1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
|
# -*- coding: utf-8 -*-
# Authors: Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD (3-clause)
import sys
import tempfile
from shutil import rmtree
from os import path as op
import numpy as np
try:
from scipy import sparse
except ImportError:
sparse = None
# Adapted from six
PY3 = sys.version_info[0] == 3
text_type = str if PY3 else unicode # noqa
string_types = str if PY3 else basestring # noqa
special_chars = {'{FWDSLASH}': '/'}
tab_str = '----'
##############################################################################
# WRITING
def _check_h5py():
"""Helper to check if h5py is installed"""
try:
import h5py
except ImportError:
raise ImportError('the h5py module is required to use HDF5 I/O')
return h5py
def _create_titled_group(root, key, title):
"""Helper to create a titled group in h5py"""
out = root.create_group(key)
out.attrs['TITLE'] = title
return out
def _create_titled_dataset(root, key, title, data, comp_kw=None):
"""Helper to create a titled dataset in h5py"""
comp_kw = {} if comp_kw is None else comp_kw
out = root.create_dataset(key, data=data, **comp_kw)
out.attrs['TITLE'] = title
return out
def _create_pandas_dataset(fname, root, key, title, data):
h5py = _check_h5py()
rootpath = '/'.join([root, key])
data.to_hdf(fname, rootpath)
with h5py.File(fname, mode='a') as fid:
fid[rootpath].attrs['TITLE'] = 'pd_dataframe'
def write_hdf5(fname, data, overwrite=False, compression=4,
title='h5io', slash='error'):
"""Write python object to HDF5 format using h5py
Parameters
----------
fname : str
Filename to use.
data : object
Object to write. Can be of any of these types:
{ndarray, dict, list, tuple, int, float, str}
Note that dict objects must only have ``str`` keys. It is recommended
to use ndarrays where possible, as it is handled most efficiently.
overwrite : True | False | 'update'
If True, overwrite file (if it exists). If 'update', appends the title
to the file (or replace value if title exists).
compression : int
Compression level to use (0-9) to compress data using gzip.
title : str
The top-level directory name to use. Typically it is useful to make
this your package name, e.g. ``'mnepython'``.
slash : 'error' | 'replace'
Whether to replace forward-slashes ('/') in any key found nested within
keys in data. This does not apply to the top level name (title).
If 'error', '/' is not allowed in any lower-level keys.
"""
h5py = _check_h5py()
mode = 'w'
if op.isfile(fname):
if isinstance(overwrite, string_types):
if overwrite != 'update':
raise ValueError('overwrite must be "update" or a bool')
mode = 'a'
elif not overwrite:
raise IOError('file "%s" exists, use overwrite=True to overwrite'
% fname)
if not isinstance(title, string_types):
raise ValueError('title must be a string')
comp_kw = dict()
if compression > 0:
comp_kw = dict(compression='gzip', compression_opts=compression)
with h5py.File(fname, mode=mode) as fid:
if title in fid:
del fid[title]
cleanup_data = []
_triage_write(title, data, fid, comp_kw, str(type(data)),
cleanup_data=cleanup_data, slash=slash, title=title)
# Will not be empty if any extra data to be written
for data in cleanup_data:
# In case different extra I/O needs different inputs
title = list(data.keys())[0]
if title in ['pd_dataframe', 'pd_series']:
rootname, key, value = data[title]
_create_pandas_dataset(fname, rootname, key, title, value)
def _triage_write(key, value, root, comp_kw, where,
cleanup_data=[], slash='error', title=None):
if key != title and '/' in key:
if slash == 'error':
raise ValueError('Found a key with "/", '
'this is not allowed if slash == error')
elif slash == 'replace':
# Auto-replace keys with proper values
for key_spec, val_spec in special_chars.items():
key = key.replace(val_spec, key_spec)
else:
raise ValueError("slash must be one of ['error', 'replace'")
if isinstance(value, dict):
sub_root = _create_titled_group(root, key, 'dict')
for key, sub_value in value.items():
if not isinstance(key, string_types):
raise TypeError('All dict keys must be strings')
_triage_write(
'key_{0}'.format(key), sub_value, sub_root, comp_kw,
where + '["%s"]' % key, cleanup_data=cleanup_data, slash=slash)
elif isinstance(value, (list, tuple)):
title = 'list' if isinstance(value, list) else 'tuple'
sub_root = _create_titled_group(root, key, title)
for vi, sub_value in enumerate(value):
_triage_write(
'idx_{0}'.format(vi), sub_value, sub_root, comp_kw,
where + '[%s]' % vi, cleanup_data=cleanup_data, slash=slash)
elif isinstance(value, type(None)):
_create_titled_dataset(root, key, 'None', [False])
elif isinstance(value, (int, float)):
if isinstance(value, int):
title = 'int'
else: # isinstance(value, float):
title = 'float'
_create_titled_dataset(root, key, title, np.atleast_1d(value))
elif isinstance(value, (np.integer, np.floating, np.bool_)):
title = 'np_{0}'.format(value.__class__.__name__)
_create_titled_dataset(root, key, title, np.atleast_1d(value))
elif isinstance(value, string_types):
if isinstance(value, text_type): # unicode
value = np.frombuffer(value.encode('utf-8'), np.uint8)
title = 'unicode'
else:
value = np.frombuffer(value.encode('ASCII'), np.uint8)
title = 'ascii'
_create_titled_dataset(root, key, title, value, comp_kw)
elif isinstance(value, np.ndarray):
_create_titled_dataset(root, key, 'ndarray', value)
elif sparse is not None and isinstance(value, sparse.csc_matrix):
sub_root = _create_titled_group(root, key, 'csc_matrix')
_triage_write('data', value.data, sub_root, comp_kw,
where + '.csc_matrix_data', cleanup_data=cleanup_data,
slash=slash)
_triage_write('indices', value.indices, sub_root, comp_kw,
where + '.csc_matrix_indices', cleanup_data=cleanup_data,
slash=slash)
_triage_write('indptr', value.indptr, sub_root, comp_kw,
where + '.csc_matrix_indptr', cleanup_data=cleanup_data,
slash=slash)
elif sparse is not None and isinstance(value, sparse.csr_matrix):
sub_root = _create_titled_group(root, key, 'csr_matrix')
_triage_write('data', value.data, sub_root, comp_kw,
where + '.csr_matrix_data', cleanup_data=cleanup_data,
slash=slash)
_triage_write('indices', value.indices, sub_root, comp_kw,
where + '.csr_matrix_indices', cleanup_data=cleanup_data,
slash=slash)
_triage_write('indptr', value.indptr, sub_root, comp_kw,
where + '.csr_matrix_indptr', cleanup_data=cleanup_data,
slash=slash)
_triage_write('shape', value.shape, sub_root, comp_kw,
where + '.csr_matrix_shape', cleanup_data=cleanup_data,
slash=slash)
else:
try:
from pandas import DataFrame, Series
except ImportError:
pass
else:
if isinstance(value, (DataFrame, Series)):
if isinstance(value, DataFrame):
title = 'pd_dataframe'
else:
title = 'pd_series'
rootname = root.name
cleanup_data.append({title: (rootname, key, value)})
return
err_str = 'unsupported type %s (in %s)' % (type(value), where)
raise TypeError(err_str)
##############################################################################
# READING
def read_hdf5(fname, title='h5io', slash='ignore'):
"""Read python object from HDF5 format using h5py
Parameters
----------
fname : str
File to load.
title : str
The top-level directory name to use. Typically it is useful to make
this your package name, e.g. ``'mnepython'``.
slash : 'ignore' | 'replace'
Whether to replace the string {FWDSLASH} with the value /. This does
not apply to the top level name (title). If 'ignore', nothing will be
replaced.
Returns
-------
data : object
The loaded data. Can be of any type supported by ``write_hdf5``.
"""
h5py = _check_h5py()
if not op.isfile(fname):
raise IOError('file "%s" not found' % fname)
if not isinstance(title, string_types):
raise ValueError('title must be a string')
with h5py.File(fname, mode='r') as fid:
if title not in fid:
raise ValueError('no "%s" data found' % title)
if isinstance(fid[title], h5py.Group):
if 'TITLE' not in fid[title].attrs:
raise ValueError('no "%s" data found' % title)
data = _triage_read(fid[title], slash=slash)
return data
def _triage_read(node, slash='ignore'):
if slash not in ['ignore', 'replace']:
raise ValueError("slash must be one of 'replace', 'ignore'")
h5py = _check_h5py()
type_str = node.attrs['TITLE']
if isinstance(type_str, bytes):
type_str = type_str.decode()
if isinstance(node, h5py.Group):
if type_str == 'dict':
data = dict()
for key, subnode in node.items():
if slash == 'replace':
for key_spec, val_spec in special_chars.items():
key = key.replace(key_spec, val_spec)
data[key[4:]] = _triage_read(subnode, slash=slash)
elif type_str in ['list', 'tuple']:
data = list()
ii = 0
while True:
subnode = node.get('idx_{0}'.format(ii), None)
if subnode is None:
break
data.append(_triage_read(subnode, slash=slash))
ii += 1
assert len(data) == ii
data = tuple(data) if type_str == 'tuple' else data
return data
elif type_str == 'csc_matrix':
if sparse is None:
raise RuntimeError('scipy must be installed to read this data')
data = sparse.csc_matrix((_triage_read(node['data'], slash=slash),
_triage_read(node['indices'],
slash=slash),
_triage_read(node['indptr'],
slash=slash)))
elif type_str == 'csr_matrix':
if sparse is None:
raise RuntimeError('scipy must be installed to read this data')
data = sparse.csr_matrix((_triage_read(node['data'], slash=slash),
_triage_read(node['indices'],
slash=slash),
_triage_read(node['indptr'],
slash=slash)),
shape=_triage_read(node['shape']))
elif type_str in ['pd_dataframe', 'pd_series']:
from pandas import read_hdf, HDFStore
rootname = node.name
filename = node.file.filename
with HDFStore(filename, 'r') as tmpf:
data = read_hdf(tmpf, rootname)
else:
raise NotImplementedError('Unknown group type: {0}'
''.format(type_str))
elif type_str == 'ndarray':
data = np.array(node)
elif type_str in ('int', 'float'):
cast = int if type_str == 'int' else float
data = cast(np.array(node)[0])
elif type_str.startswith('np_'):
np_type = type_str.split('_')[1]
cast = getattr(np, np_type)
data = cast(np.array(node)[0])
elif type_str in ('unicode', 'ascii', 'str'): # 'str' for backward compat
decoder = 'utf-8' if type_str == 'unicode' else 'ASCII'
cast = text_type if type_str == 'unicode' else str
data = cast(np.array(node).tostring().decode(decoder))
elif type_str == 'None':
data = None
else:
raise TypeError('Unknown node type: {0}'.format(type_str))
return data
# ############################################################################
# UTILITIES
def _sort_keys(x):
"""Sort and return keys of dict"""
keys = list(x.keys()) # note: not thread-safe
idx = np.argsort([str(k) for k in keys])
keys = [keys[ii] for ii in idx]
return keys
def object_diff(a, b, pre=''):
"""Compute all differences between two python variables
Parameters
----------
a : object
Currently supported: dict, list, tuple, ndarray, int, str, bytes,
float.
b : object
Must be same type as x1.
pre : str
String to prepend to each line.
Returns
-------
diffs : str
A string representation of the differences.
"""
try:
from pandas import DataFrame, Series
except ImportError:
DataFrame = Series = type(None)
out = ''
if type(a) != type(b):
out += pre + ' type mismatch (%s, %s)\n' % (type(a), type(b))
elif isinstance(a, dict):
k1s = _sort_keys(a)
k2s = _sort_keys(b)
m1 = set(k2s) - set(k1s)
if len(m1):
out += pre + ' x1 missing keys %s\n' % (m1)
for key in k1s:
if key not in k2s:
out += pre + ' x2 missing key %s\n' % key
else:
out += object_diff(a[key], b[key], pre + 'd1[%s]' % repr(key))
elif isinstance(a, (list, tuple)):
if len(a) != len(b):
out += pre + ' length mismatch (%s, %s)\n' % (len(a), len(b))
else:
for xx1, xx2 in zip(a, b):
out += object_diff(xx1, xx2, pre='')
elif isinstance(a, (string_types, int, float, bytes)):
if a != b:
out += pre + ' value mismatch (%s, %s)\n' % (a, b)
elif a is None:
pass # b must be None due to our type checking
elif isinstance(a, np.ndarray):
if not np.array_equal(a, b):
out += pre + ' array mismatch\n'
elif sparse is not None and sparse.isspmatrix(a):
# sparsity and sparse type of b vs a already checked above by type()
if b.shape != a.shape:
out += pre + (' sparse matrix a and b shape mismatch'
'(%s vs %s)' % (a.shape, b.shape))
else:
c = a - b
c.eliminate_zeros()
if c.nnz > 0:
out += pre + (' sparse matrix a and b differ on %s '
'elements' % c.nnz)
elif isinstance(a, (DataFrame, Series)):
if b.shape != a.shape:
out += pre + (' pandas values a and b shape mismatch'
'(%s vs %s)' % (a.shape, b.shape))
else:
c = a.values - b.values
nzeros = np.sum(c != 0)
if nzeros > 0:
out += pre + (' pandas values a and b differ on %s '
'elements' % nzeros)
else:
raise RuntimeError(pre + ': unsupported type %s (%s)' % (type(a), a))
return out
class _TempDir(str):
"""Class for creating and auto-destroying temp dir
This is designed to be used with testing modules. Instances should be
defined inside test functions. Instances defined at module level can not
guarantee proper destruction of the temporary directory.
When used at module level, the current use of the __del__() method for
cleanup can fail because the rmtree function may be cleaned up before this
object (an alternative could be using the atexit module instead).
"""
def __new__(self):
new = str.__new__(self, tempfile.mkdtemp())
return new
def __init__(self):
self._path = self.__str__()
def __del__(self):
rmtree(self._path, ignore_errors=True)
def _list_file_contents(h5file):
if 'h5io' not in h5file.keys():
raise ValueError('h5file must contain h5io data')
# Set up useful variables for later
h5file = h5file['h5io']
root_title = h5file.attrs['TITLE']
n_space = np.max([(len(key), len(val.attrs['TITLE']))
for key, val in h5file.items()]) + 2
# Create print strings
strs = ['Root type: %s | Items: %s\n' % (root_title, len(h5file))]
for key, data in h5file.items():
type_str = data.attrs['TITLE']
str_format = '%%-%ss' % n_space
if type_str == 'ndarray':
desc = 'Shape: %s'
desc_val = data.shape
elif type_str in ['pd_dataframe', 'pd_series']:
desc = 'Shape: %s'
desc_val = data['values'].shape
elif type_str in ('unicode', 'ascii', 'str'):
desc = 'Text: %s'
decoder = 'utf-8' if type_str == 'unicode' else 'ASCII'
cast = text_type if type_str == 'unicode' else str
data = cast(np.array(data).tostring().decode(decoder))
desc_val = data[:10] + '...' if len(data) > 10 else data
else:
desc = 'Items: %s'
desc_val = len(data)
this_str = ('%%s Key: %s | Type: %s | ' + desc) % (
str_format, str_format, str_format)
this_str = this_str % (tab_str, key, type_str, desc_val)
strs.append(this_str)
out_str = '\n'.join(strs)
print(out_str)
def list_file_contents(h5file):
"""List the contents of an h5io file.
This will list the root and one-level-deep contents of the file.
Parameters
----------
h5file : str
The path to an h5io hdf5 file.
"""
h5py = _check_h5py()
err = 'h5file must be an h5py File object, not {0}'
if isinstance(h5file, str):
with h5py.File(h5file, 'r') as f:
_list_file_contents(f)
else:
if not isinstance(h5file, h5py.File):
raise TypeError(err.format(type(h5file)))
_list_file_contents(h5file)
|