File: fixes.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (1480 lines) | stat: -rw-r--r-- 52,395 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
"""Compatibility fixes for older version of python, numpy and scipy

If you add content to this file, please give the version of the package
at which the fix is no longer needed.

# XXX : originally copied from scikit-learn

"""
# Authors: Emmanuelle Gouillart <emmanuelle.gouillart@normalesup.org>
#          Gael Varoquaux <gael.varoquaux@normalesup.org>
#          Fabian Pedregosa <fpedregosa@acm.org>
#          Lars Buitinck <L.J.Buitinck@uva.nl>
# License: BSD

from __future__ import division

import inspect
from distutils.version import LooseVersion
import warnings

import numpy as np
from scipy import linalg, __version__ as sp_version

from .externals.six import string_types, iteritems


###############################################################################
# Misc

# helpers to get function arguments
if hasattr(inspect, 'signature'):  # py35
    def _get_args(function, varargs=False):
        params = inspect.signature(function).parameters
        args = [key for key, param in params.items()
                if param.kind not in (param.VAR_POSITIONAL, param.VAR_KEYWORD)]
        if varargs:
            varargs = [param.name for param in params.values()
                       if param.kind == param.VAR_POSITIONAL]
            if len(varargs) == 0:
                varargs = None
            return args, varargs
        else:
            return args
else:
    def _get_args(function, varargs=False):
        out = inspect.getargspec(function)  # args, varargs, keywords, defaults
        if varargs:
            return out[:2]
        else:
            return out[0]


def _safe_svd(A, **kwargs):
    """Wrapper to get around the SVD did not converge error of death"""
    # Intel has a bug with their GESVD driver:
    #     https://software.intel.com/en-us/forums/intel-distribution-for-python/topic/628049  # noqa: E501
    # For SciPy 0.18 and up, we can work around it by using
    # lapack_driver='gesvd' instead.
    if kwargs.get('overwrite_a', False):
        raise ValueError('Cannot set overwrite_a=True with this function')
    try:
        return linalg.svd(A, **kwargs)
    except np.linalg.LinAlgError as exp:
        from .utils import warn
        if 'lapack_driver' in _get_args(linalg.svd):
            warn('SVD error (%s), attempting to use GESVD instead of GESDD'
                 % (exp,))
            return linalg.svd(A, lapack_driver='gesvd', **kwargs)
        else:
            raise


###############################################################################
# Backporting nibabel's read_geometry

def _get_read_geometry():
    """Get the geometry reading function."""
    try:
        import nibabel as nib
        has_nibabel = True
    except ImportError:
        has_nibabel = False
    if has_nibabel and LooseVersion(nib.__version__) > LooseVersion('2.1.0'):
        from nibabel.freesurfer import read_geometry
    else:
        read_geometry = _read_geometry
    return read_geometry


def _read_geometry(filepath, read_metadata=False, read_stamp=False):
    """Backport from nibabel."""
    from .surface import _fread3, _fread3_many
    volume_info = dict()

    TRIANGLE_MAGIC = 16777214
    QUAD_MAGIC = 16777215
    NEW_QUAD_MAGIC = 16777213
    with open(filepath, "rb") as fobj:
        magic = _fread3(fobj)
        if magic in (QUAD_MAGIC, NEW_QUAD_MAGIC):  # Quad file
            nvert = _fread3(fobj)
            nquad = _fread3(fobj)
            (fmt, div) = (">i2", 100.) if magic == QUAD_MAGIC else (">f4", 1.)
            coords = np.fromfile(fobj, fmt, nvert * 3).astype(np.float) / div
            coords = coords.reshape(-1, 3)
            quads = _fread3_many(fobj, nquad * 4)
            quads = quads.reshape(nquad, 4)
            #
            #   Face splitting follows
            #
            faces = np.zeros((2 * nquad, 3), dtype=np.int)
            nface = 0
            for quad in quads:
                if (quad[0] % 2) == 0:
                    faces[nface] = quad[0], quad[1], quad[3]
                    nface += 1
                    faces[nface] = quad[2], quad[3], quad[1]
                    nface += 1
                else:
                    faces[nface] = quad[0], quad[1], quad[2]
                    nface += 1
                    faces[nface] = quad[0], quad[2], quad[3]
                    nface += 1

        elif magic == TRIANGLE_MAGIC:  # Triangle file
            create_stamp = fobj.readline().rstrip(b'\n').decode('utf-8')
            fobj.readline()
            vnum = np.fromfile(fobj, ">i4", 1)[0]
            fnum = np.fromfile(fobj, ">i4", 1)[0]
            coords = np.fromfile(fobj, ">f4", vnum * 3).reshape(vnum, 3)
            faces = np.fromfile(fobj, ">i4", fnum * 3).reshape(fnum, 3)

            if read_metadata:
                volume_info = _read_volume_info(fobj)
        else:
            raise ValueError("File does not appear to be a Freesurfer surface")

    coords = coords.astype(np.float)  # XXX: due to mayavi bug on mac 32bits

    ret = (coords, faces)
    if read_metadata:
        if len(volume_info) == 0:
            warnings.warn('No volume information contained in the file')
        ret += (volume_info,)
    if read_stamp:
        ret += (create_stamp,)

    return ret


###############################################################################
# Backporting logsumexp from scipy which is imported from scipy.special (0.1.0.0)
# instead of scipy.misc


def _get_logsumexp():
    try:
        from scipy.special import logsumexp
    except ImportError:  # old SciPy
        from scipy.misc import logsumexp
    return logsumexp


###############################################################################
# Backporting scipy.signal.sosfilt (0.17) and sosfiltfilt (0.18)


def _sosfiltfilt(sos, x, axis=-1, padtype='odd', padlen=None):
    """copy of SciPy sosfiltfilt"""
    sos, n_sections = _validate_sos(sos)

    # `method` is "pad"...
    ntaps = 2 * n_sections + 1
    ntaps -= min((sos[:, 2] == 0).sum(), (sos[:, 5] == 0).sum())
    edge, ext = _validate_pad(padtype, padlen, x, axis,
                              ntaps=ntaps)

    # These steps follow the same form as filtfilt with modifications
    zi = sosfilt_zi(sos)  # shape (n_sections, 2) --> (n_sections, ..., 2, ...)
    zi_shape = [1] * x.ndim
    zi_shape[axis] = 2
    zi.shape = [n_sections] + zi_shape
    x_0 = axis_slice(ext, stop=1, axis=axis)
    (y, zf) = sosfilt(sos, ext, axis=axis, zi=zi * x_0)
    y_0 = axis_slice(y, start=-1, axis=axis)
    (y, zf) = sosfilt(sos, axis_reverse(y, axis=axis), axis=axis, zi=zi * y_0)
    y = axis_reverse(y, axis=axis)
    if edge > 0:
        y = axis_slice(y, start=edge, stop=-edge, axis=axis)
    return y


def axis_slice(a, start=None, stop=None, step=None, axis=-1):
    """Take a slice along axis 'axis' from 'a'"""
    a_slice = [slice(None)] * a.ndim
    a_slice[axis] = slice(start, stop, step)
    b = a[a_slice]
    return b


def axis_reverse(a, axis=-1):
    """Reverse the 1-d slices of `a` along axis `axis`."""
    return axis_slice(a, step=-1, axis=axis)


def _validate_pad(padtype, padlen, x, axis, ntaps):
    """Helper to validate padding for filtfilt"""
    if padtype not in ['even', 'odd', 'constant', None]:
        raise ValueError(("Unknown value '%s' given to padtype.  padtype "
                          "must be 'even', 'odd', 'constant', or None.") %
                         padtype)

    if padtype is None:
        padlen = 0

    if padlen is None:
        # Original padding; preserved for backwards compatibility.
        edge = ntaps * 3
    else:
        edge = padlen

    # x's 'axis' dimension must be bigger than edge.
    if x.shape[axis] <= edge:
        raise ValueError("The length of the input vector x must be at least "
                         "padlen, which is %d." % edge)

    if padtype is not None and edge > 0:
        # Make an extension of length `edge` at each
        # end of the input array.
        if padtype == 'even':
            ext = even_ext(x, edge, axis=axis)
        elif padtype == 'odd':
            ext = odd_ext(x, edge, axis=axis)
        else:
            ext = const_ext(x, edge, axis=axis)
    else:
        ext = x
    return edge, ext


def _validate_sos(sos):
    """Helper to validate a SOS input"""
    sos = np.atleast_2d(sos)
    if sos.ndim != 2:
        raise ValueError('sos array must be 2D')
    n_sections, m = sos.shape
    if m != 6:
        raise ValueError('sos array must be shape (n_sections, 6)')
    if not (sos[:, 3] == 1).all():
        raise ValueError('sos[:, 3] should be all ones')
    return sos, n_sections


def odd_ext(x, n, axis=-1):
    """Generate a new ndarray by making an odd extension of x along an axis."""
    if n < 1:
        return x
    if n > x.shape[axis] - 1:
        raise ValueError(("The extension length n (%d) is too big. " +
                         "It must not exceed x.shape[axis]-1, which is %d.")
                         % (n, x.shape[axis] - 1))
    left_end = axis_slice(x, start=0, stop=1, axis=axis)
    left_ext = axis_slice(x, start=n, stop=0, step=-1, axis=axis)
    right_end = axis_slice(x, start=-1, axis=axis)
    right_ext = axis_slice(x, start=-2, stop=-(n + 2), step=-1, axis=axis)
    ext = np.concatenate((2 * left_end - left_ext,
                          x,
                          2 * right_end - right_ext),
                         axis=axis)
    return ext


def even_ext(x, n, axis=-1):
    """Create an ndarray that is an even extension of x along an axis."""
    if n < 1:
        return x
    if n > x.shape[axis] - 1:
        raise ValueError(("The extension length n (%d) is too big. " +
                         "It must not exceed x.shape[axis]-1, which is %d.")
                         % (n, x.shape[axis] - 1))
    left_ext = axis_slice(x, start=n, stop=0, step=-1, axis=axis)
    right_ext = axis_slice(x, start=-2, stop=-(n + 2), step=-1, axis=axis)
    ext = np.concatenate((left_ext,
                          x,
                          right_ext),
                         axis=axis)
    return ext


def const_ext(x, n, axis=-1):
    """Create an ndarray that is a constant extension of x along an axis"""
    if n < 1:
        return x
    left_end = axis_slice(x, start=0, stop=1, axis=axis)
    ones_shape = [1] * x.ndim
    ones_shape[axis] = n
    ones = np.ones(ones_shape, dtype=x.dtype)
    left_ext = ones * left_end
    right_end = axis_slice(x, start=-1, axis=axis)
    right_ext = ones * right_end
    ext = np.concatenate((left_ext,
                          x,
                          right_ext),
                         axis=axis)
    return ext


def sosfilt_zi(sos):
    """Compute an initial state `zi` for the sosfilt function"""
    from scipy.signal import lfilter_zi
    sos = np.asarray(sos)
    if sos.ndim != 2 or sos.shape[1] != 6:
        raise ValueError('sos must be shape (n_sections, 6)')

    n_sections = sos.shape[0]
    zi = np.empty((n_sections, 2))
    scale = 1.0
    for section in range(n_sections):
        b = sos[section, :3]
        a = sos[section, 3:]
        zi[section] = scale * lfilter_zi(b, a)
        # If H(z) = B(z)/A(z) is this section's transfer function, then
        # b.sum()/a.sum() is H(1), the gain at omega=0.  That's the steady
        # state value of this section's step response.
        scale *= b.sum() / a.sum()

    return zi


def sosfilt(sos, x, axis=-1, zi=None):
    """Filter data along one dimension using cascaded second-order sections"""
    from scipy.signal import lfilter
    x = np.asarray(x)

    sos = np.atleast_2d(sos)
    if sos.ndim != 2:
        raise ValueError('sos array must be 2D')

    n_sections, m = sos.shape
    if m != 6:
        raise ValueError('sos array must be shape (n_sections, 6)')

    use_zi = zi is not None
    if use_zi:
        zi = np.asarray(zi)
        x_zi_shape = list(x.shape)
        x_zi_shape[axis] = 2
        x_zi_shape = tuple([n_sections] + x_zi_shape)
        if zi.shape != x_zi_shape:
            raise ValueError('Invalid zi shape.  With axis=%r, an input with '
                             'shape %r, and an sos array with %d sections, zi '
                             'must have shape %r.' %
                             (axis, x.shape, n_sections, x_zi_shape))
        zf = np.zeros_like(zi)

    for section in range(n_sections):
        if use_zi:
            x, zf[section] = lfilter(sos[section, :3], sos[section, 3:],
                                     x, axis, zi=zi[section])
        else:
            x = lfilter(sos[section, :3], sos[section, 3:], x, axis)
    out = (x, zf) if use_zi else x
    return out


def get_sosfiltfilt():
    """Helper to get sosfiltfilt from scipy"""
    try:
        from scipy.signal import sosfiltfilt
    except ImportError:
        sosfiltfilt = _sosfiltfilt
    return sosfiltfilt


def minimum_phase(h):
    """Convert a linear-phase FIR filter to minimum phase.

    Parameters
    ----------
    h : array
        Linear-phase FIR filter coefficients.

    Returns
    -------
    h_minimum : array
        The minimum-phase version of the filter, with length
        ``(length(h) + 1) // 2``.
    """
    try:
        from scipy.signal import minimum_phase
    except Exception:
        pass
    else:
        return minimum_phase(h)
    from scipy.fftpack import fft, ifft
    h = np.asarray(h)
    if np.iscomplexobj(h):
        raise ValueError('Complex filters not supported')
    if h.ndim != 1 or h.size <= 2:
        raise ValueError('h must be 1D and at least 2 samples long')
    n_half = len(h) // 2
    if not np.allclose(h[-n_half:][::-1], h[:n_half]):
        warnings.warn('h does not appear to by symmetric, conversion may '
                      'fail', RuntimeWarning)
    n_fft = 2 ** int(np.ceil(np.log2(2 * (len(h) - 1) / 0.01)))
    # zero-pad; calculate the DFT
    h_temp = np.abs(fft(h, n_fft))
    # take 0.25*log(|H|**2) = 0.5*log(|H|)
    h_temp += 1e-7 * h_temp[h_temp > 0].min()  # don't let log blow up
    np.log(h_temp, out=h_temp)
    h_temp *= 0.5
    # IDFT
    h_temp = ifft(h_temp).real
    # multiply pointwise by the homomorphic filter
    # lmin[n] = 2u[n] - d[n]
    win = np.zeros(n_fft)
    win[0] = 1
    stop = (len(h) + 1) // 2
    win[1:stop] = 2
    if len(h) % 2:
        win[stop] = 1
    h_temp *= win
    h_temp = ifft(np.exp(fft(h_temp)))
    h_minimum = h_temp.real
    n_out = n_half + len(h) % 2
    return h_minimum[:n_out]


###############################################################################
# scipy.special.sph_harm ()

def _sph_harm(order, degree, az, pol):
    """Evaluate point in specified multipolar moment.

    When using, pay close attention to inputs. Spherical harmonic notation for
    order/degree, and theta/phi are both reversed in original SSS work compared
    to many other sources. See mathworld.wolfram.com/SphericalHarmonic.html for
    more discussion.

    Note that scipy has ``scipy.special.sph_harm``, but that function is
    too slow on old versions (< 0.15) for heavy use.

    Parameters
    ----------
    order : int
        Order of spherical harmonic. (Usually) corresponds to 'm'.
    degree : int
        Degree of spherical harmonic. (Usually) corresponds to 'l'.
    az : float
        Azimuthal (longitudinal) spherical coordinate [0, 2*pi]. 0 is aligned
        with x-axis.
    pol : float
        Polar (or colatitudinal) spherical coordinate [0, pi]. 0 is aligned
        with z-axis.
    norm : bool
        If True, include normalization factor.

    Returns
    -------
    base : complex float
        The spherical harmonic value.
    """
    from scipy.special import lpmv
    from .preprocessing.maxwell import _sph_harm_norm

    # Error checks
    if np.abs(order) > degree:
        raise ValueError('Absolute value of order must be <= degree')
    # Ensure that polar and azimuth angles are arrays
    az = np.asarray(az)
    pol = np.asarray(pol)
    if (np.abs(az) > 2 * np.pi).any():
        raise ValueError('Azimuth coords must lie in [-2*pi, 2*pi]')
    if(pol < 0).any() or (pol > np.pi).any():
        raise ValueError('Polar coords must lie in [0, pi]')
    # This is the "seismology" convention on Wikipedia, w/o Condon-Shortley
    sph = lpmv(order, degree, np.cos(pol)) * np.exp(1j * order * az)
    sph *= _sph_harm_norm(order, degree)
    return sph


def _get_sph_harm():
    """Helper to get a usable spherical harmonic function."""
    if LooseVersion(sp_version) < LooseVersion('0.17.1'):
        sph_harm = _sph_harm
    else:
        from scipy.special import sph_harm
    return sph_harm


###############################################################################
# Scipy spectrogram (for mne.time_frequency.psd_welch) needed for scipy < 0.16

def _spectrogram(x, fs=1.0, window=('tukey',.25), nperseg=256, noverlap=None,
                nfft=None, detrend='constant', return_onesided=True,
                scaling='density', axis=-1, mode='psd'):
    """
    Compute a spectrogram with consecutive Fourier transforms.
    Spectrograms can be used as a way of visualizing the change of a
    nonstationary signal's frequency content over time.

    Parameters
    ----------
    x : array_like
        Time series of measurement values
    fs : float, optional
        Sampling frequency of the `x` time series. Defaults to 1.0.
    window : str or tuple or array_like, optional
        Desired window to use. See `get_window` for a list of windows and
        required parameters. If `window` is array_like it will be used
        directly as the window and its length will be used for nperseg.
        Defaults to a Tukey window with shape parameter of 0.25.
    nperseg : int, optional
        Length of each segment.  Defaults to 256.
    noverlap : int, optional
        Number of points to overlap between segments. If None,
        ``noverlap = nperseg // 8``.  Defaults to None.
    nfft : int, optional
        Length of the FFT used, if a zero padded FFT is desired.  If None,
        the FFT length is `nperseg`. Defaults to None.
    detrend : str or function or False, optional
        Specifies how to detrend each segment. If `detrend` is a string,
        it is passed as the ``type`` argument to `detrend`.  If it is a
        function, it takes a segment and returns a detrended segment.
        If `detrend` is False, no detrending is done.  Defaults to 'constant'.
    return_onesided : bool, optional
        If True, return a one-sided spectrum for real data. If False return
        a two-sided spectrum. Note that for complex data, a two-sided
        spectrum is always returned.
    scaling : { 'density', 'spectrum' }, optional
        Selects between computing the power spectral density ('density')
        where `Pxx` has units of V**2/Hz and computing the power spectrum
        ('spectrum') where `Pxx` has units of V**2, if `x` is measured in V
        and fs is measured in Hz.  Defaults to 'density'
    axis : int, optional
        Axis along which the spectrogram is computed; the default is over
        the last axis (i.e. ``axis=-1``).
    mode : str, optional
        Defines what kind of return values are expected. Options are ['psd',
        'complex', 'magnitude', 'angle', 'phase'].

    Returns
    -------
    f : ndarray
        Array of sample frequencies.
    t : ndarray
        Array of segment times.
    Sxx : ndarray
        Spectrogram of x. By default, the last axis of Sxx corresponds to the
        segment times.

    See Also
    --------
    periodogram: Simple, optionally modified periodogram
    lombscargle: Lomb-Scargle periodogram for unevenly sampled data
    welch: Power spectral density by Welch's method.
    csd: Cross spectral density by Welch's method.

    Notes
    -----
    An appropriate amount of overlap will depend on the choice of window
    and on your requirements. In contrast to welch's method, where the entire
    data stream is averaged over, one may wish to use a smaller overlap (or
    perhaps none at all) when computing a spectrogram, to maintain some
    statistical independence between individual segments.
    .. versionadded:: 0.16.0

    References
    ----------
    .. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck "Discrete-Time
           Signal Processing", Prentice Hall, 1999.
    """
    # Less overlap than welch, so samples are more statisically independent
    if noverlap is None:
        noverlap = nperseg // 8

    freqs, time, Pxy = _spectral_helper(x, x, fs, window, nperseg, noverlap,
                                        nfft, detrend, return_onesided, scaling,
                                        axis, mode=mode)

    return freqs, time, Pxy


def _spectral_helper(x, y, fs=1.0, window='hann', nperseg=256,
                    noverlap=None, nfft=None, detrend='constant',
                    return_onesided=True, scaling='spectrum', axis=-1,
                    mode='psd'):
    """
    Calculate various forms of windowed FFTs for PSD, CSD, etc.
    This is a helper function that implements the commonality between the
    psd, csd, and spectrogram functions. It is not designed to be called
    externally. The windows are not averaged over; the result from each window
    is returned.

    Parameters
    ---------
    x : array_like
        Array or sequence containing the data to be analyzed.
    y : array_like
        Array or sequence containing the data to be analyzed. If this is
        the same object in memoery as x (i.e. _spectral_helper(x, x, ...)),
        the extra computations are spared.
    fs : float, optional
        Sampling frequency of the time series. Defaults to 1.0.
    window : str or tuple or array_like, optional
        Desired window to use. See `get_window` for a list of windows and
        required parameters. If `window` is array_like it will be used
        directly as the window and its length will be used for nperseg.
        Defaults to 'hann'.
    nperseg : int, optional
        Length of each segment.  Defaults to 256.
    noverlap : int, optional
        Number of points to overlap between segments. If None,
        ``noverlap = nperseg // 2``.  Defaults to None.
    nfft : int, optional
        Length of the FFT used, if a zero padded FFT is desired.  If None,
        the FFT length is `nperseg`. Defaults to None.
    detrend : str or function or False, optional
        Specifies how to detrend each segment. If `detrend` is a string,
        it is passed as the ``type`` argument to `detrend`.  If it is a
        function, it takes a segment and returns a detrended segment.
        If `detrend` is False, no detrending is done.  Defaults to 'constant'.
    return_onesided : bool, optional
        If True, return a one-sided spectrum for real data. If False return
        a two-sided spectrum. Note that for complex data, a two-sided
        spectrum is always returned.
    scaling : { 'density', 'spectrum' }, optional
        Selects between computing the cross spectral density ('density')
        where `Pxy` has units of V**2/Hz and computing the cross spectrum
        ('spectrum') where `Pxy` has units of V**2, if `x` and `y` are
        measured in V and fs is measured in Hz.  Defaults to 'density'
    axis : int, optional
        Axis along which the periodogram is computed; the default is over
        the last axis (i.e. ``axis=-1``).
    mode : str, optional
        Defines what kind of return values are expected. Options are ['psd',
        'complex', 'magnitude', 'angle', 'phase'].

    Returns
    -------
    freqs : ndarray
        Array of sample frequencies.
    t : ndarray
        Array of times corresponding to each data segment
    result : ndarray
        Array of output data, contents dependent on *mode* kwarg.

    References
    ----------
    .. [1] Stack Overflow, "Rolling window for 1D arrays in Numpy?",
        http://stackoverflow.com/a/6811241
    .. [2] Stack Overflow, "Using strides for an efficient moving average
        filter", http://stackoverflow.com/a/4947453

    Notes
    -----
    Adapted from matplotlib.mlab
    .. versionadded:: 0.16.0
    """
    from scipy import fftpack
    from scipy.signal import signaltools
    from scipy.signal.windows import get_window

    if mode not in ['psd', 'complex', 'magnitude', 'angle', 'phase']:
        raise ValueError("Unknown value for mode %s, must be one of: "
                         "'default', 'psd', 'complex', "
                         "'magnitude', 'angle', 'phase'" % mode)

    # If x and y are the same object we can save ourselves some computation.
    same_data = y is x

    if not same_data and mode != 'psd':
        raise ValueError("x and y must be equal if mode is not 'psd'")

    axis = int(axis)

    # Ensure we have np.arrays, get outdtype
    x = np.asarray(x)
    if not same_data:
        y = np.asarray(y)
        outdtype = np.result_type(x,y,np.complex64)
    else:
        outdtype = np.result_type(x,np.complex64)

    if not same_data:
        # Check if we can broadcast the outer axes together
        xouter = list(x.shape)
        youter = list(y.shape)
        xouter.pop(axis)
        youter.pop(axis)
        try:
            outershape = np.broadcast(np.empty(xouter), np.empty(youter)).shape
        except ValueError:
            raise ValueError('x and y cannot be broadcast together.')

    if same_data:
        if x.size == 0:
            return np.empty(x.shape), np.empty(x.shape), np.empty(x.shape)
    else:
        if x.size == 0 or y.size == 0:
            outshape = outershape + (min([x.shape[axis], y.shape[axis]]),)
            emptyout = np.rollaxis(np.empty(outshape), -1, axis)
            return emptyout, emptyout, emptyout

    if x.ndim > 1:
        if axis != -1:
            x = np.rollaxis(x, axis, len(x.shape))
            if not same_data and y.ndim > 1:
                y = np.rollaxis(y, axis, len(y.shape))

    # Check if x and y are the same length, zero-pad if necessary
    if not same_data:
        if x.shape[-1] != y.shape[-1]:
            if x.shape[-1] < y.shape[-1]:
                pad_shape = list(x.shape)
                pad_shape[-1] = y.shape[-1] - x.shape[-1]
                x = np.concatenate((x, np.zeros(pad_shape)), -1)
            else:
                pad_shape = list(y.shape)
                pad_shape[-1] = x.shape[-1] - y.shape[-1]
                y = np.concatenate((y, np.zeros(pad_shape)), -1)

    # X and Y are same length now, can test nperseg with either
    if x.shape[-1] < nperseg:
        warnings.warn('nperseg = {0:d}, is greater than input length = {1:d}, '
                      'using nperseg = {1:d}'.format(nperseg, x.shape[-1]))
        nperseg = x.shape[-1]

    nperseg = int(nperseg)
    if nperseg < 1:
        raise ValueError('nperseg must be a positive integer')

    if nfft is None:
        nfft = nperseg
    elif nfft < nperseg:
        raise ValueError('nfft must be greater than or equal to nperseg.')
    else:
        nfft = int(nfft)

    if noverlap is None:
        noverlap = nperseg//2
    elif noverlap >= nperseg:
        raise ValueError('noverlap must be less than nperseg.')
    else:
        noverlap = int(noverlap)

    # Handle detrending and window functions
    if not detrend:
        def detrend_func(d):
            return d
    elif not hasattr(detrend, '__call__'):
        def detrend_func(d):
            return signaltools.detrend(d, type=detrend, axis=-1)
    elif axis != -1:
        # Wrap this function so that it receives a shape that it could
        # reasonably expect to receive.
        def detrend_func(d):
            d = np.rollaxis(d, -1, axis)
            d = detrend(d)
            return np.rollaxis(d, axis, len(d.shape))
    else:
        detrend_func = detrend

    if isinstance(window, string_types) or type(window) is tuple:
        win = get_window(window, nperseg)
    else:
        win = np.asarray(window)
        if len(win.shape) != 1:
            raise ValueError('window must be 1-D')
        if win.shape[0] != nperseg:
            raise ValueError('window must have length of nperseg')

    if np.result_type(win,np.complex64) != outdtype:
        win = win.astype(outdtype)

    if mode == 'psd':
        if scaling == 'density':
            scale = 1.0 / (fs * (win*win).sum())
        elif scaling == 'spectrum':
            scale = 1.0 / win.sum()**2
        else:
            raise ValueError('Unknown scaling: %r' % scaling)
    else:
        scale = 1

    if return_onesided is True:
        if np.iscomplexobj(x):
            sides = 'twosided'
        else:
            sides = 'onesided'
            if not same_data:
                if np.iscomplexobj(y):
                    sides = 'twosided'
    else:
        sides = 'twosided'

    if sides == 'twosided':
        num_freqs = nfft
    elif sides == 'onesided':
        if nfft % 2:
            num_freqs = (nfft + 1)//2
        else:
            num_freqs = nfft//2 + 1

    # Perform the windowed FFTs
    result = _fft_helper(x, win, detrend_func, nperseg, noverlap, nfft)
    result = result[..., :num_freqs]
    freqs = fftpack.fftfreq(nfft, 1/fs)[:num_freqs]

    if not same_data:
        # All the same operations on the y data
        result_y = _fft_helper(y, win, detrend_func, nperseg, noverlap, nfft)
        result_y = result_y[..., :num_freqs]
        result = np.conjugate(result) * result_y
    elif mode == 'psd':
        result = np.conjugate(result) * result
    elif mode == 'magnitude':
        result = np.absolute(result)
    elif mode == 'angle' or mode == 'phase':
        result = np.angle(result)
    elif mode == 'complex':
        pass

    result *= scale
    if sides == 'onesided':
        if nfft % 2:
            result[...,1:] *= 2
        else:
            # Last point is unpaired Nyquist freq point, don't double
            result[...,1:-1] *= 2

    t = np.arange(nperseg/2, x.shape[-1] - nperseg/2 + 1, nperseg - noverlap)/float(fs)

    if sides != 'twosided' and not nfft % 2:
        # get the last value correctly, it is negative otherwise
        freqs[-1] *= -1

    # we unwrap the phase here to handle the onesided vs. twosided case
    if mode == 'phase':
        result = np.unwrap(result, axis=-1)

    result = result.astype(outdtype)

    # All imaginary parts are zero anyways
    if same_data and mode != 'complex':
        result = result.real

    # Output is going to have new last axis for window index
    if axis != -1:
        # Specify as positive axis index
        if axis < 0:
            axis = len(result.shape)-1-axis

        # Roll frequency axis back to axis where the data came from
        result = np.rollaxis(result, -1, axis)
    else:
        # Make sure window/time index is last axis
        result = np.rollaxis(result, -1, -2)

    return freqs, t, result


def _fft_helper(x, win, detrend_func, nperseg, noverlap, nfft):
    """
    Calculate windowed FFT, for internal use by scipy.signal._spectral_helper
    This is a helper function that does the main FFT calculation for
    _spectral helper. All input valdiation is performed there, and the data
    axis is assumed to be the last axis of x. It is not designed to be called
    externally. The windows are not averaged over; the result from each window
    is returned.

    Returns
    -------
    result : ndarray
        Array of FFT data

    References
    ----------
    .. [1] Stack Overflow, "Repeat NumPy array without replicating data?",
        http://stackoverflow.com/a/5568169

    Notes
    -----
    Adapted from matplotlib.mlab
    .. versionadded:: 0.16.0
    """
    from scipy import fftpack

    # Created strided array of data segments
    if nperseg == 1 and noverlap == 0:
        result = x[..., np.newaxis]
    else:
        step = nperseg - noverlap
        shape = x.shape[:-1]+((x.shape[-1]-noverlap)//step, nperseg)
        strides = x.strides[:-1]+(step*x.strides[-1], x.strides[-1])
        result = np.lib.stride_tricks.as_strided(x, shape=shape,
                                                 strides=strides)

    # Detrend each data segment individually
    result = detrend_func(result)

    # Apply window by multiplication
    result = win * result

    # Perform the fft. Acts on last axis by default. Zero-pads automatically
    result = fftpack.fft(result, n=nfft)

    return result


def get_spectrogram():
    '''helper function to get relevant spectrogram'''
    from .utils import check_version
    if check_version('scipy', '0.16.0'):
        from scipy.signal import spectrogram
    else:
        spectrogram = _spectrogram
    return spectrogram


###############################################################################
# Misc utilities

def assert_true(expr, msg='False is not True'):
    """Fake assert_true without message"""
    if not expr:
        raise AssertionError(msg)


def assert_is(expr1, expr2, msg=None):
    """Fake assert_is without message"""
    assert_true(expr2 is expr2, msg)


def assert_is_not(expr1, expr2, msg=None):
    """Fake assert_is_not without message"""
    assert_true(expr1 is not expr2, msg)


def _read_volume_info(fobj):
    """An implementation of nibabel.freesurfer.io._read_volume_info, since old
    versions of nibabel (<=2.1.0) don't have it.
    """
    volume_info = dict()
    head = np.fromfile(fobj, '>i4', 1)
    if not np.array_equal(head, [20]):  # Read two bytes more
        head = np.concatenate([head, np.fromfile(fobj, '>i4', 2)])
        if not np.array_equal(head, [2, 0, 20]):
            warnings.warn("Unknown extension code.")
            return volume_info

    volume_info['head'] = head
    for key in ['valid', 'filename', 'volume', 'voxelsize', 'xras', 'yras',
                'zras', 'cras']:
        pair = fobj.readline().decode('utf-8').split('=')
        if pair[0].strip() != key or len(pair) != 2:
            raise IOError('Error parsing volume info.')
        if key in ('valid', 'filename'):
            volume_info[key] = pair[1].strip()
        elif key == 'volume':
            volume_info[key] = np.array(pair[1].split()).astype(int)
        else:
            volume_info[key] = np.array(pair[1].split()).astype(float)
    # Ignore the rest
    return volume_info


def _serialize_volume_info(volume_info):
    """An implementation of nibabel.freesurfer.io._serialize_volume_info, since
    old versions of nibabel (<=2.1.0) don't have it."""
    keys = ['head', 'valid', 'filename', 'volume', 'voxelsize', 'xras', 'yras',
            'zras', 'cras']
    diff = set(volume_info.keys()).difference(keys)
    if len(diff) > 0:
        raise ValueError('Invalid volume info: %s.' % diff.pop())

    strings = list()
    for key in keys:
        if key == 'head':
            if not (np.array_equal(volume_info[key], [20]) or np.array_equal(
                    volume_info[key], [2, 0, 20])):
                warnings.warn("Unknown extension code.")
            strings.append(np.array(volume_info[key], dtype='>i4').tostring())
        elif key in ('valid', 'filename'):
            val = volume_info[key]
            strings.append('{0} = {1}\n'.format(key, val).encode('utf-8'))
        elif key == 'volume':
            val = volume_info[key]
            strings.append('{0} = {1} {2} {3}\n'.format(
                key, val[0], val[1], val[2]).encode('utf-8'))
        else:
            val = volume_info[key]
            strings.append('{0} = {1:0.10g} {2:0.10g} {3:0.10g}\n'.format(
                key.ljust(6), val[0], val[1], val[2]).encode('utf-8'))
    return b''.join(strings)


##############################################################################
# adapted from scikit-learn


def is_classifier(estimator):
    """Returns True if the given estimator is (probably) a classifier.

    Parameters
    ----------
    estimator : object
        Estimator object to test.

    Returns
    -------
    out : bool
        True if estimator is a classifier and False otherwise.
    """
    return getattr(estimator, "_estimator_type", None) == "classifier"


def is_regressor(estimator):
    """Returns True if the given estimator is (probably) a regressor.

    Parameters
    ----------
    estimator : object
        Estimator object to test.

    Returns
    -------
    out : bool
        True if estimator is a regressor and False otherwise.
    """
    return getattr(estimator, "_estimator_type", None) == "regressor"


class BaseEstimator(object):
    """Base class for all estimators in scikit-learn

    Notes
    -----
    All estimators should specify all the parameters that can be set
    at the class level in their ``__init__`` as explicit keyword
    arguments (no ``*args`` or ``**kwargs``).
    """

    @classmethod
    def _get_param_names(cls):
        """Get parameter names for the estimator"""
        try:
            from inspect import signature
        except ImportError:
            from .externals.funcsigs import signature
        # fetch the constructor or the original constructor before
        # deprecation wrapping if any
        init = getattr(cls.__init__, 'deprecated_original', cls.__init__)
        if init is object.__init__:
            # No explicit constructor to introspect
            return []

        # introspect the constructor arguments to find the model parameters
        # to represent
        init_signature = signature(init)
        # Consider the constructor parameters excluding 'self'
        parameters = [p for p in init_signature.parameters.values()
                      if p.name != 'self' and p.kind != p.VAR_KEYWORD]
        for p in parameters:
            if p.kind == p.VAR_POSITIONAL:
                raise RuntimeError("scikit-learn estimators should always "
                                   "specify their parameters in the signature"
                                   " of their __init__ (no varargs)."
                                   " %s with constructor %s doesn't "
                                   " follow this convention."
                                   % (cls, init_signature))
        # Extract and sort argument names excluding 'self'
        return sorted([p.name for p in parameters])

    def get_params(self, deep=True):
        """Get parameters for this estimator.

        Parameters
        ----------
        deep : boolean, optional
            If True, will return the parameters for this estimator and
            contained subobjects that are estimators.

        Returns
        -------
        params : mapping of string to any
            Parameter names mapped to their values.
        """
        out = dict()
        for key in self._get_param_names():
            # We need deprecation warnings to always be on in order to
            # catch deprecated param values.
            # This is set in utils/__init__.py but it gets overwritten
            # when running under python3 somehow.
            warnings.simplefilter("always", DeprecationWarning)
            try:
                with warnings.catch_warnings(record=True) as w:
                    value = getattr(self, key, None)
                if len(w) and w[0].category == DeprecationWarning:
                    # if the parameter is deprecated, don't show it
                    continue
            finally:
                warnings.filters.pop(0)

            # XXX: should we rather test if instance of estimator?
            if deep and hasattr(value, 'get_params'):
                deep_items = value.get_params().items()
                out.update((key + '__' + k, val) for k, val in deep_items)
            out[key] = value
        return out

    def set_params(self, **params):
        """Set the parameters of this estimator.
        The method works on simple estimators as well as on nested objects
        (such as pipelines). The latter have parameters of the form
        ``<component>__<parameter>`` so that it's possible to update each
        component of a nested object.
        Returns
        -------
        self
        """
        if not params:
            # Simple optimisation to gain speed (inspect is slow)
            return self
        valid_params = self.get_params(deep=True)
        for key, value in iteritems(params):
            split = key.split('__', 1)
            if len(split) > 1:
                # nested objects case
                name, sub_name = split
                if name not in valid_params:
                    raise ValueError('Invalid parameter %s for estimator %s. '
                                     'Check the list of available parameters '
                                     'with `estimator.get_params().keys()`.' %
                                     (name, self))
                sub_object = valid_params[name]
                sub_object.set_params(**{sub_name: value})
            else:
                # simple objects case
                if key not in valid_params:
                    raise ValueError('Invalid parameter %s for estimator %s. '
                                     'Check the list of available parameters '
                                     'with `estimator.get_params().keys()`.' %
                                     (key, self.__class__.__name__))
                setattr(self, key, value)
        return self

    def __repr__(self):
        from sklearn.base import _pprint
        class_name = self.__class__.__name__
        return '%s(%s)' % (class_name, _pprint(self.get_params(deep=False),
                                               offset=len(class_name),),)

    # __getstate__ and __setstate__ are omitted because they only contain
    # conditionals that are not satisfied by our objects (e.g.,
    # ``if type(self).__module__.startswith('sklearn.')``.


###############################################################################
# Copied from sklearn to simplify code paths

def empirical_covariance(X, assume_centered=False):
    """Computes the Maximum likelihood covariance estimator


    Parameters
    ----------
    X : ndarray, shape (n_samples, n_features)
        Data from which to compute the covariance estimate

    assume_centered : Boolean
        If True, data are not centered before computation.
        Useful when working with data whose mean is almost, but not exactly
        zero.
        If False, data are centered before computation.

    Returns
    -------
    covariance : 2D ndarray, shape (n_features, n_features)
        Empirical covariance (Maximum Likelihood Estimator).

    """
    X = np.asarray(X)
    if X.ndim == 1:
        X = np.reshape(X, (1, -1))

    if X.shape[0] == 1:
        warnings.warn("Only one sample available. "
                      "You may want to reshape your data array")

    if assume_centered:
        covariance = np.dot(X.T, X) / X.shape[0]
    else:
        covariance = np.cov(X.T, bias=1)

    if covariance.ndim == 0:
        covariance = np.array([[covariance]])
    return covariance


class EmpiricalCovariance(BaseEstimator):
    """Maximum likelihood covariance estimator

    Read more in the :ref:`User Guide <covariance>`.

    Parameters
    ----------
    store_precision : bool
        Specifies if the estimated precision is stored.

    assume_centered : bool
        If True, data are not centered before computation.
        Useful when working with data whose mean is almost, but not exactly
        zero.
        If False (default), data are centered before computation.

    Attributes
    ----------
    covariance_ : 2D ndarray, shape (n_features, n_features)
        Estimated covariance matrix

    precision_ : 2D ndarray, shape (n_features, n_features)
        Estimated pseudo-inverse matrix.
        (stored only if store_precision is True)

    """
    def __init__(self, store_precision=True, assume_centered=False):
        self.store_precision = store_precision
        self.assume_centered = assume_centered

    def _set_covariance(self, covariance):
        """Saves the covariance and precision estimates

        Storage is done accordingly to `self.store_precision`.
        Precision stored only if invertible.

        Parameters
        ----------
        covariance : 2D ndarray, shape (n_features, n_features)
            Estimated covariance matrix to be stored, and from which precision
            is computed.

        """
        # covariance = check_array(covariance)
        # set covariance
        self.covariance_ = covariance
        # set precision
        if self.store_precision:
            self.precision_ = linalg.pinvh(covariance)
        else:
            self.precision_ = None

    def get_precision(self):
        """Getter for the precision matrix.

        Returns
        -------
        precision_ : array-like,
            The precision matrix associated to the current covariance object.

        """
        if self.store_precision:
            precision = self.precision_
        else:
            precision = linalg.pinvh(self.covariance_)
        return precision

    def fit(self, X, y=None):
        """Fits the Maximum Likelihood Estimator covariance model
        according to the given training data and parameters.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
          Training data, where n_samples is the number of samples and
          n_features is the number of features.

        y : not used, present for API consistence purpose.

        Returns
        -------
        self : object
            Returns self.

        """
        # X = check_array(X)
        if self.assume_centered:
            self.location_ = np.zeros(X.shape[1])
        else:
            self.location_ = X.mean(0)
        covariance = empirical_covariance(
            X, assume_centered=self.assume_centered)
        self._set_covariance(covariance)

        return self

    def score(self, X_test, y=None):
        """Computes the log-likelihood of a Gaussian data set with
        `self.covariance_` as an estimator of its covariance matrix.

        Parameters
        ----------
        X_test : array-like, shape = [n_samples, n_features]
            Test data of which we compute the likelihood, where n_samples is
            the number of samples and n_features is the number of features.
            X_test is assumed to be drawn from the same distribution than
            the data used in fit (including centering).

        y : not used, present for API consistence purpose.

        Returns
        -------
        res : float
            The likelihood of the data set with `self.covariance_` as an
            estimator of its covariance matrix.

        """
        # compute empirical covariance of the test set
        test_cov = empirical_covariance(
            X_test - self.location_, assume_centered=True)
        # compute log likelihood
        res = log_likelihood(test_cov, self.get_precision())

        return res

    def error_norm(self, comp_cov, norm='frobenius', scaling=True,
                   squared=True):
        """Computes the Mean Squared Error between two covariance estimators.
        (In the sense of the Frobenius norm).

        Parameters
        ----------
        comp_cov : array-like, shape = [n_features, n_features]
            The covariance to compare with.

        norm : str
            The type of norm used to compute the error. Available error types:
            - 'frobenius' (default): sqrt(tr(A^t.A))
            - 'spectral': sqrt(max(eigenvalues(A^t.A))
            where A is the error ``(comp_cov - self.covariance_)``.

        scaling : bool
            If True (default), the squared error norm is divided by n_features.
            If False, the squared error norm is not rescaled.

        squared : bool
            Whether to compute the squared error norm or the error norm.
            If True (default), the squared error norm is returned.
            If False, the error norm is returned.

        Returns
        -------
        The Mean Squared Error (in the sense of the Frobenius norm) between
        `self` and `comp_cov` covariance estimators.

        """
        # compute the error
        error = comp_cov - self.covariance_
        # compute the error norm
        if norm == "frobenius":
            squared_norm = np.sum(error ** 2)
        elif norm == "spectral":
            squared_norm = np.amax(linalg.svdvals(np.dot(error.T, error)))
        else:
            raise NotImplementedError(
                "Only spectral and frobenius norms are implemented")
        # optionally scale the error norm
        if scaling:
            squared_norm = squared_norm / error.shape[0]
        # finally get either the squared norm or the norm
        if squared:
            result = squared_norm
        else:
            result = np.sqrt(squared_norm)

        return result

    def mahalanobis(self, observations):
        """Computes the squared Mahalanobis distances of given observations.

        Parameters
        ----------
        observations : array-like, shape = [n_observations, n_features]
            The observations, the Mahalanobis distances of the which we
            compute. Observations are assumed to be drawn from the same
            distribution than the data used in fit.

        Returns
        -------
        mahalanobis_distance : array, shape = [n_observations,]
            Squared Mahalanobis distances of the observations.

        """
        precision = self.get_precision()
        # compute mahalanobis distances
        centered_obs = observations - self.location_
        mahalanobis_dist = np.sum(
            np.dot(centered_obs, precision) * centered_obs, 1)

        return mahalanobis_dist


def log_likelihood(emp_cov, precision):
    """Computes the sample mean of the log_likelihood under a covariance model

    computes the empirical expected log-likelihood (accounting for the
    normalization terms and scaling), allowing for universal comparison (beyond
    this software package)

    Parameters
    ----------
    emp_cov : 2D ndarray (n_features, n_features)
        Maximum Likelihood Estimator of covariance

    precision : 2D ndarray (n_features, n_features)
        The precision matrix of the covariance model to be tested

    Returns
    -------
    sample mean of the log-likelihood
    """
    p = precision.shape[0]
    log_likelihood_ = - np.sum(emp_cov * precision) + _logdet(precision)
    log_likelihood_ -= p * np.log(2 * np.pi)
    log_likelihood_ /= 2.
    return log_likelihood_


# sklearn uses np.linalg for this, but ours is more robust to zero eigenvalues

def _logdet(A):
    """Compute the log det of a positive semidefinite matrix."""
    vals = linalg.eigh(A)[0]
    # avoid negative (numerical errors) or zero (semi-definite matrix) values
    tol = vals.max() * vals.size * np.finfo(np.float64).eps
    vals = np.where(vals > tol, vals, tol)
    return np.sum(np.log(vals))


###############################################################################
# NumPy einsum backward compat (allow "optimize" arg and fix 1.14.0 bug)
# XXX eventually we should hand-tune our `einsum` calls given our array sizes!

_has_optimize = (LooseVersion(np.__version__) >= '1.12')


def einsum(*args, **kwargs):
    if 'optimize' in kwargs:
        if not _has_optimize:
            kwargs.pop('optimize')
    elif _has_optimize:
        kwargs['optimize'] = False
    return np.einsum(*args, **kwargs)


###############################################################################
# From nilearn

def _crop_colorbar(cbar, cbar_vmin, cbar_vmax):
    """
    crop a colorbar to show from cbar_vmin to cbar_vmax

    Used when symmetric_cbar=False is used.
    """
    if (cbar_vmin is None) and (cbar_vmax is None):
        return
    cbar_tick_locs = cbar.locator.locs
    if cbar_vmax is None:
        cbar_vmax = cbar_tick_locs.max()
    if cbar_vmin is None:
        cbar_vmin = cbar_tick_locs.min()
    new_tick_locs = np.linspace(cbar_vmin, cbar_vmax,
                                len(cbar_tick_locs))
    cbar.ax.set_ylim(cbar.norm(cbar_vmin), cbar.norm(cbar_vmax))
    outline = cbar.outline.get_xy()
    outline[:2, 1] += cbar.norm(cbar_vmin)
    outline[2:6, 1] -= (1. - cbar.norm(cbar_vmax))
    outline[6:, 1] += cbar.norm(cbar_vmin)
    cbar.outline.set_xy(outline)
    cbar.set_ticks(new_tick_locs, update_ticks=True)