1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
|
"""Compatibility fixes for older version of python, numpy and scipy
If you add content to this file, please give the version of the package
at which the fix is no longer needed.
# XXX : originally copied from scikit-learn
"""
# Authors: Emmanuelle Gouillart <emmanuelle.gouillart@normalesup.org>
# Gael Varoquaux <gael.varoquaux@normalesup.org>
# Fabian Pedregosa <fpedregosa@acm.org>
# Lars Buitinck <L.J.Buitinck@uva.nl>
# License: BSD
from __future__ import division
import inspect
from distutils.version import LooseVersion
import warnings
import numpy as np
from scipy import linalg, __version__ as sp_version
from .externals.six import string_types, iteritems
###############################################################################
# Misc
# helpers to get function arguments
if hasattr(inspect, 'signature'): # py35
def _get_args(function, varargs=False):
params = inspect.signature(function).parameters
args = [key for key, param in params.items()
if param.kind not in (param.VAR_POSITIONAL, param.VAR_KEYWORD)]
if varargs:
varargs = [param.name for param in params.values()
if param.kind == param.VAR_POSITIONAL]
if len(varargs) == 0:
varargs = None
return args, varargs
else:
return args
else:
def _get_args(function, varargs=False):
out = inspect.getargspec(function) # args, varargs, keywords, defaults
if varargs:
return out[:2]
else:
return out[0]
def _safe_svd(A, **kwargs):
"""Wrapper to get around the SVD did not converge error of death"""
# Intel has a bug with their GESVD driver:
# https://software.intel.com/en-us/forums/intel-distribution-for-python/topic/628049 # noqa: E501
# For SciPy 0.18 and up, we can work around it by using
# lapack_driver='gesvd' instead.
if kwargs.get('overwrite_a', False):
raise ValueError('Cannot set overwrite_a=True with this function')
try:
return linalg.svd(A, **kwargs)
except np.linalg.LinAlgError as exp:
from .utils import warn
if 'lapack_driver' in _get_args(linalg.svd):
warn('SVD error (%s), attempting to use GESVD instead of GESDD'
% (exp,))
return linalg.svd(A, lapack_driver='gesvd', **kwargs)
else:
raise
###############################################################################
# Backporting nibabel's read_geometry
def _get_read_geometry():
"""Get the geometry reading function."""
try:
import nibabel as nib
has_nibabel = True
except ImportError:
has_nibabel = False
if has_nibabel and LooseVersion(nib.__version__) > LooseVersion('2.1.0'):
from nibabel.freesurfer import read_geometry
else:
read_geometry = _read_geometry
return read_geometry
def _read_geometry(filepath, read_metadata=False, read_stamp=False):
"""Backport from nibabel."""
from .surface import _fread3, _fread3_many
volume_info = dict()
TRIANGLE_MAGIC = 16777214
QUAD_MAGIC = 16777215
NEW_QUAD_MAGIC = 16777213
with open(filepath, "rb") as fobj:
magic = _fread3(fobj)
if magic in (QUAD_MAGIC, NEW_QUAD_MAGIC): # Quad file
nvert = _fread3(fobj)
nquad = _fread3(fobj)
(fmt, div) = (">i2", 100.) if magic == QUAD_MAGIC else (">f4", 1.)
coords = np.fromfile(fobj, fmt, nvert * 3).astype(np.float) / div
coords = coords.reshape(-1, 3)
quads = _fread3_many(fobj, nquad * 4)
quads = quads.reshape(nquad, 4)
#
# Face splitting follows
#
faces = np.zeros((2 * nquad, 3), dtype=np.int)
nface = 0
for quad in quads:
if (quad[0] % 2) == 0:
faces[nface] = quad[0], quad[1], quad[3]
nface += 1
faces[nface] = quad[2], quad[3], quad[1]
nface += 1
else:
faces[nface] = quad[0], quad[1], quad[2]
nface += 1
faces[nface] = quad[0], quad[2], quad[3]
nface += 1
elif magic == TRIANGLE_MAGIC: # Triangle file
create_stamp = fobj.readline().rstrip(b'\n').decode('utf-8')
fobj.readline()
vnum = np.fromfile(fobj, ">i4", 1)[0]
fnum = np.fromfile(fobj, ">i4", 1)[0]
coords = np.fromfile(fobj, ">f4", vnum * 3).reshape(vnum, 3)
faces = np.fromfile(fobj, ">i4", fnum * 3).reshape(fnum, 3)
if read_metadata:
volume_info = _read_volume_info(fobj)
else:
raise ValueError("File does not appear to be a Freesurfer surface")
coords = coords.astype(np.float) # XXX: due to mayavi bug on mac 32bits
ret = (coords, faces)
if read_metadata:
if len(volume_info) == 0:
warnings.warn('No volume information contained in the file')
ret += (volume_info,)
if read_stamp:
ret += (create_stamp,)
return ret
###############################################################################
# Backporting logsumexp from scipy which is imported from scipy.special (0.1.0.0)
# instead of scipy.misc
def _get_logsumexp():
try:
from scipy.special import logsumexp
except ImportError: # old SciPy
from scipy.misc import logsumexp
return logsumexp
###############################################################################
# Backporting scipy.signal.sosfilt (0.17) and sosfiltfilt (0.18)
def _sosfiltfilt(sos, x, axis=-1, padtype='odd', padlen=None):
"""copy of SciPy sosfiltfilt"""
sos, n_sections = _validate_sos(sos)
# `method` is "pad"...
ntaps = 2 * n_sections + 1
ntaps -= min((sos[:, 2] == 0).sum(), (sos[:, 5] == 0).sum())
edge, ext = _validate_pad(padtype, padlen, x, axis,
ntaps=ntaps)
# These steps follow the same form as filtfilt with modifications
zi = sosfilt_zi(sos) # shape (n_sections, 2) --> (n_sections, ..., 2, ...)
zi_shape = [1] * x.ndim
zi_shape[axis] = 2
zi.shape = [n_sections] + zi_shape
x_0 = axis_slice(ext, stop=1, axis=axis)
(y, zf) = sosfilt(sos, ext, axis=axis, zi=zi * x_0)
y_0 = axis_slice(y, start=-1, axis=axis)
(y, zf) = sosfilt(sos, axis_reverse(y, axis=axis), axis=axis, zi=zi * y_0)
y = axis_reverse(y, axis=axis)
if edge > 0:
y = axis_slice(y, start=edge, stop=-edge, axis=axis)
return y
def axis_slice(a, start=None, stop=None, step=None, axis=-1):
"""Take a slice along axis 'axis' from 'a'"""
a_slice = [slice(None)] * a.ndim
a_slice[axis] = slice(start, stop, step)
b = a[a_slice]
return b
def axis_reverse(a, axis=-1):
"""Reverse the 1-d slices of `a` along axis `axis`."""
return axis_slice(a, step=-1, axis=axis)
def _validate_pad(padtype, padlen, x, axis, ntaps):
"""Helper to validate padding for filtfilt"""
if padtype not in ['even', 'odd', 'constant', None]:
raise ValueError(("Unknown value '%s' given to padtype. padtype "
"must be 'even', 'odd', 'constant', or None.") %
padtype)
if padtype is None:
padlen = 0
if padlen is None:
# Original padding; preserved for backwards compatibility.
edge = ntaps * 3
else:
edge = padlen
# x's 'axis' dimension must be bigger than edge.
if x.shape[axis] <= edge:
raise ValueError("The length of the input vector x must be at least "
"padlen, which is %d." % edge)
if padtype is not None and edge > 0:
# Make an extension of length `edge` at each
# end of the input array.
if padtype == 'even':
ext = even_ext(x, edge, axis=axis)
elif padtype == 'odd':
ext = odd_ext(x, edge, axis=axis)
else:
ext = const_ext(x, edge, axis=axis)
else:
ext = x
return edge, ext
def _validate_sos(sos):
"""Helper to validate a SOS input"""
sos = np.atleast_2d(sos)
if sos.ndim != 2:
raise ValueError('sos array must be 2D')
n_sections, m = sos.shape
if m != 6:
raise ValueError('sos array must be shape (n_sections, 6)')
if not (sos[:, 3] == 1).all():
raise ValueError('sos[:, 3] should be all ones')
return sos, n_sections
def odd_ext(x, n, axis=-1):
"""Generate a new ndarray by making an odd extension of x along an axis."""
if n < 1:
return x
if n > x.shape[axis] - 1:
raise ValueError(("The extension length n (%d) is too big. " +
"It must not exceed x.shape[axis]-1, which is %d.")
% (n, x.shape[axis] - 1))
left_end = axis_slice(x, start=0, stop=1, axis=axis)
left_ext = axis_slice(x, start=n, stop=0, step=-1, axis=axis)
right_end = axis_slice(x, start=-1, axis=axis)
right_ext = axis_slice(x, start=-2, stop=-(n + 2), step=-1, axis=axis)
ext = np.concatenate((2 * left_end - left_ext,
x,
2 * right_end - right_ext),
axis=axis)
return ext
def even_ext(x, n, axis=-1):
"""Create an ndarray that is an even extension of x along an axis."""
if n < 1:
return x
if n > x.shape[axis] - 1:
raise ValueError(("The extension length n (%d) is too big. " +
"It must not exceed x.shape[axis]-1, which is %d.")
% (n, x.shape[axis] - 1))
left_ext = axis_slice(x, start=n, stop=0, step=-1, axis=axis)
right_ext = axis_slice(x, start=-2, stop=-(n + 2), step=-1, axis=axis)
ext = np.concatenate((left_ext,
x,
right_ext),
axis=axis)
return ext
def const_ext(x, n, axis=-1):
"""Create an ndarray that is a constant extension of x along an axis"""
if n < 1:
return x
left_end = axis_slice(x, start=0, stop=1, axis=axis)
ones_shape = [1] * x.ndim
ones_shape[axis] = n
ones = np.ones(ones_shape, dtype=x.dtype)
left_ext = ones * left_end
right_end = axis_slice(x, start=-1, axis=axis)
right_ext = ones * right_end
ext = np.concatenate((left_ext,
x,
right_ext),
axis=axis)
return ext
def sosfilt_zi(sos):
"""Compute an initial state `zi` for the sosfilt function"""
from scipy.signal import lfilter_zi
sos = np.asarray(sos)
if sos.ndim != 2 or sos.shape[1] != 6:
raise ValueError('sos must be shape (n_sections, 6)')
n_sections = sos.shape[0]
zi = np.empty((n_sections, 2))
scale = 1.0
for section in range(n_sections):
b = sos[section, :3]
a = sos[section, 3:]
zi[section] = scale * lfilter_zi(b, a)
# If H(z) = B(z)/A(z) is this section's transfer function, then
# b.sum()/a.sum() is H(1), the gain at omega=0. That's the steady
# state value of this section's step response.
scale *= b.sum() / a.sum()
return zi
def sosfilt(sos, x, axis=-1, zi=None):
"""Filter data along one dimension using cascaded second-order sections"""
from scipy.signal import lfilter
x = np.asarray(x)
sos = np.atleast_2d(sos)
if sos.ndim != 2:
raise ValueError('sos array must be 2D')
n_sections, m = sos.shape
if m != 6:
raise ValueError('sos array must be shape (n_sections, 6)')
use_zi = zi is not None
if use_zi:
zi = np.asarray(zi)
x_zi_shape = list(x.shape)
x_zi_shape[axis] = 2
x_zi_shape = tuple([n_sections] + x_zi_shape)
if zi.shape != x_zi_shape:
raise ValueError('Invalid zi shape. With axis=%r, an input with '
'shape %r, and an sos array with %d sections, zi '
'must have shape %r.' %
(axis, x.shape, n_sections, x_zi_shape))
zf = np.zeros_like(zi)
for section in range(n_sections):
if use_zi:
x, zf[section] = lfilter(sos[section, :3], sos[section, 3:],
x, axis, zi=zi[section])
else:
x = lfilter(sos[section, :3], sos[section, 3:], x, axis)
out = (x, zf) if use_zi else x
return out
def get_sosfiltfilt():
"""Helper to get sosfiltfilt from scipy"""
try:
from scipy.signal import sosfiltfilt
except ImportError:
sosfiltfilt = _sosfiltfilt
return sosfiltfilt
def minimum_phase(h):
"""Convert a linear-phase FIR filter to minimum phase.
Parameters
----------
h : array
Linear-phase FIR filter coefficients.
Returns
-------
h_minimum : array
The minimum-phase version of the filter, with length
``(length(h) + 1) // 2``.
"""
try:
from scipy.signal import minimum_phase
except Exception:
pass
else:
return minimum_phase(h)
from scipy.fftpack import fft, ifft
h = np.asarray(h)
if np.iscomplexobj(h):
raise ValueError('Complex filters not supported')
if h.ndim != 1 or h.size <= 2:
raise ValueError('h must be 1D and at least 2 samples long')
n_half = len(h) // 2
if not np.allclose(h[-n_half:][::-1], h[:n_half]):
warnings.warn('h does not appear to by symmetric, conversion may '
'fail', RuntimeWarning)
n_fft = 2 ** int(np.ceil(np.log2(2 * (len(h) - 1) / 0.01)))
# zero-pad; calculate the DFT
h_temp = np.abs(fft(h, n_fft))
# take 0.25*log(|H|**2) = 0.5*log(|H|)
h_temp += 1e-7 * h_temp[h_temp > 0].min() # don't let log blow up
np.log(h_temp, out=h_temp)
h_temp *= 0.5
# IDFT
h_temp = ifft(h_temp).real
# multiply pointwise by the homomorphic filter
# lmin[n] = 2u[n] - d[n]
win = np.zeros(n_fft)
win[0] = 1
stop = (len(h) + 1) // 2
win[1:stop] = 2
if len(h) % 2:
win[stop] = 1
h_temp *= win
h_temp = ifft(np.exp(fft(h_temp)))
h_minimum = h_temp.real
n_out = n_half + len(h) % 2
return h_minimum[:n_out]
###############################################################################
# scipy.special.sph_harm ()
def _sph_harm(order, degree, az, pol):
"""Evaluate point in specified multipolar moment.
When using, pay close attention to inputs. Spherical harmonic notation for
order/degree, and theta/phi are both reversed in original SSS work compared
to many other sources. See mathworld.wolfram.com/SphericalHarmonic.html for
more discussion.
Note that scipy has ``scipy.special.sph_harm``, but that function is
too slow on old versions (< 0.15) for heavy use.
Parameters
----------
order : int
Order of spherical harmonic. (Usually) corresponds to 'm'.
degree : int
Degree of spherical harmonic. (Usually) corresponds to 'l'.
az : float
Azimuthal (longitudinal) spherical coordinate [0, 2*pi]. 0 is aligned
with x-axis.
pol : float
Polar (or colatitudinal) spherical coordinate [0, pi]. 0 is aligned
with z-axis.
norm : bool
If True, include normalization factor.
Returns
-------
base : complex float
The spherical harmonic value.
"""
from scipy.special import lpmv
from .preprocessing.maxwell import _sph_harm_norm
# Error checks
if np.abs(order) > degree:
raise ValueError('Absolute value of order must be <= degree')
# Ensure that polar and azimuth angles are arrays
az = np.asarray(az)
pol = np.asarray(pol)
if (np.abs(az) > 2 * np.pi).any():
raise ValueError('Azimuth coords must lie in [-2*pi, 2*pi]')
if(pol < 0).any() or (pol > np.pi).any():
raise ValueError('Polar coords must lie in [0, pi]')
# This is the "seismology" convention on Wikipedia, w/o Condon-Shortley
sph = lpmv(order, degree, np.cos(pol)) * np.exp(1j * order * az)
sph *= _sph_harm_norm(order, degree)
return sph
def _get_sph_harm():
"""Helper to get a usable spherical harmonic function."""
if LooseVersion(sp_version) < LooseVersion('0.17.1'):
sph_harm = _sph_harm
else:
from scipy.special import sph_harm
return sph_harm
###############################################################################
# Scipy spectrogram (for mne.time_frequency.psd_welch) needed for scipy < 0.16
def _spectrogram(x, fs=1.0, window=('tukey',.25), nperseg=256, noverlap=None,
nfft=None, detrend='constant', return_onesided=True,
scaling='density', axis=-1, mode='psd'):
"""
Compute a spectrogram with consecutive Fourier transforms.
Spectrograms can be used as a way of visualizing the change of a
nonstationary signal's frequency content over time.
Parameters
----------
x : array_like
Time series of measurement values
fs : float, optional
Sampling frequency of the `x` time series. Defaults to 1.0.
window : str or tuple or array_like, optional
Desired window to use. See `get_window` for a list of windows and
required parameters. If `window` is array_like it will be used
directly as the window and its length will be used for nperseg.
Defaults to a Tukey window with shape parameter of 0.25.
nperseg : int, optional
Length of each segment. Defaults to 256.
noverlap : int, optional
Number of points to overlap between segments. If None,
``noverlap = nperseg // 8``. Defaults to None.
nfft : int, optional
Length of the FFT used, if a zero padded FFT is desired. If None,
the FFT length is `nperseg`. Defaults to None.
detrend : str or function or False, optional
Specifies how to detrend each segment. If `detrend` is a string,
it is passed as the ``type`` argument to `detrend`. If it is a
function, it takes a segment and returns a detrended segment.
If `detrend` is False, no detrending is done. Defaults to 'constant'.
return_onesided : bool, optional
If True, return a one-sided spectrum for real data. If False return
a two-sided spectrum. Note that for complex data, a two-sided
spectrum is always returned.
scaling : { 'density', 'spectrum' }, optional
Selects between computing the power spectral density ('density')
where `Pxx` has units of V**2/Hz and computing the power spectrum
('spectrum') where `Pxx` has units of V**2, if `x` is measured in V
and fs is measured in Hz. Defaults to 'density'
axis : int, optional
Axis along which the spectrogram is computed; the default is over
the last axis (i.e. ``axis=-1``).
mode : str, optional
Defines what kind of return values are expected. Options are ['psd',
'complex', 'magnitude', 'angle', 'phase'].
Returns
-------
f : ndarray
Array of sample frequencies.
t : ndarray
Array of segment times.
Sxx : ndarray
Spectrogram of x. By default, the last axis of Sxx corresponds to the
segment times.
See Also
--------
periodogram: Simple, optionally modified periodogram
lombscargle: Lomb-Scargle periodogram for unevenly sampled data
welch: Power spectral density by Welch's method.
csd: Cross spectral density by Welch's method.
Notes
-----
An appropriate amount of overlap will depend on the choice of window
and on your requirements. In contrast to welch's method, where the entire
data stream is averaged over, one may wish to use a smaller overlap (or
perhaps none at all) when computing a spectrogram, to maintain some
statistical independence between individual segments.
.. versionadded:: 0.16.0
References
----------
.. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck "Discrete-Time
Signal Processing", Prentice Hall, 1999.
"""
# Less overlap than welch, so samples are more statisically independent
if noverlap is None:
noverlap = nperseg // 8
freqs, time, Pxy = _spectral_helper(x, x, fs, window, nperseg, noverlap,
nfft, detrend, return_onesided, scaling,
axis, mode=mode)
return freqs, time, Pxy
def _spectral_helper(x, y, fs=1.0, window='hann', nperseg=256,
noverlap=None, nfft=None, detrend='constant',
return_onesided=True, scaling='spectrum', axis=-1,
mode='psd'):
"""
Calculate various forms of windowed FFTs for PSD, CSD, etc.
This is a helper function that implements the commonality between the
psd, csd, and spectrogram functions. It is not designed to be called
externally. The windows are not averaged over; the result from each window
is returned.
Parameters
---------
x : array_like
Array or sequence containing the data to be analyzed.
y : array_like
Array or sequence containing the data to be analyzed. If this is
the same object in memoery as x (i.e. _spectral_helper(x, x, ...)),
the extra computations are spared.
fs : float, optional
Sampling frequency of the time series. Defaults to 1.0.
window : str or tuple or array_like, optional
Desired window to use. See `get_window` for a list of windows and
required parameters. If `window` is array_like it will be used
directly as the window and its length will be used for nperseg.
Defaults to 'hann'.
nperseg : int, optional
Length of each segment. Defaults to 256.
noverlap : int, optional
Number of points to overlap between segments. If None,
``noverlap = nperseg // 2``. Defaults to None.
nfft : int, optional
Length of the FFT used, if a zero padded FFT is desired. If None,
the FFT length is `nperseg`. Defaults to None.
detrend : str or function or False, optional
Specifies how to detrend each segment. If `detrend` is a string,
it is passed as the ``type`` argument to `detrend`. If it is a
function, it takes a segment and returns a detrended segment.
If `detrend` is False, no detrending is done. Defaults to 'constant'.
return_onesided : bool, optional
If True, return a one-sided spectrum for real data. If False return
a two-sided spectrum. Note that for complex data, a two-sided
spectrum is always returned.
scaling : { 'density', 'spectrum' }, optional
Selects between computing the cross spectral density ('density')
where `Pxy` has units of V**2/Hz and computing the cross spectrum
('spectrum') where `Pxy` has units of V**2, if `x` and `y` are
measured in V and fs is measured in Hz. Defaults to 'density'
axis : int, optional
Axis along which the periodogram is computed; the default is over
the last axis (i.e. ``axis=-1``).
mode : str, optional
Defines what kind of return values are expected. Options are ['psd',
'complex', 'magnitude', 'angle', 'phase'].
Returns
-------
freqs : ndarray
Array of sample frequencies.
t : ndarray
Array of times corresponding to each data segment
result : ndarray
Array of output data, contents dependent on *mode* kwarg.
References
----------
.. [1] Stack Overflow, "Rolling window for 1D arrays in Numpy?",
http://stackoverflow.com/a/6811241
.. [2] Stack Overflow, "Using strides for an efficient moving average
filter", http://stackoverflow.com/a/4947453
Notes
-----
Adapted from matplotlib.mlab
.. versionadded:: 0.16.0
"""
from scipy import fftpack
from scipy.signal import signaltools
from scipy.signal.windows import get_window
if mode not in ['psd', 'complex', 'magnitude', 'angle', 'phase']:
raise ValueError("Unknown value for mode %s, must be one of: "
"'default', 'psd', 'complex', "
"'magnitude', 'angle', 'phase'" % mode)
# If x and y are the same object we can save ourselves some computation.
same_data = y is x
if not same_data and mode != 'psd':
raise ValueError("x and y must be equal if mode is not 'psd'")
axis = int(axis)
# Ensure we have np.arrays, get outdtype
x = np.asarray(x)
if not same_data:
y = np.asarray(y)
outdtype = np.result_type(x,y,np.complex64)
else:
outdtype = np.result_type(x,np.complex64)
if not same_data:
# Check if we can broadcast the outer axes together
xouter = list(x.shape)
youter = list(y.shape)
xouter.pop(axis)
youter.pop(axis)
try:
outershape = np.broadcast(np.empty(xouter), np.empty(youter)).shape
except ValueError:
raise ValueError('x and y cannot be broadcast together.')
if same_data:
if x.size == 0:
return np.empty(x.shape), np.empty(x.shape), np.empty(x.shape)
else:
if x.size == 0 or y.size == 0:
outshape = outershape + (min([x.shape[axis], y.shape[axis]]),)
emptyout = np.rollaxis(np.empty(outshape), -1, axis)
return emptyout, emptyout, emptyout
if x.ndim > 1:
if axis != -1:
x = np.rollaxis(x, axis, len(x.shape))
if not same_data and y.ndim > 1:
y = np.rollaxis(y, axis, len(y.shape))
# Check if x and y are the same length, zero-pad if necessary
if not same_data:
if x.shape[-1] != y.shape[-1]:
if x.shape[-1] < y.shape[-1]:
pad_shape = list(x.shape)
pad_shape[-1] = y.shape[-1] - x.shape[-1]
x = np.concatenate((x, np.zeros(pad_shape)), -1)
else:
pad_shape = list(y.shape)
pad_shape[-1] = x.shape[-1] - y.shape[-1]
y = np.concatenate((y, np.zeros(pad_shape)), -1)
# X and Y are same length now, can test nperseg with either
if x.shape[-1] < nperseg:
warnings.warn('nperseg = {0:d}, is greater than input length = {1:d}, '
'using nperseg = {1:d}'.format(nperseg, x.shape[-1]))
nperseg = x.shape[-1]
nperseg = int(nperseg)
if nperseg < 1:
raise ValueError('nperseg must be a positive integer')
if nfft is None:
nfft = nperseg
elif nfft < nperseg:
raise ValueError('nfft must be greater than or equal to nperseg.')
else:
nfft = int(nfft)
if noverlap is None:
noverlap = nperseg//2
elif noverlap >= nperseg:
raise ValueError('noverlap must be less than nperseg.')
else:
noverlap = int(noverlap)
# Handle detrending and window functions
if not detrend:
def detrend_func(d):
return d
elif not hasattr(detrend, '__call__'):
def detrend_func(d):
return signaltools.detrend(d, type=detrend, axis=-1)
elif axis != -1:
# Wrap this function so that it receives a shape that it could
# reasonably expect to receive.
def detrend_func(d):
d = np.rollaxis(d, -1, axis)
d = detrend(d)
return np.rollaxis(d, axis, len(d.shape))
else:
detrend_func = detrend
if isinstance(window, string_types) or type(window) is tuple:
win = get_window(window, nperseg)
else:
win = np.asarray(window)
if len(win.shape) != 1:
raise ValueError('window must be 1-D')
if win.shape[0] != nperseg:
raise ValueError('window must have length of nperseg')
if np.result_type(win,np.complex64) != outdtype:
win = win.astype(outdtype)
if mode == 'psd':
if scaling == 'density':
scale = 1.0 / (fs * (win*win).sum())
elif scaling == 'spectrum':
scale = 1.0 / win.sum()**2
else:
raise ValueError('Unknown scaling: %r' % scaling)
else:
scale = 1
if return_onesided is True:
if np.iscomplexobj(x):
sides = 'twosided'
else:
sides = 'onesided'
if not same_data:
if np.iscomplexobj(y):
sides = 'twosided'
else:
sides = 'twosided'
if sides == 'twosided':
num_freqs = nfft
elif sides == 'onesided':
if nfft % 2:
num_freqs = (nfft + 1)//2
else:
num_freqs = nfft//2 + 1
# Perform the windowed FFTs
result = _fft_helper(x, win, detrend_func, nperseg, noverlap, nfft)
result = result[..., :num_freqs]
freqs = fftpack.fftfreq(nfft, 1/fs)[:num_freqs]
if not same_data:
# All the same operations on the y data
result_y = _fft_helper(y, win, detrend_func, nperseg, noverlap, nfft)
result_y = result_y[..., :num_freqs]
result = np.conjugate(result) * result_y
elif mode == 'psd':
result = np.conjugate(result) * result
elif mode == 'magnitude':
result = np.absolute(result)
elif mode == 'angle' or mode == 'phase':
result = np.angle(result)
elif mode == 'complex':
pass
result *= scale
if sides == 'onesided':
if nfft % 2:
result[...,1:] *= 2
else:
# Last point is unpaired Nyquist freq point, don't double
result[...,1:-1] *= 2
t = np.arange(nperseg/2, x.shape[-1] - nperseg/2 + 1, nperseg - noverlap)/float(fs)
if sides != 'twosided' and not nfft % 2:
# get the last value correctly, it is negative otherwise
freqs[-1] *= -1
# we unwrap the phase here to handle the onesided vs. twosided case
if mode == 'phase':
result = np.unwrap(result, axis=-1)
result = result.astype(outdtype)
# All imaginary parts are zero anyways
if same_data and mode != 'complex':
result = result.real
# Output is going to have new last axis for window index
if axis != -1:
# Specify as positive axis index
if axis < 0:
axis = len(result.shape)-1-axis
# Roll frequency axis back to axis where the data came from
result = np.rollaxis(result, -1, axis)
else:
# Make sure window/time index is last axis
result = np.rollaxis(result, -1, -2)
return freqs, t, result
def _fft_helper(x, win, detrend_func, nperseg, noverlap, nfft):
"""
Calculate windowed FFT, for internal use by scipy.signal._spectral_helper
This is a helper function that does the main FFT calculation for
_spectral helper. All input valdiation is performed there, and the data
axis is assumed to be the last axis of x. It is not designed to be called
externally. The windows are not averaged over; the result from each window
is returned.
Returns
-------
result : ndarray
Array of FFT data
References
----------
.. [1] Stack Overflow, "Repeat NumPy array without replicating data?",
http://stackoverflow.com/a/5568169
Notes
-----
Adapted from matplotlib.mlab
.. versionadded:: 0.16.0
"""
from scipy import fftpack
# Created strided array of data segments
if nperseg == 1 and noverlap == 0:
result = x[..., np.newaxis]
else:
step = nperseg - noverlap
shape = x.shape[:-1]+((x.shape[-1]-noverlap)//step, nperseg)
strides = x.strides[:-1]+(step*x.strides[-1], x.strides[-1])
result = np.lib.stride_tricks.as_strided(x, shape=shape,
strides=strides)
# Detrend each data segment individually
result = detrend_func(result)
# Apply window by multiplication
result = win * result
# Perform the fft. Acts on last axis by default. Zero-pads automatically
result = fftpack.fft(result, n=nfft)
return result
def get_spectrogram():
'''helper function to get relevant spectrogram'''
from .utils import check_version
if check_version('scipy', '0.16.0'):
from scipy.signal import spectrogram
else:
spectrogram = _spectrogram
return spectrogram
###############################################################################
# Misc utilities
def assert_true(expr, msg='False is not True'):
"""Fake assert_true without message"""
if not expr:
raise AssertionError(msg)
def assert_is(expr1, expr2, msg=None):
"""Fake assert_is without message"""
assert_true(expr2 is expr2, msg)
def assert_is_not(expr1, expr2, msg=None):
"""Fake assert_is_not without message"""
assert_true(expr1 is not expr2, msg)
def _read_volume_info(fobj):
"""An implementation of nibabel.freesurfer.io._read_volume_info, since old
versions of nibabel (<=2.1.0) don't have it.
"""
volume_info = dict()
head = np.fromfile(fobj, '>i4', 1)
if not np.array_equal(head, [20]): # Read two bytes more
head = np.concatenate([head, np.fromfile(fobj, '>i4', 2)])
if not np.array_equal(head, [2, 0, 20]):
warnings.warn("Unknown extension code.")
return volume_info
volume_info['head'] = head
for key in ['valid', 'filename', 'volume', 'voxelsize', 'xras', 'yras',
'zras', 'cras']:
pair = fobj.readline().decode('utf-8').split('=')
if pair[0].strip() != key or len(pair) != 2:
raise IOError('Error parsing volume info.')
if key in ('valid', 'filename'):
volume_info[key] = pair[1].strip()
elif key == 'volume':
volume_info[key] = np.array(pair[1].split()).astype(int)
else:
volume_info[key] = np.array(pair[1].split()).astype(float)
# Ignore the rest
return volume_info
def _serialize_volume_info(volume_info):
"""An implementation of nibabel.freesurfer.io._serialize_volume_info, since
old versions of nibabel (<=2.1.0) don't have it."""
keys = ['head', 'valid', 'filename', 'volume', 'voxelsize', 'xras', 'yras',
'zras', 'cras']
diff = set(volume_info.keys()).difference(keys)
if len(diff) > 0:
raise ValueError('Invalid volume info: %s.' % diff.pop())
strings = list()
for key in keys:
if key == 'head':
if not (np.array_equal(volume_info[key], [20]) or np.array_equal(
volume_info[key], [2, 0, 20])):
warnings.warn("Unknown extension code.")
strings.append(np.array(volume_info[key], dtype='>i4').tostring())
elif key in ('valid', 'filename'):
val = volume_info[key]
strings.append('{0} = {1}\n'.format(key, val).encode('utf-8'))
elif key == 'volume':
val = volume_info[key]
strings.append('{0} = {1} {2} {3}\n'.format(
key, val[0], val[1], val[2]).encode('utf-8'))
else:
val = volume_info[key]
strings.append('{0} = {1:0.10g} {2:0.10g} {3:0.10g}\n'.format(
key.ljust(6), val[0], val[1], val[2]).encode('utf-8'))
return b''.join(strings)
##############################################################################
# adapted from scikit-learn
def is_classifier(estimator):
"""Returns True if the given estimator is (probably) a classifier.
Parameters
----------
estimator : object
Estimator object to test.
Returns
-------
out : bool
True if estimator is a classifier and False otherwise.
"""
return getattr(estimator, "_estimator_type", None) == "classifier"
def is_regressor(estimator):
"""Returns True if the given estimator is (probably) a regressor.
Parameters
----------
estimator : object
Estimator object to test.
Returns
-------
out : bool
True if estimator is a regressor and False otherwise.
"""
return getattr(estimator, "_estimator_type", None) == "regressor"
class BaseEstimator(object):
"""Base class for all estimators in scikit-learn
Notes
-----
All estimators should specify all the parameters that can be set
at the class level in their ``__init__`` as explicit keyword
arguments (no ``*args`` or ``**kwargs``).
"""
@classmethod
def _get_param_names(cls):
"""Get parameter names for the estimator"""
try:
from inspect import signature
except ImportError:
from .externals.funcsigs import signature
# fetch the constructor or the original constructor before
# deprecation wrapping if any
init = getattr(cls.__init__, 'deprecated_original', cls.__init__)
if init is object.__init__:
# No explicit constructor to introspect
return []
# introspect the constructor arguments to find the model parameters
# to represent
init_signature = signature(init)
# Consider the constructor parameters excluding 'self'
parameters = [p for p in init_signature.parameters.values()
if p.name != 'self' and p.kind != p.VAR_KEYWORD]
for p in parameters:
if p.kind == p.VAR_POSITIONAL:
raise RuntimeError("scikit-learn estimators should always "
"specify their parameters in the signature"
" of their __init__ (no varargs)."
" %s with constructor %s doesn't "
" follow this convention."
% (cls, init_signature))
# Extract and sort argument names excluding 'self'
return sorted([p.name for p in parameters])
def get_params(self, deep=True):
"""Get parameters for this estimator.
Parameters
----------
deep : boolean, optional
If True, will return the parameters for this estimator and
contained subobjects that are estimators.
Returns
-------
params : mapping of string to any
Parameter names mapped to their values.
"""
out = dict()
for key in self._get_param_names():
# We need deprecation warnings to always be on in order to
# catch deprecated param values.
# This is set in utils/__init__.py but it gets overwritten
# when running under python3 somehow.
warnings.simplefilter("always", DeprecationWarning)
try:
with warnings.catch_warnings(record=True) as w:
value = getattr(self, key, None)
if len(w) and w[0].category == DeprecationWarning:
# if the parameter is deprecated, don't show it
continue
finally:
warnings.filters.pop(0)
# XXX: should we rather test if instance of estimator?
if deep and hasattr(value, 'get_params'):
deep_items = value.get_params().items()
out.update((key + '__' + k, val) for k, val in deep_items)
out[key] = value
return out
def set_params(self, **params):
"""Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
``<component>__<parameter>`` so that it's possible to update each
component of a nested object.
Returns
-------
self
"""
if not params:
# Simple optimisation to gain speed (inspect is slow)
return self
valid_params = self.get_params(deep=True)
for key, value in iteritems(params):
split = key.split('__', 1)
if len(split) > 1:
# nested objects case
name, sub_name = split
if name not in valid_params:
raise ValueError('Invalid parameter %s for estimator %s. '
'Check the list of available parameters '
'with `estimator.get_params().keys()`.' %
(name, self))
sub_object = valid_params[name]
sub_object.set_params(**{sub_name: value})
else:
# simple objects case
if key not in valid_params:
raise ValueError('Invalid parameter %s for estimator %s. '
'Check the list of available parameters '
'with `estimator.get_params().keys()`.' %
(key, self.__class__.__name__))
setattr(self, key, value)
return self
def __repr__(self):
from sklearn.base import _pprint
class_name = self.__class__.__name__
return '%s(%s)' % (class_name, _pprint(self.get_params(deep=False),
offset=len(class_name),),)
# __getstate__ and __setstate__ are omitted because they only contain
# conditionals that are not satisfied by our objects (e.g.,
# ``if type(self).__module__.startswith('sklearn.')``.
###############################################################################
# Copied from sklearn to simplify code paths
def empirical_covariance(X, assume_centered=False):
"""Computes the Maximum likelihood covariance estimator
Parameters
----------
X : ndarray, shape (n_samples, n_features)
Data from which to compute the covariance estimate
assume_centered : Boolean
If True, data are not centered before computation.
Useful when working with data whose mean is almost, but not exactly
zero.
If False, data are centered before computation.
Returns
-------
covariance : 2D ndarray, shape (n_features, n_features)
Empirical covariance (Maximum Likelihood Estimator).
"""
X = np.asarray(X)
if X.ndim == 1:
X = np.reshape(X, (1, -1))
if X.shape[0] == 1:
warnings.warn("Only one sample available. "
"You may want to reshape your data array")
if assume_centered:
covariance = np.dot(X.T, X) / X.shape[0]
else:
covariance = np.cov(X.T, bias=1)
if covariance.ndim == 0:
covariance = np.array([[covariance]])
return covariance
class EmpiricalCovariance(BaseEstimator):
"""Maximum likelihood covariance estimator
Read more in the :ref:`User Guide <covariance>`.
Parameters
----------
store_precision : bool
Specifies if the estimated precision is stored.
assume_centered : bool
If True, data are not centered before computation.
Useful when working with data whose mean is almost, but not exactly
zero.
If False (default), data are centered before computation.
Attributes
----------
covariance_ : 2D ndarray, shape (n_features, n_features)
Estimated covariance matrix
precision_ : 2D ndarray, shape (n_features, n_features)
Estimated pseudo-inverse matrix.
(stored only if store_precision is True)
"""
def __init__(self, store_precision=True, assume_centered=False):
self.store_precision = store_precision
self.assume_centered = assume_centered
def _set_covariance(self, covariance):
"""Saves the covariance and precision estimates
Storage is done accordingly to `self.store_precision`.
Precision stored only if invertible.
Parameters
----------
covariance : 2D ndarray, shape (n_features, n_features)
Estimated covariance matrix to be stored, and from which precision
is computed.
"""
# covariance = check_array(covariance)
# set covariance
self.covariance_ = covariance
# set precision
if self.store_precision:
self.precision_ = linalg.pinvh(covariance)
else:
self.precision_ = None
def get_precision(self):
"""Getter for the precision matrix.
Returns
-------
precision_ : array-like,
The precision matrix associated to the current covariance object.
"""
if self.store_precision:
precision = self.precision_
else:
precision = linalg.pinvh(self.covariance_)
return precision
def fit(self, X, y=None):
"""Fits the Maximum Likelihood Estimator covariance model
according to the given training data and parameters.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training data, where n_samples is the number of samples and
n_features is the number of features.
y : not used, present for API consistence purpose.
Returns
-------
self : object
Returns self.
"""
# X = check_array(X)
if self.assume_centered:
self.location_ = np.zeros(X.shape[1])
else:
self.location_ = X.mean(0)
covariance = empirical_covariance(
X, assume_centered=self.assume_centered)
self._set_covariance(covariance)
return self
def score(self, X_test, y=None):
"""Computes the log-likelihood of a Gaussian data set with
`self.covariance_` as an estimator of its covariance matrix.
Parameters
----------
X_test : array-like, shape = [n_samples, n_features]
Test data of which we compute the likelihood, where n_samples is
the number of samples and n_features is the number of features.
X_test is assumed to be drawn from the same distribution than
the data used in fit (including centering).
y : not used, present for API consistence purpose.
Returns
-------
res : float
The likelihood of the data set with `self.covariance_` as an
estimator of its covariance matrix.
"""
# compute empirical covariance of the test set
test_cov = empirical_covariance(
X_test - self.location_, assume_centered=True)
# compute log likelihood
res = log_likelihood(test_cov, self.get_precision())
return res
def error_norm(self, comp_cov, norm='frobenius', scaling=True,
squared=True):
"""Computes the Mean Squared Error between two covariance estimators.
(In the sense of the Frobenius norm).
Parameters
----------
comp_cov : array-like, shape = [n_features, n_features]
The covariance to compare with.
norm : str
The type of norm used to compute the error. Available error types:
- 'frobenius' (default): sqrt(tr(A^t.A))
- 'spectral': sqrt(max(eigenvalues(A^t.A))
where A is the error ``(comp_cov - self.covariance_)``.
scaling : bool
If True (default), the squared error norm is divided by n_features.
If False, the squared error norm is not rescaled.
squared : bool
Whether to compute the squared error norm or the error norm.
If True (default), the squared error norm is returned.
If False, the error norm is returned.
Returns
-------
The Mean Squared Error (in the sense of the Frobenius norm) between
`self` and `comp_cov` covariance estimators.
"""
# compute the error
error = comp_cov - self.covariance_
# compute the error norm
if norm == "frobenius":
squared_norm = np.sum(error ** 2)
elif norm == "spectral":
squared_norm = np.amax(linalg.svdvals(np.dot(error.T, error)))
else:
raise NotImplementedError(
"Only spectral and frobenius norms are implemented")
# optionally scale the error norm
if scaling:
squared_norm = squared_norm / error.shape[0]
# finally get either the squared norm or the norm
if squared:
result = squared_norm
else:
result = np.sqrt(squared_norm)
return result
def mahalanobis(self, observations):
"""Computes the squared Mahalanobis distances of given observations.
Parameters
----------
observations : array-like, shape = [n_observations, n_features]
The observations, the Mahalanobis distances of the which we
compute. Observations are assumed to be drawn from the same
distribution than the data used in fit.
Returns
-------
mahalanobis_distance : array, shape = [n_observations,]
Squared Mahalanobis distances of the observations.
"""
precision = self.get_precision()
# compute mahalanobis distances
centered_obs = observations - self.location_
mahalanobis_dist = np.sum(
np.dot(centered_obs, precision) * centered_obs, 1)
return mahalanobis_dist
def log_likelihood(emp_cov, precision):
"""Computes the sample mean of the log_likelihood under a covariance model
computes the empirical expected log-likelihood (accounting for the
normalization terms and scaling), allowing for universal comparison (beyond
this software package)
Parameters
----------
emp_cov : 2D ndarray (n_features, n_features)
Maximum Likelihood Estimator of covariance
precision : 2D ndarray (n_features, n_features)
The precision matrix of the covariance model to be tested
Returns
-------
sample mean of the log-likelihood
"""
p = precision.shape[0]
log_likelihood_ = - np.sum(emp_cov * precision) + _logdet(precision)
log_likelihood_ -= p * np.log(2 * np.pi)
log_likelihood_ /= 2.
return log_likelihood_
# sklearn uses np.linalg for this, but ours is more robust to zero eigenvalues
def _logdet(A):
"""Compute the log det of a positive semidefinite matrix."""
vals = linalg.eigh(A)[0]
# avoid negative (numerical errors) or zero (semi-definite matrix) values
tol = vals.max() * vals.size * np.finfo(np.float64).eps
vals = np.where(vals > tol, vals, tol)
return np.sum(np.log(vals))
###############################################################################
# NumPy einsum backward compat (allow "optimize" arg and fix 1.14.0 bug)
# XXX eventually we should hand-tune our `einsum` calls given our array sizes!
_has_optimize = (LooseVersion(np.__version__) >= '1.12')
def einsum(*args, **kwargs):
if 'optimize' in kwargs:
if not _has_optimize:
kwargs.pop('optimize')
elif _has_optimize:
kwargs['optimize'] = False
return np.einsum(*args, **kwargs)
###############################################################################
# From nilearn
def _crop_colorbar(cbar, cbar_vmin, cbar_vmax):
"""
crop a colorbar to show from cbar_vmin to cbar_vmax
Used when symmetric_cbar=False is used.
"""
if (cbar_vmin is None) and (cbar_vmax is None):
return
cbar_tick_locs = cbar.locator.locs
if cbar_vmax is None:
cbar_vmax = cbar_tick_locs.max()
if cbar_vmin is None:
cbar_vmin = cbar_tick_locs.min()
new_tick_locs = np.linspace(cbar_vmin, cbar_vmax,
len(cbar_tick_locs))
cbar.ax.set_ylim(cbar.norm(cbar_vmin), cbar.norm(cbar_vmax))
outline = cbar.outline.get_xy()
outline[:2, 1] += cbar.norm(cbar_vmin)
outline[2:6, 1] -= (1. - cbar.norm(cbar_vmax))
outline[6:, 1] += cbar.norm(cbar_vmin)
cbar.outline.set_xy(outline)
cbar.set_ticks(new_tick_locs, update_ticks=True)
|