File: evoked.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (1300 lines) | stat: -rw-r--r-- 50,206 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
# -*- coding: utf-8 -*-
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Matti Hamalainen <msh@nmr.mgh.harvard.edu>
#          Denis Engemann <denis.engemann@gmail.com>
#          Andrew Dykstra <andrew.r.dykstra@gmail.com>
#          Mads Jensen <mje.mads@gmail.com>
#          Jona Sassenhagen <jona.sassenhagen@gmail.com>
#
# License: BSD (3-clause)

from copy import deepcopy
import numpy as np

from .baseline import rescale
from .channels.channels import (ContainsMixin, UpdateChannelsMixin,
                                SetChannelsMixin, InterpolationMixin,
                                equalize_channels)
from .channels.layout import _merge_grad_data, _pair_grad_sensors
from .filter import detrend, FilterMixin
from .utils import (check_fname, logger, verbose, _time_mask, warn, sizeof_fmt,
                    SizeMixin, copy_function_doc_to_method_doc, _validate_type)
from .viz import (plot_evoked, plot_evoked_topomap, plot_evoked_field,
                  plot_evoked_image, plot_evoked_topo)
from .viz.evoked import plot_evoked_white, plot_evoked_joint
from .viz.topomap import _topomap_animation

from .externals.six import string_types

from .io.constants import FIFF
from .io.open import fiff_open
from .io.tag import read_tag
from .io.tree import dir_tree_find
from .io.pick import channel_type, pick_types, _pick_data_channels
from .io.meas_info import read_meas_info, write_meas_info
from .io.proj import ProjMixin
from .io.write import (start_file, start_block, end_file, end_block,
                       write_int, write_string, write_float_matrix,
                       write_id)
from .io.base import ToDataFrameMixin, TimeMixin, _check_maxshield

_aspect_dict = {'average': FIFF.FIFFV_ASPECT_AVERAGE,
                'standard_error': FIFF.FIFFV_ASPECT_STD_ERR}
_aspect_rev = {str(FIFF.FIFFV_ASPECT_AVERAGE): 'average',
               str(FIFF.FIFFV_ASPECT_STD_ERR): 'standard_error'}


class Evoked(ProjMixin, ContainsMixin, UpdateChannelsMixin,
             SetChannelsMixin, InterpolationMixin, FilterMixin,
             ToDataFrameMixin, TimeMixin, SizeMixin):
    """Evoked data.

    Parameters
    ----------
    fname : string
        Name of evoked/average FIF file to load.
        If None no data is loaded.
    condition : int, or str
        Dataset ID number (int) or comment/name (str). Optional if there is
        only one data set in file.
    proj : bool, optional
        Apply SSP projection vectors
    kind : str
        Either 'average' or 'standard_error'. The type of data to read.
        Only used if 'condition' is a str.
    allow_maxshield : bool | str (default False)
        If True, allow loading of data that has been recorded with internal
        active compensation (MaxShield). Data recorded with MaxShield should
        generally not be loaded directly, but should first be processed using
        SSS/tSSS to remove the compensation signals that may also affect brain
        activity. Can also be "yes" to load without eliciting a warning.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Attributes
    ----------
    info : dict
        Measurement info.
    ch_names : list of string
        List of channels' names.
    nave : int
        Number of averaged epochs.
    kind : str
        Type of data, either average or standard_error.
    first : int
        First time sample.
    last : int
        Last time sample.
    comment : string
        Comment on dataset. Can be the condition.
    times : array
        Array of time instants in seconds.
    data : array of shape (n_channels, n_times)
        Evoked response.
    times :  ndarray
        Time vector in seconds. Goes from `tmin` to `tmax`. Time interval
        between consecutive time samples is equal to the inverse of the
        sampling frequency.
    verbose : bool, str, int, or None.
        See above.

    Notes
    -----
    Evoked objects contain a single condition only.
    """

    @verbose
    def __init__(self, fname, condition=None, proj=True,
                 kind='average', allow_maxshield=False,
                 verbose=None):  # noqa: D102
        _validate_type(proj, bool, "'proj'")
        # Read the requested data
        self.info, self.nave, self._aspect_kind, self.first, self.last, \
            self.comment, self.times, self.data = _read_evoked(
                fname, condition, kind, allow_maxshield)
        self.kind = _aspect_rev.get(str(self._aspect_kind), 'Unknown')
        self.verbose = verbose
        self.preload = True
        # project and baseline correct
        if proj:
            self.apply_proj()

    @property
    def data(self):
        """The data matrix."""
        return self._data

    @data.setter
    def data(self, data):
        """Set the data matrix."""
        self._data = data

    @verbose
    def apply_baseline(self, baseline=(None, 0), verbose=None):
        """Baseline correct evoked data.

        Parameters
        ----------
        baseline : tuple of length 2
            The time interval to apply baseline correction. If None do not
            apply it. If baseline is (a, b) the interval is between "a (s)" and
            "b (s)". If a is None the beginning of the data is used and if b is
            None then b is set to the end of the interval. If baseline is equal
            to (None, None) all the time interval is used. Correction is
            applied by computing mean of the baseline period and subtracting it
            from the data. The baseline (a, b) includes both endpoints, i.e.
            all timepoints t such that a <= t <= b.
        verbose : bool, str, int, or None
            If not None, override default verbose level (see
            :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>`
            for more).

        Returns
        -------
        evoked : instance of Evoked
            The baseline-corrected Evoked object.

        Notes
        -----
        Baseline correction can be done multiple times.

        .. versionadded:: 0.13.0
        """
        self.data = rescale(self.data, self.times, baseline, copy=False)
        return self

    def save(self, fname):
        """Save dataset to file.

        Parameters
        ----------
        fname : string
            The name of the file, which should end with -ave.fif or
            -ave.fif.gz.

        Notes
        -----
        To write multiple conditions into a single file, use
        :func:`mne.write_evokeds`.
        """
        write_evokeds(fname, self)

    def __repr__(self):  # noqa: D105
        _kind_swap = dict(average='mean', standard_error='SEM')
        s = "'%s' (%s, N=%s)" % (self.comment, _kind_swap[self.kind],
                                 self.nave)
        s += ", [%0.5g, %0.5g] sec" % (self.times[0], self.times[-1])
        s += ", %s ch" % self.data.shape[0]
        s += ", ~%s" % (sizeof_fmt(self._size),)
        return "<Evoked  |  %s>" % s

    @property
    def ch_names(self):
        """Channel names."""
        return self.info['ch_names']

    def crop(self, tmin=None, tmax=None):
        """Crop data to a given time interval.

        Parameters
        ----------
        tmin : float | None
            Start time of selection in seconds.
        tmax : float | None
            End time of selection in seconds.

        Returns
        -------
        evoked : instance of Evoked
            The cropped Evoked object.

        Notes
        -----
        Unlike Python slices, MNE time intervals include both their end points;
        crop(tmin, tmax) returns the interval tmin <= t <= tmax.
        """
        mask = _time_mask(self.times, tmin, tmax, sfreq=self.info['sfreq'])
        self.times = self.times[mask]
        self.first = int(self.times[0] * self.info['sfreq'])
        self.last = len(self.times) + self.first - 1
        self.data = self.data[:, mask]
        return self

    def decimate(self, decim, offset=0):
        """Decimate the evoked data.

        .. note:: No filtering is performed. To avoid aliasing, ensure
                  your data are properly lowpassed.

        Parameters
        ----------
        decim : int
            The amount to decimate data.
        offset : int
            Apply an offset to where the decimation starts relative to the
            sample corresponding to t=0. The offset is in samples at the
            current sampling rate.

        Returns
        -------
        evoked : instance of Evoked
            The decimated Evoked object.

        See Also
        --------
        Epochs.decimate
        Epochs.resample
        mne.io.Raw.resample

        Notes
        -----
        Decimation can be done multiple times. For example,
        ``evoked.decimate(2).decimate(2)`` will be the same as
        ``evoked.decimate(4)``.

        .. versionadded:: 0.13.0
        """
        decim, offset, new_sfreq = _check_decim(self.info, decim, offset)
        start_idx = int(round(self.times[0] * (self.info['sfreq'] * decim)))
        i_start = start_idx % decim + offset
        decim_slice = slice(i_start, None, decim)
        self.info['sfreq'] = new_sfreq
        self.data = self.data[:, decim_slice].copy()
        self.times = self.times[decim_slice].copy()
        return self

    def shift_time(self, tshift, relative=True):
        """Shift time scale in evoked data.

        Parameters
        ----------
        tshift : float
            The amount of time shift to be applied if relative is True
            else the first time point. When relative is True, positive value
            of tshift moves the data forward while negative tshift moves it
            backward.
        relative : bool
            If true, move the time backwards or forwards by specified amount.
            Else, set the starting time point to the value of tshift.

        Notes
        -----
        Maximum accuracy of time shift is 1 / evoked.info['sfreq']
        """
        times = self.times
        sfreq = self.info['sfreq']

        offset = self.first if relative else 0

        self.first = int(tshift * sfreq) + offset
        self.last = self.first + len(times) - 1
        self.times = np.arange(self.first, self.last + 1,
                               dtype=np.float) / sfreq

    @copy_function_doc_to_method_doc(plot_evoked)
    def plot(self, picks=None, exclude='bads', unit=True, show=True, ylim=None,
             xlim='tight', proj=False, hline=None, units=None, scalings=None,
             titles=None, axes=None, gfp=False, window_title=None,
             spatial_colors=False, zorder='unsorted', selectable=True,
             noise_cov=None, time_unit='s', verbose=None):
        return plot_evoked(
            self, picks=picks, exclude=exclude, unit=unit, show=show,
            ylim=ylim, proj=proj, xlim=xlim, hline=hline, units=units,
            scalings=scalings, titles=titles, axes=axes, gfp=gfp,
            window_title=window_title, spatial_colors=spatial_colors,
            zorder=zorder, selectable=selectable, noise_cov=noise_cov,
            time_unit=time_unit, verbose=verbose)

    @copy_function_doc_to_method_doc(plot_evoked_image)
    def plot_image(self, picks=None, exclude='bads', unit=True, show=True,
                   clim=None, xlim='tight', proj=False, units=None,
                   scalings=None, titles=None, axes=None, cmap='RdBu_r',
                   colorbar=True, mask=None, mask_style=None,
                   mask_cmap='Greys', mask_alpha=.25, time_unit='s',
                   show_names=None, group_by=None):
        return plot_evoked_image(
            self, picks=picks, exclude=exclude, unit=unit, show=show,
            clim=clim, xlim=xlim, proj=proj, units=units, scalings=scalings,
            titles=titles, axes=axes, cmap=cmap, colorbar=colorbar, mask=mask,
            mask_style=mask_style, mask_cmap=mask_cmap, mask_alpha=mask_alpha,
            time_unit=time_unit, show_names=show_names, group_by=group_by)

    @copy_function_doc_to_method_doc(plot_evoked_topo)
    def plot_topo(self, layout=None, layout_scale=0.945, color=None,
                  border='none', ylim=None, scalings=None, title=None,
                  proj=False, vline=[0.0], fig_background=None,
                  merge_grads=False, legend=True, axes=None,
                  background_color='w', noise_cov=None, show=True):
        """

        Notes
        -----
        .. versionadded:: 0.10.0
        """
        return plot_evoked_topo(
            self, layout=layout, layout_scale=layout_scale, color=color,
            border=border, ylim=ylim, scalings=scalings, title=title,
            proj=proj, vline=vline, fig_background=fig_background,
            merge_grads=merge_grads, legend=legend, axes=axes,
            background_color=background_color, noise_cov=noise_cov, show=show)

    @copy_function_doc_to_method_doc(plot_evoked_topomap)
    def plot_topomap(self, times="auto", ch_type=None, layout=None, vmin=None,
                     vmax=None, cmap=None, sensors=True, colorbar=True,
                     scalings=None, units=None, res=64,
                     size=1, cbar_fmt="%3.1f",
                     time_unit='s', time_format=None,
                     proj=False, show=True, show_names=False, title=None,
                     mask=None, mask_params=None, outlines='head',
                     contours=6, image_interp='bilinear', average=None,
                     head_pos=None, axes=None):
        return plot_evoked_topomap(
            self, times=times, ch_type=ch_type, layout=layout, vmin=vmin,
            vmax=vmax, cmap=cmap, sensors=sensors, colorbar=colorbar,
            scalings=scalings, units=units, res=res,
            size=size, cbar_fmt=cbar_fmt, time_unit=time_unit,
            time_format=time_format, proj=proj, show=show,
            show_names=show_names, title=title, mask=mask,
            mask_params=mask_params, outlines=outlines, contours=contours,
            image_interp=image_interp, average=average, head_pos=head_pos,
            axes=axes)

    @copy_function_doc_to_method_doc(plot_evoked_field)
    def plot_field(self, surf_maps, time=None, time_label='t = %0.0f ms',
                   n_jobs=1):
        return plot_evoked_field(self, surf_maps, time=time,
                                 time_label=time_label, n_jobs=n_jobs)

    @copy_function_doc_to_method_doc(plot_evoked_white)
    def plot_white(self, noise_cov, show=True, rank=None, time_unit='s',
                   verbose=None):
        return plot_evoked_white(
            self, noise_cov=noise_cov, rank=rank, show=show,
            time_unit=time_unit, verbose=verbose)

    @copy_function_doc_to_method_doc(plot_evoked_joint)
    def plot_joint(self, times="peaks", title='', picks=None,
                   exclude='bads', show=True, ts_args=None,
                   topomap_args=None):
        return plot_evoked_joint(self, times=times, title=title, picks=picks,
                                 exclude=exclude, show=show, ts_args=ts_args,
                                 topomap_args=topomap_args)

    def animate_topomap(self, ch_type=None, times=None, frame_rate=None,
                        butterfly=False, blit=True, show=True, time_unit='s'):
        """Make animation of evoked data as topomap timeseries.

        The animation can be paused/resumed with left mouse button.
        Left and right arrow keys can be used to move backward or forward
        in time.

        Parameters
        ----------
        ch_type : str | None
            Channel type to plot. Accepted data types: 'mag', 'grad', 'eeg'.
            If None, first available channel type from ('mag', 'grad', 'eeg')
            is used. Defaults to None.
        times : array of floats | None
            The time points to plot. If None, 10 evenly spaced samples are
            calculated over the evoked time series. Defaults to None.
        frame_rate : int | None
            Frame rate for the animation in Hz. If None,
            frame rate = sfreq / 10. Defaults to None.
        butterfly : bool
            Whether to plot the data as butterfly plot under the topomap.
            Defaults to False.
        blit : bool
            Whether to use blit to optimize drawing. In general, it is
            recommended to use blit in combination with ``show=True``. If you
            intend to save the animation it is better to disable blit.
            Defaults to True.
        show : bool
            Whether to show the animation. Defaults to True.
        time_unit : str
            The units for the time axis, can be "ms" (default in 0.16)
            or "s" (will become the default in 0.17).

            .. versionadded:: 0.16

        Returns
        -------
        fig : instance of matplotlib figure
            The figure.
        anim : instance of matplotlib FuncAnimation
            Animation of the topomap.

        Notes
        -----
        .. versionadded:: 0.12.0
        """
        return _topomap_animation(
            self, ch_type=ch_type, times=times, frame_rate=frame_rate,
            butterfly=butterfly, blit=blit, show=show, time_unit=time_unit)

    def as_type(self, ch_type='grad', mode='fast'):
        """Compute virtual evoked using interpolated fields.

        .. Warning:: Using virtual evoked to compute inverse can yield
            unexpected results. The virtual channels have `'_v'` appended
            at the end of the names to emphasize that the data contained in
            them are interpolated.

        Parameters
        ----------
        ch_type : str
            The destination channel type. It can be 'mag' or 'grad'.
        mode : str
            Either `'accurate'` or `'fast'`, determines the quality of the
            Legendre polynomial expansion used. `'fast'` should be sufficient
            for most applications.

        Returns
        -------
        evoked : instance of mne.Evoked
            The transformed evoked object containing only virtual channels.

        Notes
        -----
        .. versionadded:: 0.9.0
        """
        from .forward import _as_meg_type_evoked
        return _as_meg_type_evoked(self, ch_type=ch_type, mode=mode)

    def detrend(self, order=1, picks=None):
        """Detrend data.

        This function operates in-place.

        Parameters
        ----------
        order : int
            Either 0 or 1, the order of the detrending. 0 is a constant
            (DC) detrend, 1 is a linear detrend.
        picks : array-like of int | None
            If None only MEG, EEG, SEEG, ECoG and fNIRS channels are detrended.

        Returns
        -------
        evoked : instance of Evoked
            The detrended evoked object.
        """
        if picks is None:
            picks = _pick_data_channels(self.info)
        self.data[picks] = detrend(self.data[picks], order, axis=-1)
        return self

    def copy(self):
        """Copy the instance of evoked.

        Returns
        -------
        evoked : instance of Evoked
        """
        evoked = deepcopy(self)
        return evoked

    def __neg__(self):
        """Negate channel responses.

        Returns
        -------
        evoked_neg : instance of Evoked
            The Evoked instance with channel data negated and '-'
            prepended to the comment.
        """
        out = self.copy()
        out.data *= -1
        out.comment = '-' + (out.comment or 'unknown')
        return out

    def get_peak(self, ch_type=None, tmin=None, tmax=None,
                 mode='abs', time_as_index=False, merge_grads=False,
                 return_amplitude=False):
        """Get location and latency of peak amplitude.

        Parameters
        ----------
        ch_type : 'mag', 'grad', 'eeg', 'seeg', 'ecog', 'hbo', hbr', 'misc', None  # noqa
            The channel type to use. Defaults to None. If more than one sensor
            Type is present in the data the channel type has to be explicitly
            set.
        tmin : float | None
            The minimum point in time to be considered for peak getting.
            If None (default), the beginning of the data is used.
        tmax : float | None
            The maximum point in time to be considered for peak getting.
            If None (default), the end of the data is used.
        mode : {'pos', 'neg', 'abs'}
            How to deal with the sign of the data. If 'pos' only positive
            values will be considered. If 'neg' only negative values will
            be considered. If 'abs' absolute values will be considered.
            Defaults to 'abs'.
        time_as_index : bool
            Whether to return the time index instead of the latency in seconds.
        merge_grads : bool
            If True, compute peak from merged gradiometer data.
        return_amplitude : bool
            If True, return also the amplitude at the maximum response.

            .. versionadded:: 0.16

        Returns
        -------
        ch_name : str
            The channel exhibiting the maximum response.
        latency : float | int
            The time point of the maximum response, either latency in seconds
            or index.
        amplitude : float
            The amplitude of the maximum response. Only returned if
            return_amplitude is True.

            .. versionadded:: 0.16
        """
        supported = ('mag', 'grad', 'eeg', 'seeg', 'ecog', 'misc', 'hbo',
                     'hbr', 'None')
        data_picks = _pick_data_channels(self.info, with_ref_meg=False)
        types_used = set([channel_type(self.info, idx) for idx in data_picks])

        if str(ch_type) not in supported:
            raise ValueError('Channel type must be `{supported}`. You gave me '
                             '`{ch_type}` instead.'
                             .format(ch_type=ch_type,
                                     supported='` or `'.join(supported)))

        elif ch_type is not None and ch_type not in types_used:
            raise ValueError('Channel type `{ch_type}` not found in this '
                             'evoked object.'.format(ch_type=ch_type))

        elif len(types_used) > 1 and ch_type is None:
            raise RuntimeError('More than one sensor type found. `ch_type` '
                               'must not be `None`, pass a sensor type '
                               'value instead')

        if merge_grads:
            if ch_type != 'grad':
                raise ValueError('Channel type must be grad for merge_grads')
            elif mode == 'neg':
                raise ValueError('Negative mode (mode=neg) does not make '
                                 'sense with merge_grads=True')

        meg = eeg = misc = seeg = ecog = fnirs = False
        picks = None
        if ch_type in ('mag', 'grad'):
            meg = ch_type
        elif ch_type == 'eeg':
            eeg = True
        elif ch_type == 'misc':
            misc = True
        elif ch_type == 'seeg':
            seeg = True
        elif ch_type == 'ecog':
            ecog = True
        elif ch_type in ('hbo', 'hbr'):
            fnirs = ch_type

        if ch_type is not None:
            if merge_grads:
                picks = _pair_grad_sensors(self.info, topomap_coords=False)
            else:
                picks = pick_types(self.info, meg=meg, eeg=eeg, misc=misc,
                                   seeg=seeg, ecog=ecog, ref_meg=False,
                                   fnirs=fnirs)
        data = self.data
        ch_names = self.ch_names

        if picks is not None:
            data = data[picks]
            ch_names = [ch_names[k] for k in picks]

        if merge_grads:
            data = _merge_grad_data(data)
            ch_names = [ch_name[:-1] + 'X' for ch_name in ch_names[::2]]

        ch_idx, time_idx, max_amp = _get_peak(data, self.times, tmin,
                                              tmax, mode)

        out = (ch_names[ch_idx], time_idx if time_as_index else
               self.times[time_idx])

        if return_amplitude:
            out += (max_amp,)

        return out


def _check_decim(info, decim, offset):
    """Check decimation parameters."""
    if decim < 1 or decim != int(decim):
        raise ValueError('decim must be an integer > 0')
    decim = int(decim)
    new_sfreq = info['sfreq'] / float(decim)
    lowpass = info['lowpass']
    if decim > 1 and lowpass is None:
        warn('The measurement information indicates data is not low-pass '
             'filtered. The decim=%i parameter will result in a sampling '
             'frequency of %g Hz, which can cause aliasing artifacts.'
             % (decim, new_sfreq))
    elif decim > 1 and new_sfreq < 2.5 * lowpass:
        warn('The measurement information indicates a low-pass frequency '
             'of %g Hz. The decim=%i parameter will result in a sampling '
             'frequency of %g Hz, which can cause aliasing artifacts.'
             % (lowpass, decim, new_sfreq))  # > 50% nyquist lim
    offset = int(offset)
    if not 0 <= offset < decim:
        raise ValueError('decim must be at least 0 and less than %s, got '
                         '%s' % (decim, offset))
    return decim, offset, new_sfreq


class EvokedArray(Evoked):
    """Evoked object from numpy array.

    Parameters
    ----------
    data : array of shape (n_channels, n_times)
        The channels' evoked response. See notes for proper units of measure.
    info : instance of Info
        Info dictionary. Consider using ``create_info`` to populate
        this structure.
    tmin : float
        Start time before event. Defaults to 0.
    comment : string
        Comment on dataset. Can be the condition. Defaults to ''.
    nave : int
        Number of averaged epochs. Defaults to 1.
    kind : str
        Type of data, either average or standard_error. Defaults to 'average'.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Notes
    -----
    Proper units of measure:
    * V: eeg, eog, seeg, emg, ecg, bio, ecog
    * T: mag
    * T/m: grad
    * M: hbo, hbr
    * Am: dipole
    * AU: misc

    See Also
    --------
    EpochsArray, io.RawArray, create_info
    """

    @verbose
    def __init__(self, data, info, tmin=0., comment='', nave=1, kind='average',
                 verbose=None):  # noqa: D102
        dtype = np.complex128 if np.any(np.iscomplex(data)) else np.float64
        data = np.asanyarray(data, dtype=dtype)

        if data.ndim != 2:
            raise ValueError('Data must be a 2D array of shape (n_channels, '
                             'n_samples)')

        if len(info['ch_names']) != np.shape(data)[0]:
            raise ValueError('Info (%s) and data (%s) must have same number '
                             'of channels.' % (len(info['ch_names']),
                                               np.shape(data)[0]))

        self.data = data

        # XXX: this should use round and be tested
        self.first = int(tmin * info['sfreq'])
        self.last = self.first + np.shape(data)[-1] - 1
        self.times = np.arange(self.first, self.last + 1,
                               dtype=np.float) / info['sfreq']
        self.info = info.copy()  # do not modify original info
        self.nave = nave
        self.kind = kind
        self.comment = comment
        self.picks = None
        self.verbose = verbose
        self.preload = True
        self._projector = None
        _validate_type(self.kind, "str", "kind")
        if self.kind not in _aspect_dict:
            raise ValueError('unknown kind "%s", should be "average" or '
                             '"standard_error"' % (self.kind,))
        self._aspect_kind = _aspect_dict[self.kind]


def _get_entries(fid, evoked_node, allow_maxshield=False):
    """Get all evoked entries."""
    comments = list()
    aspect_kinds = list()
    for ev in evoked_node:
        for k in range(ev['nent']):
            my_kind = ev['directory'][k].kind
            pos = ev['directory'][k].pos
            if my_kind == FIFF.FIFF_COMMENT:
                tag = read_tag(fid, pos)
                comments.append(tag.data)
        my_aspect = _get_aspect(ev, allow_maxshield)[0]
        for k in range(my_aspect['nent']):
            my_kind = my_aspect['directory'][k].kind
            pos = my_aspect['directory'][k].pos
            if my_kind == FIFF.FIFF_ASPECT_KIND:
                tag = read_tag(fid, pos)
                aspect_kinds.append(int(tag.data))
    comments = np.atleast_1d(comments)
    aspect_kinds = np.atleast_1d(aspect_kinds)
    if len(comments) != len(aspect_kinds) or len(comments) == 0:
        fid.close()
        raise ValueError('Dataset names in FIF file '
                         'could not be found.')
    t = [_aspect_rev.get(str(a), 'Unknown') for a in aspect_kinds]
    t = ['"' + c + '" (' + tt + ')' for tt, c in zip(t, comments)]
    t = '\n'.join(t)
    return comments, aspect_kinds, t


def _get_aspect(evoked, allow_maxshield):
    """Get Evoked data aspect."""
    is_maxshield = False
    aspect = dir_tree_find(evoked, FIFF.FIFFB_ASPECT)
    if len(aspect) == 0:
        _check_maxshield(allow_maxshield)
        aspect = dir_tree_find(evoked, FIFF.FIFFB_SMSH_ASPECT)
        is_maxshield = True
    if len(aspect) > 1:
        logger.info('Multiple data aspects found. Taking first one.')
    return aspect[0], is_maxshield


def _get_evoked_node(fname):
    """Get info in evoked file."""
    f, tree, _ = fiff_open(fname)
    with f as fid:
        _, meas = read_meas_info(fid, tree, verbose=False)
        evoked_node = dir_tree_find(meas, FIFF.FIFFB_EVOKED)
    return evoked_node


def grand_average(all_evoked, interpolate_bads=True):
    """Make grand average of a list evoked data.

    The function interpolates bad channels based on `interpolate_bads`
    parameter. If `interpolate_bads` is True, the grand average
    file will contain good channels and the bad channels interpolated
    from the good MEG/EEG channels.

    The grand_average.nave attribute will be equal the number
    of evoked datasets used to calculate the grand average.

    Note: Grand average evoked shall not be used for source localization.

    Parameters
    ----------
    all_evoked : list of Evoked data
        The evoked datasets.
    interpolate_bads : bool
        If True, bad MEG and EEG channels are interpolated.

    Returns
    -------
    grand_average : Evoked
        The grand average data.

    Notes
    -----
    .. versionadded:: 0.9.0
    """
    # check if all elements in the given list are evoked data
    if not all(isinstance(e, Evoked) for e in all_evoked):
        raise ValueError("Not all the elements in list are evoked data")

    # Copy channels to leave the original evoked datasets intact.
    all_evoked = [e.copy() for e in all_evoked]

    # Interpolates if necessary
    if interpolate_bads:
        all_evoked = [e.interpolate_bads() if len(e.info['bads']) > 0
                      else e for e in all_evoked]

    equalize_channels(all_evoked)  # apply equalize_channels
    # make grand_average object using combine_evoked
    grand_average = combine_evoked(all_evoked, weights='equal')
    # change the grand_average.nave to the number of Evokeds
    grand_average.nave = len(all_evoked)
    # change comment field
    grand_average.comment = "Grand average (n = %d)" % grand_average.nave
    return grand_average


def _check_evokeds_ch_names_times(all_evoked):
    evoked = all_evoked[0]
    ch_names = evoked.ch_names
    for ii, ev in enumerate(all_evoked[1:]):
        if ev.ch_names != ch_names:
            if set(ev.ch_names) != set(ch_names):
                raise ValueError(
                    "%s and %s do not contain the same channels." % (evoked,
                                                                     ev))
            else:
                warn("Order of channels differs, reordering channels ...")
                ev = ev.copy()
                ev.reorder_channels(ch_names)
                all_evoked[ii + 1] = ev
        if not np.max(np.abs(ev.times - evoked.times)) < 1e-7:
            raise ValueError("%s and %s do not contain the same time instants"
                             % (evoked, ev))
    return all_evoked


def combine_evoked(all_evoked, weights):
    """Merge evoked data by weighted addition or subtraction.

    Data should have the same channels and the same time instants.
    Subtraction can be performed by passing negative weights (e.g., [1, -1]).

    Parameters
    ----------
    all_evoked : list of Evoked
        The evoked datasets.
    weights : list of float | str
        The weights to apply to the data of each evoked instance.
        Can also be ``'nave'`` to weight according to evoked.nave,
        or ``"equal"`` to use equal weighting (each weighted as ``1/N``).

    Returns
    -------
    evoked : Evoked
        The new evoked data.

    Notes
    -----
    .. versionadded:: 0.9.0
    """
    if isinstance(weights, string_types):
        if weights not in ('nave', 'equal'):
            raise ValueError('weights must be a list of float, or "nave" or '
                             '"equal"')
        if weights == 'nave':
            weights = np.array([e.nave for e in all_evoked], float)
            weights /= weights.sum()
        else:  # == 'equal'
            weights = [1. / len(all_evoked)] * len(all_evoked)
    weights = np.array(weights, float)
    if weights.ndim != 1 or weights.size != len(all_evoked):
        raise ValueError('weights must be the same size as all_evoked')

    all_evoked = _check_evokeds_ch_names_times(all_evoked)
    evoked = all_evoked[0].copy()

    # use union of bad channels
    bads = list(set(evoked.info['bads']).union(*(ev.info['bads']
                                                 for ev in all_evoked[1:])))
    evoked.info['bads'] = bads

    evoked.data = sum(w * e.data for w, e in zip(weights, all_evoked))
    # We should set nave based on how variances change when summing Gaussian
    # random variables. From:
    #
    #    https://en.wikipedia.org/wiki/Weighted_arithmetic_mean
    #
    # We know that the variance of a weighted sample mean is:
    #
    #    σ^2 = w_1^2 σ_1^2 + w_2^2 σ_2^2 + ... + w_n^2 σ_n^2
    #
    # We estimate the variance of each evoked instance as 1 / nave to get:
    #
    #    σ^2 = w_1^2 / nave_1 + w_2^2 / nave_2 + ... + w_n^2 / nave_n
    #
    # And our resulting nave is the reciprocal of this:
    evoked.nave = max(int(round(
        1. / sum(w ** 2 / e.nave for w, e in zip(weights, all_evoked)))), 1)
    evoked.comment = ' + '.join('%0.3f * %s' % (w, e.comment or 'unknown')
                                for w, e in zip(weights, all_evoked))
    return evoked


@verbose
def read_evokeds(fname, condition=None, baseline=None, kind='average',
                 proj=True, allow_maxshield=False, verbose=None):
    """Read evoked dataset(s).

    Parameters
    ----------
    fname : string
        The file name, which should end with -ave.fif or -ave.fif.gz.
    condition : int or str | list of int or str | None
        The index or list of indices of the evoked dataset to read. FIF files
        can contain multiple datasets. If None, all datasets are returned as a
        list.
    baseline : None (default) or tuple of length 2
        The time interval to apply baseline correction. If None do not apply
        it. If baseline is (a, b) the interval is between "a (s)" and "b (s)".
        If a is None the beginning of the data is used and if b is None then b
        is set to the end of the interval. If baseline is equal to (None, None)
        all the time interval is used. Correction is applied by computing mean
        of the baseline period and subtracting it from the data. The baseline
        (a, b) includes both endpoints, i.e. all timepoints t such that
        a <= t <= b.
    kind : str
        Either 'average' or 'standard_error', the type of data to read.
    proj : bool
        If False, available projectors won't be applied to the data.
    allow_maxshield : bool | str (default False)
        If True, allow loading of data that has been recorded with internal
        active compensation (MaxShield). Data recorded with MaxShield should
        generally not be loaded directly, but should first be processed using
        SSS/tSSS to remove the compensation signals that may also affect brain
        activity. Can also be "yes" to load without eliciting a warning.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    evoked : Evoked (if condition is int or str) or list of Evoked (if
        condition is None or list)
        The evoked dataset(s).

    See Also
    --------
    write_evokeds
    """
    check_fname(fname, 'evoked', ('-ave.fif', '-ave.fif.gz',
                                  '_ave.fif', '_ave.fif.gz'))
    logger.info('Reading %s ...' % fname)
    return_list = True
    if condition is None:
        evoked_node = _get_evoked_node(fname)
        condition = range(len(evoked_node))
    elif not isinstance(condition, list):
        condition = [condition]
        return_list = False

    out = [Evoked(fname, c, kind=kind, proj=proj,
                  allow_maxshield=allow_maxshield,
                  verbose=verbose).apply_baseline(baseline)
           for c in condition]

    return out if return_list else out[0]


def _read_evoked(fname, condition=None, kind='average', allow_maxshield=False):
    """Read evoked data from a FIF file."""
    if fname is None:
        raise ValueError('No evoked filename specified')

    f, tree, _ = fiff_open(fname)
    with f as fid:
        #   Read the measurement info
        info, meas = read_meas_info(fid, tree, clean_bads=True)

        #   Locate the data of interest
        processed = dir_tree_find(meas, FIFF.FIFFB_PROCESSED_DATA)
        if len(processed) == 0:
            raise ValueError('Could not find processed data')

        evoked_node = dir_tree_find(meas, FIFF.FIFFB_EVOKED)
        if len(evoked_node) == 0:
            raise ValueError('Could not find evoked data')

        # find string-based entry
        if isinstance(condition, string_types):
            if kind not in _aspect_dict.keys():
                raise ValueError('kind must be "average" or '
                                 '"standard_error"')

            comments, aspect_kinds, t = _get_entries(fid, evoked_node,
                                                     allow_maxshield)
            goods = (np.in1d(comments, [condition]) &
                     np.in1d(aspect_kinds, [_aspect_dict[kind]]))
            found_cond = np.where(goods)[0]
            if len(found_cond) != 1:
                raise ValueError('condition "%s" (%s) not found, out of '
                                 'found datasets:\n%s'
                                 % (condition, kind, t))
            condition = found_cond[0]
        elif condition is None:
            if len(evoked_node) > 1:
                _, _, conditions = _get_entries(fid, evoked_node,
                                                allow_maxshield)
                raise TypeError("Evoked file has more than one "
                                "condition, the condition parameters "
                                "must be specified from:\n%s" % conditions)
            else:
                condition = 0

        if condition >= len(evoked_node) or condition < 0:
            raise ValueError('Data set selector out of range')

        my_evoked = evoked_node[condition]

        # Identify the aspects
        my_aspect, info['maxshield'] = _get_aspect(my_evoked, allow_maxshield)

        # Now find the data in the evoked block
        nchan = 0
        sfreq = -1
        chs = []
        comment = last = first = first_time = nsamp = None
        for k in range(my_evoked['nent']):
            my_kind = my_evoked['directory'][k].kind
            pos = my_evoked['directory'][k].pos
            if my_kind == FIFF.FIFF_COMMENT:
                tag = read_tag(fid, pos)
                comment = tag.data
            elif my_kind == FIFF.FIFF_FIRST_SAMPLE:
                tag = read_tag(fid, pos)
                first = int(tag.data)
            elif my_kind == FIFF.FIFF_LAST_SAMPLE:
                tag = read_tag(fid, pos)
                last = int(tag.data)
            elif my_kind == FIFF.FIFF_NCHAN:
                tag = read_tag(fid, pos)
                nchan = int(tag.data)
            elif my_kind == FIFF.FIFF_SFREQ:
                tag = read_tag(fid, pos)
                sfreq = float(tag.data)
            elif my_kind == FIFF.FIFF_CH_INFO:
                tag = read_tag(fid, pos)
                chs.append(tag.data)
            elif my_kind == FIFF.FIFF_FIRST_TIME:
                tag = read_tag(fid, pos)
                first_time = float(tag.data)
            elif my_kind == FIFF.FIFF_NO_SAMPLES:
                tag = read_tag(fid, pos)
                nsamp = int(tag.data)

        if comment is None:
            comment = 'No comment'

        #   Local channel information?
        if nchan > 0:
            if chs is None:
                raise ValueError('Local channel information was not found '
                                 'when it was expected.')

            if len(chs) != nchan:
                raise ValueError('Number of channels and number of '
                                 'channel definitions are different')

            info['chs'] = chs
            logger.info('    Found channel information in evoked data. '
                        'nchan = %d' % nchan)
            if sfreq > 0:
                info['sfreq'] = sfreq

        # Read the data in the aspect block
        nave = 1
        epoch = []
        for k in range(my_aspect['nent']):
            kind = my_aspect['directory'][k].kind
            pos = my_aspect['directory'][k].pos
            if kind == FIFF.FIFF_COMMENT:
                tag = read_tag(fid, pos)
                comment = tag.data
            elif kind == FIFF.FIFF_ASPECT_KIND:
                tag = read_tag(fid, pos)
                aspect_kind = int(tag.data)
            elif kind == FIFF.FIFF_NAVE:
                tag = read_tag(fid, pos)
                nave = int(tag.data)
            elif kind == FIFF.FIFF_EPOCH:
                tag = read_tag(fid, pos)
                epoch.append(tag)

        nepoch = len(epoch)
        if nepoch != 1 and nepoch != info['nchan']:
            raise ValueError('Number of epoch tags is unreasonable '
                             '(nepoch = %d nchan = %d)'
                             % (nepoch, info['nchan']))

        if nepoch == 1:
            # Only one epoch
            data = epoch[0].data
            # May need a transpose if the number of channels is one
            if data.shape[1] == 1 and info['nchan'] == 1:
                data = data.T
        else:
            # Put the old style epochs together
            data = np.concatenate([e.data[None, :] for e in epoch], axis=0)
        data = data.astype(np.float)

        if first is not None:
            nsamp = last - first + 1
        elif first_time is not None:
            first = int(round(first_time * info['sfreq']))
            last = first + nsamp
        else:
            raise RuntimeError('Could not read time parameters')
        if nsamp is not None and data.shape[1] != nsamp:
            raise ValueError('Incorrect number of samples (%d instead of '
                             ' %d)' % (data.shape[1], nsamp))
        nsamp = data.shape[1]
        last = first + nsamp - 1
        logger.info('    Found the data of interest:')
        logger.info('        t = %10.2f ... %10.2f ms (%s)'
                    % (1000 * first / info['sfreq'],
                       1000 * last / info['sfreq'], comment))
        if info['comps'] is not None:
            logger.info('        %d CTF compensation matrices available'
                        % len(info['comps']))
        logger.info('        nave = %d - aspect type = %d'
                    % (nave, aspect_kind))

    # Calibrate
    cals = np.array([info['chs'][k]['cal'] *
                     info['chs'][k].get('scale', 1.0)
                     for k in range(info['nchan'])])
    data *= cals[:, np.newaxis]

    times = np.arange(first, last + 1, dtype=np.float) / info['sfreq']
    return info, nave, aspect_kind, first, last, comment, times, data


def write_evokeds(fname, evoked):
    """Write an evoked dataset to a file.

    Parameters
    ----------
    fname : string
        The file name, which should end with -ave.fif or -ave.fif.gz.
    evoked : Evoked instance, or list of Evoked instances
        The evoked dataset, or list of evoked datasets, to save in one file.
        Note that the measurement info from the first evoked instance is used,
        so be sure that information matches.

    See Also
    --------
    read_evokeds
    """
    _write_evokeds(fname, evoked)


def _write_evokeds(fname, evoked, check=True):
    """Write evoked data."""
    if check:
        check_fname(fname, 'evoked', ('-ave.fif', '-ave.fif.gz',
                                      '_ave.fif', '_ave.fif.gz'))

    if not isinstance(evoked, list):
        evoked = [evoked]

    # Create the file and save the essentials
    with start_file(fname) as fid:

        start_block(fid, FIFF.FIFFB_MEAS)
        write_id(fid, FIFF.FIFF_BLOCK_ID)
        if evoked[0].info['meas_id'] is not None:
            write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, evoked[0].info['meas_id'])

        # Write measurement info
        write_meas_info(fid, evoked[0].info)

        # One or more evoked data sets
        start_block(fid, FIFF.FIFFB_PROCESSED_DATA)
        for e in evoked:
            start_block(fid, FIFF.FIFFB_EVOKED)

            # Comment is optional
            if e.comment is not None and len(e.comment) > 0:
                write_string(fid, FIFF.FIFF_COMMENT, e.comment)

            # First and last sample
            write_int(fid, FIFF.FIFF_FIRST_SAMPLE, e.first)
            write_int(fid, FIFF.FIFF_LAST_SAMPLE, e.last)

            # The epoch itself
            if e.info.get('maxshield'):
                aspect = FIFF.FIFFB_SMSH_ASPECT
            else:
                aspect = FIFF.FIFFB_ASPECT
            start_block(fid, aspect)

            write_int(fid, FIFF.FIFF_ASPECT_KIND, e._aspect_kind)
            write_int(fid, FIFF.FIFF_NAVE, e.nave)

            decal = np.zeros((e.info['nchan'], 1))
            for k in range(e.info['nchan']):
                decal[k] = 1.0 / (e.info['chs'][k]['cal'] *
                                  e.info['chs'][k].get('scale', 1.0))

            write_float_matrix(fid, FIFF.FIFF_EPOCH, decal * e.data)
            end_block(fid, aspect)
            end_block(fid, FIFF.FIFFB_EVOKED)

        end_block(fid, FIFF.FIFFB_PROCESSED_DATA)
        end_block(fid, FIFF.FIFFB_MEAS)
        end_file(fid)


def _get_peak(data, times, tmin=None, tmax=None, mode='abs'):
    """Get feature-index and time of maximum signal from 2D array.

    Note. This is a 'getter', not a 'finder'. For non-evoked type
    data and continuous signals, please use proper peak detection algorithms.

    Parameters
    ----------
    data : instance of numpy.ndarray (n_locations, n_times)
        The data, either evoked in sensor or source space.
    times : instance of numpy.ndarray (n_times)
        The times in seconds.
    tmin : float | None
        The minimum point in time to be considered for peak getting.
    tmax : float | None
        The maximum point in time to be considered for peak getting.
    mode : {'pos', 'neg', 'abs'}
        How to deal with the sign of the data. If 'pos' only positive
        values will be considered. If 'neg' only negative values will
        be considered. If 'abs' absolute values will be considered.
        Defaults to 'abs'.

    Returns
    -------
    max_loc : int
        The index of the feature with the maximum value.
    max_time : int
        The time point of the maximum response, index.
    max_amp : float
        Amplitude of the maximum response.
    """
    modes = ('abs', 'neg', 'pos')
    if mode not in modes:
        raise ValueError('The `mode` parameter must be `{modes}`. You gave '
                         'me `{mode}`'.format(modes='` or `'.join(modes),
                                              mode=mode))

    if tmin is None:
        tmin = times[0]
    if tmax is None:
        tmax = times[-1]

    if tmin < times.min():
        raise ValueError('The tmin value is out of bounds. It must be '
                         'within {0} and {1}'.format(times.min(), times.max()))
    if tmax > times.max():
        raise ValueError('The tmax value is out of bounds. It must be '
                         'within {0} and {1}'.format(times.min(), times.max()))
    if tmin > tmax:
        raise ValueError('The tmin must be smaller or equal to tmax')

    time_win = (times >= tmin) & (times <= tmax)
    mask = np.ones_like(data).astype(np.bool)
    mask[:, time_win] = False

    maxfun = np.argmax
    if mode == 'pos':
        if not np.any(data > 0):
            raise ValueError('No positive values encountered. Cannot '
                             'operate in pos mode.')
    elif mode == 'neg':
        if not np.any(data < 0):
            raise ValueError('No negative values encountered. Cannot '
                             'operate in neg mode.')
        maxfun = np.argmin

    masked_index = np.ma.array(np.abs(data) if mode == 'abs' else data,
                               mask=mask)

    max_loc, max_time = np.unravel_index(maxfun(masked_index), data.shape)

    return max_loc, max_time, data[max_loc, max_time]