq
self.data = self.data[:, decim_slice].copy()
self.times = self.times[decim_slice].copy()
return self
def shift_time(self, tshift, relative=True):
"""Shift time scale in evoked data.
Parameters
----------
tshift : float
The amount of time shift to be applied if relative is True
else the first time point. When relative is True, positive value
of tshift moves the data forward while negative tshift moves it
backward.
relative : bool
If true, move the time backwards or forwards by specified amount.
Else, set the starting time point to the value of tshift.
Notes
-----
Maximum accuracy of time shift is 1 / evoked.info['sfreq']
"""
times = self.times
sfreq = self.info['sfreq']
offset = self.first if relative else 0
self.first = int(tshift * sfreq) + offset
self.last = self.first + len(times) - 1
self.times = np.arange(self.first, self.last + 1,
dtype=np.float) / sfreq
@copy_function_doc_to_method_doc(plot_evoked)
def plot(self, picks=None, exclude='bads', unit=True, show=True, ylim=None,
xlim='tight', proj=False, hline=None, units=None, scalings=None,
titles=None, axes=None, gfp=False, window_title=None,
spatial_colors=False, zorder='unsorted', selectable=True,
noise_cov=None, time_unit='s', verbose=None):
return plot_evoked(
self, picks=picks, exclude=exclude, unit=unit, show=show,
ylim=ylim, proj=proj, xlim=xlim, hline=hline, units=units,
scalings=scalings, titles=titles, axes=axes, gfp=gfp,
window_title=window_title, spatial_colors=spatial_colors,
zorder=zorder, selectable=selectable, noise_cov=noise_cov,
time_unit=time_unit, verbose=verbose)
@copy_function_doc_to_method_doc(plot_evoked_image)
def plot_image(self, picks=None, exclude='bads', unit=True, show=True,
clim=None, xlim='tight', proj=False, units=None,
scalings=None, titles=None, axes=None, cmap='RdBu_r',
colorbar=True, mask=None, mask_style=None,
mask_cmap='Greys', mask_alpha=.25, time_unit='s',
show_names=None, group_by=None):
return plot_evoked_image(
self, picks=picks, exclude=exclude, unit=unit, show=show,
clim=clim, xlim=xlim, proj=proj, units=units, scalings=scalings,
titles=titles, axes=axes, cmap=cmap, colorbar=colorbar, mask=mask,
mask_style=mask_style, mask_cmap=mask_cmap, mask_alpha=mask_alpha,
time_unit=time_unit, show_names=show_names, group_by=group_by)
@copy_function_doc_to_method_doc(plot_evoked_topo)
def plot_topo(self, layout=None, layout_scale=0.945, color=None,
border='none', ylim=None, scalings=None, title=None,
proj=False, vline=[0.0], fig_background=None,
merge_grads=False, legend=True, axes=None,
background_color='w', noise_cov=None, show=True):
"""
Notes
-----
.. versionadded:: 0.10.0
"""
return plot_evoked_topo(
self, layout=layout, layout_scale=layout_scale, color=color,
border=border, ylim=ylim, scalings=scalings, title=title,
proj=proj, vline=vline, fig_background=fig_background,
merge_grads=merge_grads, legend=legend, axes=axes,
background_color=background_color, noise_cov=noise_cov, show=show)
@copy_function_doc_to_method_doc(plot_evoked_topomap)
def plot_topomap(self, times="auto", ch_type=None, layout=None, vmin=None,
vmax=None, cmap=None, sensors=True, colorbar=True,
scalings=None, units=None, res=64,
size=1, cbar_fmt="%3.1f",
time_unit='s', time_format=None,
proj=False, show=True, show_names=False, title=None,
mask=None, mask_params=None, outlines='head',
contours=6, image_interp='bilinear', average=None,
head_pos=None, axes=None):
return plot_evoked_topomap(
self, times=times, ch_type=ch_type, layout=layout, vmin=vmin,
vmax=vmax, cmap=cmap, sensors=sensors, colorbar=colorbar,
scalings=scalings, units=units, res=res,
size=size, cbar_fmt=cbar_fmt, time_unit=time_unit,
time_format=time_format, proj=proj, show=show,
show_names=show_names, title=title, mask=mask,
mask_params=mask_params, outlines=outlines, contours=contours,
image_interp=image_interp, average=average, head_pos=head_pos,
axes=axes)
@copy_function_doc_to_method_doc(plot_evoked_field)
def plot_field(self, surf_maps, time=None, time_label='t = %0.0f ms',
n_jobs=1):
return plot_evoked_field(self, surf_maps, time=time,
time_label=time_label, n_jobs=n_jobs)
@copy_function_doc_to_method_doc(plot_evoked_white)
def plot_white(self, noise_cov, show=True, rank=None, time_unit='s',
verbose=None):
return plot_evoked_white(
self, noise_cov=noise_cov, rank=rank, show=show,
time_unit=time_unit, verbose=verbose)
@copy_function_doc_to_method_doc(plot_evoked_joint)
def plot_joint(self, times="peaks", title='', picks=None,
exclude='bads', show=True, ts_args=None,
topomap_args=None):
return plot_evoked_joint(self, times=times, title=title, picks=picks,
exclude=exclude, show=show, ts_args=ts_args,
topomap_args=topomap_args)
def animate_topomap(self, ch_type=None, times=None, frame_rate=None,
butterfly=False, blit=True, show=True, time_unit='s'):
"""Make animation of evoked data as topomap timeseries.
The animation can be paused/resumed with left mouse button.
Left and right arrow keys can be used to move backward or forward
in time.
Parameters
----------
ch_type : str | None
Channel type to plot. Accepted data types: 'mag', 'grad', 'eeg'.
If None, first available channel type from ('mag', 'grad', 'eeg')
is used. Defaults to None.
times : array of floats | None
The time points to plot. If None, 10 evenly spaced samples are
calculated over the evoked time series. Defaults to None.
frame_rate : int | None
Frame rate for the animation in Hz. If None,
frame rate = sfreq / 10. Defaults to None.
butterfly : bool
Whether to plot the data as butterfly plot under the topomap.
Defaults to False.
blit : bool
Whether to use blit to optimize drawing. In general, it is
recommended to use blit in combination with ``show=True``. If you
intend to save the animation it is better to disable blit.
Defaults to True.
show : bool
Whether to show the animation. Defaults to True.
time_unit : str
The units for the time axis, can be "ms" (default in 0.16)
or "s" (will become the default in 0.17).
.. versionadded:: 0.16
Returns
-------
fig : instance of matplotlib figure
The figure.
anim : instance of matplotlib FuncAnimation
Animation of the topomap.
Notes
-----
.. versionadded:: 0.12.0
"""
return _topomap_animation(
self, ch_type=ch_type, times=times, frame_rate=frame_rate,
butterfly=butterfly, blit=blit, show=show, time_unit=time_unit)
def as_type(self, ch_type='grad', mode='fast'):
"""Compute virtual evoked using interpolated fields.
.. Warning:: Using virtual evoked to compute inverse can yield
unexpected results. The virtual channels have `'_v'` appended
at the end of the names to emphasize that the data contained in
them are interpolated.
Parameters
----------
ch_type : str
The destination channel type. It can be 'mag' or 'grad'.
mode : str
Either `'accurate'` or `'fast'`, determines the quality of the
Legendre polynomial expansion used. `'fast'` should be sufficient
for most applications.
Returns
-------
evoked : instance of mne.Evoked
The transformed evoked object containing only virtual channels.
Notes
-----
.. versionadded:: 0.9.0
"""
from .forward import _as_meg_type_evoked
return _as_meg_type_evoked(self, ch_type=ch_type, mode=mode)
def detrend(self, order=1, picks=None):
"""Detrend data.
This function operates in-place.
Parameters
----------
order : int
Either 0 or 1, the order of the detrending. 0 is a constant
(DC) detrend, 1 is a linear detrend.
picks : array-like of int | None
If None only MEG, EEG, SEEG, ECoG and fNIRS channels are detrended.
Returns
-------
evoked : instance of Evoked
The detrended evoked object.
"""
if picks is None:
picks = _pick_data_channels(self.info)
self.data[picks] = detrend(self.data[picks], order, axis=-1)
return self
def copy(self):
"""Copy the instance of evoked.
Returns
-------
evoked : instance of Evoked
"""
evoked = deepcopy(self)
return evoked
def __neg__(self):
"""Negate channel responses.
Returns
-------
evoked_neg : instance of Evoked
The Evoked instance with channel data negated and '-'
prepended to the comment.
"""
out = self.copy()
out.data *= -1
out.comment = '-' + (out.comment or 'unknown')
return out
def get_peak(self, ch_type=None, tmin=None, tmax=None,
mode='abs', time_as_index=False, merge_grads=False,
return_amplitude=False):
"""Get location and latency of peak amplitude.
Parameters
----------
ch_type : 'mag', 'grad', 'eeg', 'seeg', 'ecog', 'hbo', hbr', 'misc', None # noqa
The channel type to use. Defaults to None. If more than one sensor
Type is present in the data the channel type has to be explicitly
set.
tmin : float | None
The minimum point in time to be considered for peak getting.
If None (default), the beginning of the data is used.
tmax : float | None
The maximum point in time to be considered for peak getting.
If None (default), the end of the data is used.
mode : {'pos', 'neg', 'abs'}
How to deal with the sign of the data. If 'pos' only positive
values will be considered. If 'neg' only negative values will
be considered. If 'abs' absolute values will be considered.
Defaults to 'abs'.
time_as_index : bool
Whether to return the time index instead of the latency in seconds.
merge_grads : bool
If True, compute peak from merged gradiometer data.
return_amplitude : bool
If True, return also the amplitude at the maximum response.
.. versionadded:: 0.16
Returns
-------
ch_name : str
The channel exhibiting the maximum response.
latency : float | int
The time point of the maximum response, either latency in seconds
or index.
amplitude : float
The amplitude of the maximum response. Only returned if
return_amplitude is True.
.. versionadded:: 0.16
"""
supported = ('mag', 'grad', 'eeg', 'seeg', 'ecog', 'misc', 'hbo',
'hbr', 'None')
data_picks = _pick_data_channels(self.info, with_ref_meg=False)
types_used = set([channel_type(self.info, idx) for idx in data_picks])
if str(ch_type) not in supported:
raise ValueError('Channel type must be `{supported}`. You gave me '
'`{ch_type}` instead.'
.format(ch_type=ch_type,
supported='` or `'.join(supported)))
elif ch_type is not None and ch_type not in types_used:
raise ValueError('Channel type `{ch_type}` not found in this '
'evoked object.'.format(ch_type=ch_type))
elif len(types_used) > 1 and ch_type is None:
raise RuntimeError('More than one sensor type found. `ch_type` '
'must not be `None`, pass a sensor type '
'value instead')
if merge_grads:
if ch_type != 'grad':
raise ValueError('Channel type must be grad for merge_grads')
elif mode == 'neg':
raise ValueError('Negative mode (mode=neg) does not make '
'sense with merge_grads=True')
meg = eeg = misc = seeg = ecog = fnirs = False
picks = None
if ch_type in ('mag', 'grad'):
meg = ch_type
elif ch_type == 'eeg':
eeg = True
elif ch_type == 'misc':
misc = True
elif ch_type == 'seeg':
seeg = True
elif ch_type == 'ecog':
ecog = True
elif ch_type in ('hbo', 'hbr'):
fnirs = ch_type
if ch_type is not None:
if merge_grads:
picks = _pair_grad_sensors(self.info, topomap_coords=False)
else:
picks = pick_types(self.info, meg=meg, eeg=eeg, misc=misc,
seeg=seeg, ecog=ecog, ref_meg=False,
fnirs=fnirs)
data = self.data
ch_names = self.ch_names
if picks is not None:
data = data[picks]
ch_names = [ch_names[k] for k in picks]
if merge_grads:
data = _merge_grad_data(data)
ch_names = [ch_name[:-1] + 'X' for ch_name in ch_names[::2]]
ch_idx, time_idx, max_amp = _get_peak(data, self.times, tmin,
tmax, mode)
out = (ch_names[ch_idx], time_idx if time_as_index else
self.times[time_idx])
if return_amplitude:
out += (max_amp,)
return out
def _check_decim(info, decim, offset):
"""Check decimation parameters."""
if decim < 1 or decim != int(decim):
raise ValueError('decim must be an integer > 0')
decim = int(decim)
new_sfreq = info['sfreq'] / float(decim)
lowpass = info['lowpass']
if decim > 1 and lowpass is None:
warn('The measurement information indicates data is not low-pass '
'filtered. The decim=%i parameter will result in a sampling '
'frequency of %g Hz, which can cause aliasing artifacts.'
% (decim, new_sfreq))
elif decim > 1 and new_sfreq < 2.5 * lowpass:
warn('The measurement information indicates a low-pass frequency '
'of %g Hz. The decim=%i parameter will result in a sampling '
'frequency of %g Hz, which can cause aliasing artifacts.'
% (lowpass, decim, new_sfreq)) # > 50% nyquist lim
offset = int(offset)
if not 0 <= offset < decim:
raise ValueError('decim must be at least 0 and less than %s, got '
'%s' % (decim, offset))
return decim, offset, new_sfreq
class EvokedArray(Evoked):
"""Evoked object from numpy array.
Parameters
----------
data : array of shape (n_channels, n_times)
The channels' evoked response. See notes for proper units of measure.
info : instance of Info
Info dictionary. Consider using ``create_info`` to populate
this structure.
tmin : float
Start time before event. Defaults to 0.
comment : string
Comment on dataset. Can be the condition. Defaults to ''.
nave : int
Number of averaged epochs. Defaults to 1.
kind : str
Type of data, either average or standard_error. Defaults to 'average'.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Notes
-----
Proper units of measure:
* V: eeg, eog, seeg, emg, ecg, bio, ecog
* T: mag
* T/m: grad
* M: hbo, hbr
* Am: dipole
* AU: misc
See Also
--------
EpochsArray, io.RawArray, create_info
"""
@verbose
def __init__(self, data, info, tmin=0., comment='', nave=1, kind='average',
verbose=None): # noqa: D102
dtype = np.complex128 if np.any(np.iscomplex(data)) else np.float64
data = np.asanyarray(data, dtype=dtype)
if data.ndim != 2:
raise ValueError('Data must be a 2D array of shape (n_channels, '
'n_samples)')
if len(info['ch_names']) != np.shape(data)[0]:
raise ValueError('Info (%s) and data (%s) must have same number '
'of channels.' % (len(info['ch_names']),
np.shape(data)[0]))
self.data = data
# XXX: this should use round and be tested
self.first = int(tmin * info['sfreq'])
self.last = self.first + np.shape(data)[-1] - 1
self.times = np.arange(self.first, self.last + 1,
dtype=np.float) / info['sfreq']
self.info = info.copy() # do not modify original info
self.nave = nave
self.kind = kind
self.comment = comment
self.picks = None
self.verbose = verbose
self.preload = True
self._projector = None
_validate_type(self.kind, "str", "kind")
if self.kind not in _aspect_dict:
raise ValueError('unknown kind "%s", should be "average" or '
'"standard_error"' % (self.kind,))
self._aspect_kind = _aspect_dict[self.kind]
def _get_entries(fid, evoked_node, allow_maxshield=False):
"""Get all evoked entries."""
comments = list()
aspect_kinds = list()
for ev in evoked_node:
for k in range(ev['nent']):
my_kind = ev['directory'][k].kind
pos = ev['directory'][k].pos
if my_kind == FIFF.FIFF_COMMENT:
tag = read_tag(fid, pos)
comments.append(tag.data)
my_aspect = _get_aspect(ev, allow_maxshield)[0]
for k in range(my_aspect['nent']):
my_kind = my_aspect['directory'][k].kind
pos = my_aspect['directory'][k].pos
if my_kind == FIFF.FIFF_ASPECT_KIND:
tag = read_tag(fid, pos)
aspect_kinds.append(int(tag.data))
comments = np.atleast_1d(comments)
aspect_kinds = np.atleast_1d(aspect_kinds)
if len(comments) != len(aspect_kinds) or len(comments) == 0:
fid.close()
raise ValueError('Dataset names in FIF file '
'could not be found.')
t = [_aspect_rev.get(str(a), 'Unknown') for a in aspect_kinds]
t = ['"' + c + '" (' + tt + ')' for tt, c in zip(t, comments)]
t = '\n'.join(t)
return comments, aspect_kinds, t
def _get_aspect(evoked, allow_maxshield):
"""Get Evoked data aspect."""
is_maxshield = False
aspect = dir_tree_find(evoked, FIFF.FIFFB_ASPECT)
if len(aspect) == 0:
_check_maxshield(allow_maxshield)
aspect = dir_tree_find(evoked, FIFF.FIFFB_SMSH_ASPECT)
is_maxshield = True
if len(aspect) > 1:
logger.info('Multiple data aspects found. Taking first one.')
return aspect[0], is_maxshield
def _get_evoked_node(fname):
"""Get info in evoked file."""
f, tree, _ = fiff_open(fname)
with f as fid:
_, meas = read_meas_info(fid, tree, verbose=False)
evoked_node = dir_tree_find(meas, FIFF.FIFFB_EVOKED)
return evoked_node
def grand_average(all_evoked, interpolate_bads=True):
"""Make grand average of a list evoked data.
The function interpolates bad channels based on `interpolate_bads`
parameter. If `interpolate_bads` is True, the grand average
file will contain good channels and the bad channels interpolated
from the good MEG/EEG channels.
The grand_average.nave attribute will be equal the number
of evoked datasets used to calculate the grand average.
Note: Grand average evoked shall not be used for source localization.
Parameters
----------
all_evoked : list of Evoked data
The evoked datasets.
interpolate_bads : bool
If True, bad MEG and EEG channels are interpolated.
Returns
-------
grand_average : Evoked
The grand average data.
Notes
-----
.. versionadded:: 0.9.0
"""
# check if all elements in the given list are evoked data
if not all(isinstance(e, Evoked) for e in all_evoked):
raise ValueError("Not all the elements in list are evoked data")
# Copy channels to leave the original evoked datasets intact.
all_evoked = [e.copy() for e in all_evoked]
# Interpolates if necessary
if interpolate_bads:
all_evoked = [e.interpolate_bads() if len(e.info['bads']) > 0
else e for e in all_evoked]
equalize_channels(all_evoked) # apply equalize_channels
# make grand_average object using combine_evoked
grand_average = combine_evoked(all_evoked, weights='equal')
# change the grand_average.nave to the number of Evokeds
grand_average.nave = len(all_evoked)
# change comment field
grand_average.comment = "Grand average (n = %d)" % grand_average.nave
return grand_average
def _check_evokeds_ch_names_times(all_evoked):
evoked = all_evoked[0]
ch_names = evoked.ch_names
for ii, ev in enumerate(all_evoked[1:]):
if ev.ch_names != ch_names:
if set(ev.ch_names) != set(ch_names):
raise ValueError(
"%s and %s do not contain the same channels." % (evoked,
ev))
else:
warn("Order of channels differs, reordering channels ...")
ev = ev.copy()
ev.reorder_channels(ch_names)
all_evoked[ii + 1] = ev
if not np.max(np.abs(ev.times - evoked.times)) < 1e-7:
raise ValueError("%s and %s do not contain the same time instants"
% (evoked, ev))
return all_evoked
def combine_evoked(all_evoked, weights):
"""Merge evoked data by weighted addition or subtraction.
Data should have the same channels and the same time instants.
Subtraction can be performed by passing negative weights (e.g., [1, -1]).
Parameters
----------
all_evoked : list of Evoked
The evoked datasets.
weights : list of float | str
The weights to apply to the data of each evoked instance.
Can also be ``'nave'`` to weight according to evoked.nave,
or ``"equal"`` to use equal weighting (each weighted as ``1/N``).
Returns
-------
evoked : Evoked
The new evoked data.
Notes
-----
.. versionadded:: 0.9.0
"""
if isinstance(weights, string_types):
if weights not in ('nave', 'equal'):
raise ValueError('weights must be a list of float, or "nave" or '
'"equal"')
if weights == 'nave':
weights = np.array([e.nave for e in all_evoked], float)
weights /= weights.sum()
else: # == 'equal'
weights = [1. / len(all_evoked)] * len(all_evoked)
weights = np.array(weights, float)
if weights.ndim != 1 or weights.size != len(all_evoked):
raise ValueError('weights must be the same size as all_evoked')
all_evoked = _check_evokeds_ch_names_times(all_evoked)
evoked = all_evoked[0].copy()
# use union of bad channels
bads = list(set(evoked.info['bads']).union(*(ev.info['bads']
for ev in all_evoked[1:])))
evoked.info['bads'] = bads
evoked.data = sum(w * e.data for w, e in zip(weights, all_evoked))
# We should set nave based on how variances change when summing Gaussian
# random variables. From:
#
# https://en.wikipedia.org/wiki/Weighted_arithmetic_mean
#
# We know that the variance of a weighted sample mean is:
#
# σ^2 = w_1^2 σ_1^2 + w_2^2 σ_2^2 + ... + w_n^2 σ_n^2
#
# We estimate the variance of each evoked instance as 1 / nave to get:
#
# σ^2 = w_1^2 / nave_1 + w_2^2 / nave_2 + ... + w_n^2 / nave_n
#
# And our resulting nave is the reciprocal of this:
evoked.nave = max(int(round(
1. / sum(w ** 2 / e.nave for w, e in zip(weights, all_evoked)))), 1)
evoked.comment = ' + '.join('%0.3f * %s' % (w, e.comment or 'unknown')
for w, e in zip(weights, all_evoked))
return evoked
@verbose
def read_evokeds(fname, condition=None, baseline=None, kind='average',
proj=True, allow_maxshield=False, verbose=None):
"""Read evoked dataset(s).
Parameters
----------
fname : string
The file name, which should end with -ave.fif or -ave.fif.gz.
condition : int or str | list of int or str | None
The index or list of indices of the evoked dataset to read. FIF files
can contain multiple datasets. If None, all datasets are returned as a
list.
baseline : None (default) or tuple of length 2
The time interval to apply baseline correction. If None do not apply
it. If baseline is (a, b) the interval is between "a (s)" and "b (s)".
If a is None the beginning of the data is used and if b is None then b
is set to the end of the interval. If baseline is equal to (None, None)
all the time interval is used. Correction is applied by computing mean
of the baseline period and subtracting it from the data. The baseline
(a, b) includes both endpoints, i.e. all timepoints t such that
a <= t <= b.
kind : str
Either 'average' or 'standard_error', the type of data to read.
proj : bool
If False, available projectors won't be applied to the data.
allow_maxshield : bool | str (default False)
If True, allow loading of data that has been recorded with internal
active compensation (MaxShield). Data recorded with MaxShield should
generally not be loaded directly, but should first be processed using
SSS/tSSS to remove the compensation signals that may also affect brain
activity. Can also be "yes" to load without eliciting a warning.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
evoked : Evoked (if condition is int or str) or list of Evoked (if
condition is None or list)
The evoked dataset(s).
See Also
--------
write_evokeds
"""
check_fname(fname, 'evoked', ('-ave.fif', '-ave.fif.gz',
'_ave.fif', '_ave.fif.gz'))
logger.info('Reading %s ...' % fname)
return_list = True
if condition is None:
evoked_node = _get_evoked_node(fname)
condition = range(len(evoked_node))
elif not isinstance(condition, list):
condition = [condition]
return_list = False
out = [Evoked(fname, c, kind=kind, proj=proj,
allow_maxshield=allow_maxshield,
verbose=verbose).apply_baseline(baseline)
for c in condition]
return out if return_list else out[0]
def _read_evoked(fname, condition=None, kind='average', allow_maxshield=False):
"""Read evoked data from a FIF file."""
if fname is None:
raise ValueError('No evoked filename specified')
f, tree, _ = fiff_open(fname)
with f as fid:
# Read the measurement info
info, meas = read_meas_info(fid, tree, clean_bads=True)
# Locate the data of interest
processed = dir_tree_find(meas, FIFF.FIFFB_PROCESSED_DATA)
if len(processed) == 0:
raise ValueError('Could not find processed data')
evoked_node = dir_tree_find(meas, FIFF.FIFFB_EVOKED)
if len(evoked_node) == 0:
raise ValueError('Could not find evoked data')
# find string-based entry
if isinstance(condition, string_types):
if kind not in _aspect_dict.keys():
raise ValueError('kind must be "average" or '
'"standard_error"')
comments, aspect_kinds, t = _get_entries(fid, evoked_node,
allow_maxshield)
goods = (np.in1d(comments, [condition]) &
np.in1d(aspect_kinds, [_aspect_dict[kind]]))
found_cond = np.where(goods)[0]
if len(found_cond) != 1:
raise ValueError('condition "%s" (%s) not found, out of '
'found datasets:\n%s'
% (condition, kind, t))
condition = found_cond[0]
elif condition is None:
if len(evoked_node) > 1:
_, _, conditions = _get_entries(fid, evoked_node,
allow_maxshield)
raise TypeError("Evoked file has more than one "
"condition, the condition parameters "
"must be specified from:\n%s" % conditions)
else:
condition = 0
if condition >= len(evoked_node) or condition < 0:
raise ValueError('Data set selector out of range')
my_evoked = evoked_node[condition]
# Identify the aspects
my_aspect, info['maxshield'] = _get_aspect(my_evoked, allow_maxshield)
# Now find the data in the evoked block
nchan = 0
sfreq = -1
chs = []
comment = last = first = first_time = nsamp = None
for k in range(my_evoked['nent']):
my_kind = my_evoked['directory'][k].kind
pos = my_evoked['directory'][k].pos
if my_kind == FIFF.FIFF_COMMENT:
tag = read_tag(fid, pos)
comment = tag.data
elif my_kind == FIFF.FIFF_FIRST_SAMPLE:
tag = read_tag(fid, pos)
first = int(tag.data)
elif my_kind == FIFF.FIFF_LAST_SAMPLE:
tag = read_tag(fid, pos)
last = int(tag.data)
elif my_kind == FIFF.FIFF_NCHAN:
tag = read_tag(fid, pos)
nchan = int(tag.data)
elif my_kind == FIFF.FIFF_SFREQ:
tag = read_tag(fid, pos)
sfreq = float(tag.data)
elif my_kind == FIFF.FIFF_CH_INFO:
tag = read_tag(fid, pos)
chs.append(tag.data)
elif my_kind == FIFF.FIFF_FIRST_TIME:
tag = read_tag(fid, pos)
first_time = float(tag.data)
elif my_kind == FIFF.FIFF_NO_SAMPLES:
tag = read_tag(fid, pos)
nsamp = int(tag.data)
if comment is None:
comment = 'No comment'
# Local channel information?
if nchan > 0:
if chs is None:
raise ValueError('Local channel information was not found '
'when it was expected.')
if len(chs) != nchan:
raise ValueError('Number of channels and number of '
'channel definitions are different')
info['chs'] = chs
logger.info(' Found channel information in evoked data. '
'nchan = %d' % nchan)
if sfreq > 0:
info['sfreq'] = sfreq
# Read the data in the aspect block
nave = 1
epoch = []
for k in range(my_aspect['nent']):
kind = my_aspect['directory'][k].kind
pos = my_aspect['directory'][k].pos
if kind == FIFF.FIFF_COMMENT:
tag = read_tag(fid, pos)
comment = tag.data
elif kind == FIFF.FIFF_ASPECT_KIND:
tag = read_tag(fid, pos)
aspect_kind = int(tag.data)
elif kind == FIFF.FIFF_NAVE:
tag = read_tag(fid, pos)
nave = int(tag.data)
elif kind == FIFF.FIFF_EPOCH:
tag = read_tag(fid, pos)
epoch.append(tag)
nepoch = len(epoch)
if nepoch != 1 and nepoch != info['nchan']:
raise ValueError('Number of epoch tags is unreasonable '
'(nepoch = %d nchan = %d)'
% (nepoch, info['nchan']))
if nepoch == 1:
# Only one epoch
data = epoch[0].data
# May need a transpose if the number of channels is one
if data.shape[1] == 1 and info['nchan'] == 1:
data = data.T
else:
# Put the old style epochs together
data = np.concatenate([e.data[None, :] for e in epoch], axis=0)
data = data.astype(np.float)
if first is not None:
nsamp = last - first + 1
elif first_time is not None:
first = int(round(first_time * info['sfreq']))
last = first + nsamp
else:
raise RuntimeError('Could not read time parameters')
if nsamp is not None and data.shape[1] != nsamp:
raise ValueError('Incorrect number of samples (%d instead of '
' %d)' % (data.shape[1], nsamp))
nsamp = data.shape[1]
last = first + nsamp - 1
logger.info(' Found the data of interest:')
logger.info(' t = %10.2f ... %10.2f ms (%s)'
% (1000 * first / info['sfreq'],
1000 * last / info['sfreq'], comment))
if info['comps'] is not None:
logger.info(' %d CTF compensation matrices available'
% len(info['comps']))
logger.info(' nave = %d - aspect type = %d'
% (nave, aspect_kind))
# Calibrate
cals = np.array([info['chs'][k]['cal'] *
info['chs'][k].get('scale', 1.0)
for k in range(info['nchan'])])
data *= cals[:, np.newaxis]
times = np.arange(first, last + 1, dtype=np.float) / info['sfreq']
return info, nave, aspect_kind, first, last, comment, times, data
def write_evokeds(fname, evoked):
"""Write an evoked dataset to a file.
Parameters
----------
fname : string
The file name, which should end with -ave.fif or -ave.fif.gz.
evoked : Evoked instance, or list of Evoked instances
The evoked dataset, or list of evoked datasets, to save in one file.
Note that the measurement info from the first evoked instance is used,
so be sure that information matches.
See Also
--------
read_evokeds
"""
_write_evokeds(fname, evoked)
def _write_evokeds(fname, evoked, check=True):
"""Write evoked data."""
if check:
check_fname(fname, 'evoked', ('-ave.fif', '-ave.fif.gz',
'_ave.fif', '_ave.fif.gz'))
if not isinstance(evoked, list):
evoked = [evoked]
# Create the file and save the essentials
with start_file(fname) as fid:
start_block(fid, FIFF.FIFFB_MEAS)
write_id(fid, FIFF.FIFF_BLOCK_ID)
if evoked[0].info['meas_id'] is not None:
write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, evoked[0].info['meas_id'])
# Write measurement info
write_meas_info(fid, evoked[0].info)
# One or more evoked data sets
start_block(fid, FIFF.FIFFB_PROCESSED_DATA)
for e in evoked:
start_block(fid, FIFF.FIFFB_EVOKED)
# Comment is optional
if e.comment is not None and len(e.comment) > 0:
write_string(fid, FIFF.FIFF_COMMENT, e.comment)
# First and last sample
write_int(fid, FIFF.FIFF_FIRST_SAMPLE, e.first)
write_int(fid, FIFF.FIFF_LAST_SAMPLE, e.last)
# The epoch itself
if e.info.get('maxshield'):
aspect = FIFF.FIFFB_SMSH_ASPECT
else:
aspect = FIFF.FIFFB_ASPECT
start_block(fid, aspect)
write_int(fid, FIFF.FIFF_ASPECT_KIND, e._aspect_kind)
write_int(fid, FIFF.FIFF_NAVE, e.nave)
decal = np.zeros((e.info['nchan'], 1))
for k in range(e.info['nchan']):
decal[k] = 1.0 / (e.info['chs'][k]['cal'] *
e.info['chs'][k].get('scale', 1.0))
write_float_matrix(fid, FIFF.FIFF_EPOCH, decal * e.data)
end_block(fid, aspect)
end_block(fid, FIFF.FIFFB_EVOKED)
end_block(fid, FIFF.FIFFB_PROCESSED_DATA)
end_block(fid, FIFF.FIFFB_MEAS)
end_file(fid)
def _get_peak(data, times, tmin=None, tmax=None, mode='abs'):
"""Get feature-index and time of maximum signal from 2D array.
Note. This is a 'getter', not a 'finder'. For non-evoked type
data and continuous signals, please use proper peak detection algorithms.
Parameters
----------
data : instance of numpy.ndarray (n_locations, n_times)
The data, either evoked in sensor or source space.
times : instance of numpy.ndarray (n_times)
The times in seconds.
tmin : float | None
The minimum point in time to be considered for peak getting.
tmax : float | None
The maximum point in time to be considered for peak getting.
mode : {'pos', 'neg', 'abs'}
How to deal with the sign of the data. If 'pos' only positive
values will be considered. If 'neg' only negative values will
be considered. If 'abs' absolute values will be considered.
Defaults to 'abs'.
Returns
-------
max_loc : int
The index of the feature with the maximum value.
max_time : int
The time point of the maximum response, index.
max_amp : float
Amplitude of the maximum response.
"""
modes = ('abs', 'neg', 'pos')
if mode not in modes:
raise ValueError('The `mode` parameter must be `{modes}`. You gave '
'me `{mode}`'.format(modes='` or `'.join(modes),
mode=mode))
if tmin is None:
tmin = times[0]
if tmax is None:
tmax = times[-1]
if tmin < times.min():
raise ValueError('The tmin value is out of bounds. It must be '
'within {0} and {1}'.format(times.min(), times.max()))
if tmax > times.max():
raise ValueError('The tmax value is out of bounds. It must be '
'within {0} and {1}'.format(times.min(), times.max()))
if tmin > tmax:
raise ValueError('The tmin must be smaller or equal to tmax')
time_win = (times >= tmin) & (times <= tmax)
mask = np.ones_like(data).astype(np.bool)
mask[:, time_win] = False
maxfun = np.argmax
if mode == 'pos':
if not np.any(data > 0):
raise ValueError('No positive values encountered. Cannot '
'operate in pos mode.')
elif mode == 'neg':
if not np.any(data < 0):
raise ValueError('No negative values encountered. Cannot '
'operate in neg mode.')
maxfun = np.argmin
masked_index = np.ma.array(np.abs(data) if mode == 'abs' else data,
mask=mask)
max_loc, max_time = np.unravel_index(maxfun(masked_index), data.shape)
return max_loc, max_time, data[max_loc, max_time]
|