1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
# -*- coding: UTF-8 -*-
# Copyright (c) 2018, Dirk Gütlin & Thomas Hartmann
# All rights reserved.
#
# This file is part of the pymatreader Project, see:
# https://gitlab.com/obob/pymatreader
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
import types
import sys
import numpy
import scipy.io
if sys.version_info <= (2, 7):
chr = unichr # noqa This is needed for python 2 and 3 compatibility
def _import_h5py():
try:
import h5py
except Exception as exc:
raise ImportError('h5py is required to read MATLAB files >= v7.3 '
'(%s)' % (exc,))
return h5py
def _hdf5todict(hdf5_object, variable_names=None, ignore_fields=None):
"""
Recursively converts a hdf5 object to a python dictionary,
converting all types as well.
Parameters
----------
hdf5_object: Union[h5py.Group, h5py.Dataset]
Object to convert. Can be a h5py File, Group or Dataset
variable_names: iterable, optional
Tuple or list of variables to include. If set to none, all
variable are read.
ignore_fields: iterable, optional
Tuple or list of fields to ignore. If set to none, all fields will
be read.
Returns
-------
dict
Python dictionary
"""
h5py = _import_h5py()
if isinstance(hdf5_object, h5py.Group):
return _handle_hdf5_group(hdf5_object, variable_names=variable_names,
ignore_fields=ignore_fields)
elif isinstance(hdf5_object, h5py.Dataset):
return _handle_hdf5_dataset(hdf5_object)
elif isinstance(hdf5_object, (list, types.GeneratorType)):
return [_hdf5todict(item) for item in hdf5_object]
raise TypeError('Unknown type in hdf5 file')
def _handle_hdf5_group(hdf5_object, variable_names=None, ignore_fields=None):
all_keys = set(hdf5_object.keys())
if ignore_fields:
all_keys = all_keys - set(ignore_fields)
if variable_names:
all_keys = all_keys & set(variable_names)
return_dict = dict()
for key in all_keys:
return_dict[key] = _hdf5todict(hdf5_object[key],
variable_names=None,
ignore_fields=ignore_fields)
return return_dict
def _handle_hdf5_dataset(hdf5_object):
if 'MATLAB_empty' in hdf5_object.attrs.keys():
data = numpy.empty((0,))
else:
data = hdf5_object.value
if isinstance(data, numpy.ndarray) and \
data.dtype == numpy.dtype('object'):
data = [hdf5_object.file[cur_data] for cur_data in data.flatten()]
if len(data) == 1 and hdf5_object.attrs['MATLAB_class'] == b'cell':
data = data[0]
data = data.value
return _assign_types(data)
data = _hdf5todict(data)
return _assign_types(data)
def _convert_string_hdf5(values):
if values.size > 1:
assigned_values = u''.join(chr(c) for c in values.flatten())
else:
assigned_values = chr(values)
return assigned_values
def _assign_types(values):
"""private function, which assigns correct types to h5py extracted values
from _browse_dataset()"""
if type(values) == numpy.ndarray:
assigned_values = _handle_ndarray(values)
elif type(values) == numpy.float64:
assigned_values = float(values)
else:
assigned_values = values
return assigned_values
def _handle_ndarray(values):
"""Handle conversion of ndarrays."""
values = numpy.squeeze(values).T
if values.dtype in ("uint8", "uint16", "uint32", "uint64"):
values = _handle_hdf5_strings(values)
if isinstance(values, numpy.ndarray) and \
values.size == 1:
values = values.item()
return values
def _handle_hdf5_strings(values):
if values.ndim in (0, 1):
values = _convert_string_hdf5(values)
elif values.ndim == 2:
values = [_convert_string_hdf5(cur_val)
for cur_val in values]
else:
raise RuntimeError('String arrays with more than 2 dimensions'
'are not supported at the moment.')
return values
def _check_for_scipy_mat_struct(data):
"""
Private function to check all entries of data for occurrences of
scipy.io.matlab.mio5_params.mat_struct and convert them.
Parameters
==========
data: any
data to be checked
Returns
=========
object
checked and converted data
"""
if isinstance(data, dict):
for key in data:
data[key] = _check_for_scipy_mat_struct(data[key])
if isinstance(data, numpy.ndarray):
data = _handle_scipy_ndarray(data)
return data
def _handle_scipy_ndarray(data):
if data.dtype == numpy.dtype('object') and not \
isinstance(data, scipy.io.matlab.mio5.MatlabFunction):
as_list = []
for element in data:
as_list.append(_check_for_scipy_mat_struct(element))
data = as_list
elif isinstance(data.dtype.names, tuple):
data = _todict_from_np_struct(data)
data = _check_for_scipy_mat_struct(data)
if isinstance(data, numpy.ndarray):
data = numpy.array(data)
return data
def _todict_from_np_struct(data):
data_dict = dict()
for cur_field_name in data.dtype.names:
try:
n_items = len(data[cur_field_name])
cur_list = list()
for idx in numpy.arange(n_items):
cur_value = data[cur_field_name].item(idx)
cur_value = _check_for_scipy_mat_struct(cur_value)
cur_list.append(cur_value)
data_dict[cur_field_name] = cur_list
except TypeError:
cur_value = data[cur_field_name].item(0)
cur_value = _check_for_scipy_mat_struct(cur_value)
data_dict[cur_field_name] = cur_value
return data_dict
|