1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
|
# -*- coding: utf-8 -*-
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Eric Larson <larsoner@uw.edu>
# Mark Wronkiewicz <wronk@uw.edu>
#
# License: BSD (3-clause)
#
# Many of the idealized equations behind these calculations can be found in:
# 1) Realistic conductivity geometry model of the human head for interpretation
# of neuromagnetic data. Hamalainen and Sarvas, 1989. Specific to MNE
# 2) EEG and MEG: forward solutions for inverse methods. Mosher, Leahy, and
# Lewis, 1999. Generalized discussion of forward solutions.
import numpy as np
from copy import deepcopy
from ..surface import fast_cross_3d, _project_onto_surface
from ..io.constants import FIFF, FWD
from ..transforms import apply_trans
from ..utils import logger, verbose, _pl, warn
from ..parallel import parallel_func
from ..io.compensator import get_current_comp, make_compensator
from ..io.pick import pick_types
from ..fixes import einsum
# #############################################################################
# COIL SPECIFICATION AND FIELD COMPUTATION MATRIX
def _dup_coil_set(coils, coord_frame, t):
"""Make a duplicate."""
if t is not None and coord_frame != t['from']:
raise RuntimeError('transformation frame does not match the coil set')
coils = deepcopy(coils)
if t is not None:
coord_frame = t['to']
for coil in coils:
for key in ('ex', 'ey', 'ez'):
if key in coil:
coil[key] = apply_trans(t['trans'], coil[key], False)
coil['r0'] = apply_trans(t['trans'], coil['r0'])
coil['rmag'] = apply_trans(t['trans'], coil['rmag'])
coil['cosmag'] = apply_trans(t['trans'], coil['cosmag'], False)
coil['coord_frame'] = t['to']
return coils, coord_frame
def _check_coil_frame(coils, coord_frame, bem):
"""Check to make sure the coils are in the correct coordinate frame."""
if coord_frame != FIFF.FIFFV_COORD_MRI:
if coord_frame == FIFF.FIFFV_COORD_HEAD:
# Make a transformed duplicate
coils, coord_Frame = _dup_coil_set(coils, coord_frame,
bem['head_mri_t'])
else:
raise RuntimeError('Bad coil coordinate frame %s' % coord_frame)
return coils, coord_frame
def _lin_field_coeff(surf, mult, rmags, cosmags, ws, bins, n_jobs):
"""Parallel wrapper for _do_lin_field_coeff to compute linear coefficients.
Parameters
----------
surf : dict
Dict containing information for one surface of the BEM
mult : float
Multiplier for particular BEM surface (Iso Skull Approach discussed in
Mosher et al., 1999 and Hamalainen and Sarvas, 1989 Section III?)
rmag : ndarray, shape (n_integration_pts, 3)
3D positions of MEG coil integration points (from coil['rmag'])
cosmag : ndarray, shape (n_integration_pts, 3)
Direction of the MEG coil integration points (from coil['cosmag'])
ws : ndarray, shape (n_integration_pts,)
Weights for MEG coil integration points
bins : ndarray, shape (n_integration_points,)
The sensor assignments for each rmag/cosmag/w.
n_jobs : int
Number of jobs to run in parallel
Returns
-------
coeff : list
Linear coefficients with lead fields for each BEM vertex on each sensor
(?)
"""
parallel, p_fun, _ = parallel_func(_do_lin_field_coeff, n_jobs)
nas = np.array_split
coeffs = parallel(p_fun(surf['rr'], t, tn, ta, rmags, cosmags, ws, bins)
for t, tn, ta in zip(nas(surf['tris'], n_jobs),
nas(surf['tri_nn'], n_jobs),
nas(surf['tri_area'], n_jobs)))
return mult * np.sum(coeffs, axis=0)
def _do_lin_field_coeff(bem_rr, tris, tn, ta, rmags, cosmags, ws, bins):
"""Compute field coefficients (parallel-friendly).
See section IV of Mosher et al., 1999 (specifically equation 35).
Parameters
----------
bem_rr : ndarray, shape (n_BEM_vertices, 3)
Positions on one BEM surface in 3-space. 2562 BEM vertices for BEM with
5120 triangles (ico-4)
tris : ndarray, shape (n_BEM_vertices, 3)
Vertex indices for each triangle (referring to bem_rr)
tn : ndarray, shape (n_BEM_vertices, 3)
Triangle unit normal vectors
ta : ndarray, shape (n_BEM_vertices,)
Triangle areas
rmag : ndarray, shape (n_sensor_pts, 3)
3D positions of MEG coil integration points (from coil['rmag'])
cosmag : ndarray, shape (n_sensor_pts, 3)
Direction of the MEG coil integration points (from coil['cosmag'])
ws : ndarray, shape (n_sensor_pts,)
Weights for MEG coil integration points
bins : ndarray, shape (n_sensor_pts,)
The sensor assignments for each rmag/cosmag/w.
Returns
-------
coeff : ndarray, shape (n_MEG_sensors, n_BEM_vertices)
Linear coefficients with effect of each BEM vertex on each sensor (?)
"""
coeff = np.zeros((bins[-1] + 1, len(bem_rr)))
w_cosmags = ws[:, np.newaxis] * cosmags
diff = rmags[:, np.newaxis, :] - bem_rr
den = np.sum(diff * diff, axis=-1)
den *= np.sqrt(den)
den *= 3
for tri, tri_nn, tri_area in zip(tris, tn, ta):
# Accumulate the coefficients for each triangle node and add to the
# corresponding coefficient matrix
# Simple version (bem_lin_field_coeffs_simple)
# The following is equivalent to:
# tri_rr = bem_rr[tri]
# for j, coil in enumerate(coils['coils']):
# x = func(coil['rmag'], coil['cosmag'],
# tri_rr, tri_nn, tri_area)
# res = np.sum(coil['w'][np.newaxis, :] * x, axis=1)
# coeff[j][tri + off] += mult * res
c = fast_cross_3d(diff[:, tri], tri_nn)
c *= w_cosmags[:, np.newaxis]
for ti in range(3):
x = np.sum(c[:, ti], axis=-1)
x /= den[:, tri[ti]] / tri_area
coeff[:, tri[ti]] += \
np.bincount(bins, weights=x, minlength=bins[-1] + 1)
return coeff
def _concatenate_coils(coils):
"""Concatenate MEG coil parameters."""
rmags = np.concatenate([coil['rmag'] for coil in coils])
cosmags = np.concatenate([coil['cosmag'] for coil in coils])
ws = np.concatenate([coil['w'] for coil in coils])
n_int = np.array([len(coil['rmag']) for coil in coils])
if n_int[-1] == 0:
# We assume each sensor has at least one integration point,
# which should be a safe assumption. But let's check it here, since
# our code elsewhere relies on bins[-1] + 1 being the number of sensors
raise RuntimeError('not supported')
bins = np.repeat(np.arange(len(n_int)), n_int)
return rmags, cosmags, ws, bins
def _bem_specify_coils(bem, coils, coord_frame, mults, n_jobs):
"""Set up for computing the solution at a set of MEG coils.
Parameters
----------
bem : dict
BEM information
coils : list of dict, len(n_MEG_sensors)
MEG sensor information dicts
coord_frame : int
Class constant identifying coordinate frame
mults : ndarray, shape (1, n_BEM_vertices)
Multiplier for every vertex in BEM
n_jobs : int
Number of jobs to run in parallel
Returns
-------
sol: ndarray, shape (n_MEG_sensors, n_BEM_vertices)
MEG solution
"""
# Make sure MEG coils are in MRI coordinate frame to match BEM coords
coils, coord_frame = _check_coil_frame(coils, coord_frame, bem)
# leaving this in in case we want to easily add in the future
# if method != 'simple': # in ['ferguson', 'urankar']:
# raise NotImplementedError
# Compute the weighting factors to obtain the magnetic field in the linear
# potential approximation
# Process each of the surfaces
rmags, cosmags, ws, bins = _concatenate_coils(coils)
lens = np.cumsum(np.r_[0, [len(s['rr']) for s in bem['surfs']]])
sol = np.zeros((bins[-1] + 1, bem['solution'].shape[1]))
lims = np.concatenate([np.arange(0, sol.shape[0], 100), [sol.shape[0]]])
# Compute coeffs for each surface, one at a time
for o1, o2, surf, mult in zip(lens[:-1], lens[1:],
bem['surfs'], bem['field_mult']):
coeff = _lin_field_coeff(surf, mult, rmags, cosmags, ws, bins, n_jobs)
# put through the bem (in chunks to save memory)
for start, stop in zip(lims[:-1], lims[1:]):
sol[start:stop] += np.dot(coeff[start:stop],
bem['solution'][o1:o2])
sol *= mults
return sol
def _bem_specify_els(bem, els, mults):
"""Set up for computing the solution at a set of EEG electrodes.
Parameters
----------
bem : dict
BEM information
els : list of dict, len(n_EEG_sensors)
List of EEG sensor information dicts
mults: ndarray, shape (1, n_BEM_vertices)
Multiplier for every vertex in BEM
Returns
-------
sol : ndarray, shape (n_EEG_sensors, n_BEM_vertices)
EEG solution
"""
sol = np.zeros((len(els), bem['solution'].shape[1]))
scalp = bem['surfs'][0]
# Operate on all integration points for all electrodes (in MRI coords)
rrs = np.concatenate([apply_trans(bem['head_mri_t']['trans'], el['rmag'])
for el in els], axis=0)
ws = np.concatenate([el['w'] for el in els])
tri_weights, tri_idx = _project_onto_surface(rrs, scalp)
tri_weights *= ws
weights = einsum('ij,jik->jk', tri_weights,
bem['solution'][scalp['tris'][tri_idx]])
# there are way more vertices than electrodes generally, so let's iterate
# over the electrodes
edges = np.concatenate([[0], np.cumsum([len(el['w']) for el in els])])
for ii, (start, stop) in enumerate(zip(edges[:-1], edges[1:])):
sol[ii] = weights[start:stop].sum(0)
sol *= mults
return sol
# #############################################################################
# COMPENSATION
def _make_ctf_comp_coils(info, coils):
"""Get the correct compensator for CTF coils."""
# adapted from mne_make_ctf_comp() from mne_ctf_comp.c
logger.info('Setting up compensation data...')
comp_num = get_current_comp(info)
if comp_num is None or comp_num == 0:
logger.info(' No compensation set. Nothing more to do.')
return None
# Need to meaningfully populate comp['set'] dict a.k.a. compset
n_comp_ch = sum([c['kind'] == FIFF.FIFFV_MEG_CH for c in info['chs']])
logger.info(' %d out of %d channels have the compensation set.'
% (n_comp_ch, len(coils)))
# Find the desired compensation data matrix
compensator = make_compensator(info, 0, comp_num, True)
logger.info(' Desired compensation data (%s) found.' % comp_num)
logger.info(' All compensation channels found.')
logger.info(' Preselector created.')
logger.info(' Compensation data matrix created.')
logger.info(' Postselector created.')
return compensator
# #############################################################################
# BEM COMPUTATION
_MAG_FACTOR = 1e-7 # μ_0 / (4π)
# def _bem_inf_pot(rd, Q, rp):
# """The infinite medium potential in one direction. See Eq. (8) in
# Mosher, 1999"""
# NOTE: the (μ_0 / (4π) factor has been moved to _prep_field_communication
# diff = rp - rd # (Observation point position) - (Source position)
# diff2 = np.sum(diff * diff, axis=1) # Squared magnitude of diff
# # (Dipole moment) dot (diff) / (magnitude ^ 3)
# return np.sum(Q * diff, axis=1) / (diff2 * np.sqrt(diff2))
def _bem_inf_pots(mri_rr, bem_rr, mri_Q=None):
"""Compute the infinite medium potential in all 3 directions.
Parameters
----------
mri_rr : ndarray, shape (n_dipole_vertices, 3)
Chunk of 3D dipole positions in MRI coordinates
bem_rr: ndarray, shape (n_BEM_vertices, 3)
3D vertex positions for one BEM surface
mri_Q : ndarray, shape (3, 3)
3x3 head -> MRI transform. I.e., head_mri_t.dot(np.eye(3))
Returns
-------
ndarray : shape(n_dipole_vertices, 3, n_BEM_vertices)
"""
# NOTE: the (μ_0 / (4π) factor has been moved to _prep_field_communication
# Get position difference vector between BEM vertex and dipole
diff = np.empty((len(mri_rr), 3, len(bem_rr)))
for ri, rr in enumerate(mri_rr):
this_diff = bem_rr - rr
diff_norm = np.sum(this_diff * this_diff, axis=1, keepdims=True)
diff_norm *= np.sqrt(diff_norm)
diff_norm[diff_norm == 0] = 1
if mri_Q is not None:
this_diff = np.dot(this_diff, mri_Q.T)
this_diff /= diff_norm
diff[ri] = this_diff.T
return diff
# This function has been refactored to process all points simultaneously
# def _bem_inf_field(rd, Q, rp, d):
# """Infinite-medium magnetic field. See (7) in Mosher, 1999"""
# # Get vector from source to sensor integration point
# diff = rp - rd
# diff2 = np.sum(diff * diff, axis=1) # Get magnitude of diff
#
# # Compute cross product between diff and dipole to get magnetic field at
# # integration point
# x = fast_cross_3d(Q[np.newaxis, :], diff)
#
# # Take magnetic field dotted by integration point normal to get magnetic
# # field threading the current loop. Divide by R^3 (equivalently, R^2 * R)
# return np.sum(x * d, axis=1) / (diff2 * np.sqrt(diff2))
def _bem_inf_fields(rr, rmag, cosmag):
"""Compute infinite-medium magnetic field at one MEG sensor.
This operates on all dipoles in all 3 basis directions.
Parameters
----------
rr : ndarray, shape (n_source_points, 3)
3D dipole source positions
rmag : ndarray, shape (n_sensor points, 3)
3D positions of 1 MEG coil's integration points (from coil['rmag'])
cosmag : ndarray, shape (n_sensor_points, 3)
Direction of 1 MEG coil's integration points (from coil['cosmag'])
Returns
-------
ndarray, shape (n_dipoles, 3, n_integration_pts)
Magnetic field from all dipoles at each MEG sensor integration point
"""
# rr, rmag refactored according to Equation (19) in Mosher, 1999
# Knowing that we're doing all directions, refactor above function:
diff = rmag.T[np.newaxis, :, :] - rr[:, :, np.newaxis]
diff_norm = np.sum(diff * diff, axis=1)
diff_norm *= np.sqrt(diff_norm) # Get magnitude of distance cubed
diff_norm[diff_norm == 0] = 1 # avoid nans
# This is the result of cross-prod calcs with basis vectors,
# as if we had taken (Q=np.eye(3)), then multiplied by cosmags
# factor, and then summed across directions
x = np.array([diff[:, 1] * cosmag[:, 2] - diff[:, 2] * cosmag[:, 1],
diff[:, 2] * cosmag[:, 0] - diff[:, 0] * cosmag[:, 2],
diff[:, 0] * cosmag[:, 1] - diff[:, 1] * cosmag[:, 0]])
return np.rollaxis(x / diff_norm, 1)
def _bem_pot_or_field(rr, mri_rr, mri_Q, coils, solution, bem_rr, n_jobs,
coil_type):
"""Calculate the magnetic field or electric potential forward solution.
The code is very similar between EEG and MEG potentials, so combine them.
This does the work of "fwd_comp_field" (which wraps to "fwd_bem_field")
and "fwd_bem_pot_els" in MNE-C.
Parameters
----------
rr : ndarray, shape (n_dipoles, 3)
3D dipole source positions
mri_rr : ndarray, shape (n_dipoles, 3)
3D source positions in MRI coordinates
mri_Q :
3x3 head -> MRI transform. I.e., head_mri_t.dot(np.eye(3))
coils : list of dict, len(sensors)
List of sensors where each element contains sensor specific information
solution : ndarray, shape (n_sensors, n_BEM_rr)
Comes from _bem_specify_coils
bem_rr : ndarray, shape (n_BEM_vertices, 3)
3D vertex positions for all surfaces in the BEM
n_jobs : int
Number of jobs to run in parallel
coil_type : str
'meg' or 'eeg'
Returns
-------
B : ndarray, shape (n_dipoles * 3, n_sensors)
Forward solution for a set of sensors
"""
# Both MEG and EEG have the inifinite-medium potentials
# This could be just vectorized, but eats too much memory, so instead we
# reduce memory by chunking within _do_inf_pots and parallelize, too:
parallel, p_fun, _ = parallel_func(_do_inf_pots, n_jobs)
nas = np.array_split
B = np.sum(parallel(p_fun(mri_rr, sr.copy(), mri_Q, sol.copy())
for sr, sol in zip(nas(bem_rr, n_jobs),
nas(solution.T, n_jobs))), axis=0)
# The copy()s above should make it so the whole objects don't need to be
# pickled...
# Only MEG coils are sensitive to the primary current distribution.
if coil_type == 'meg':
# Primary current contribution (can be calc. in coil/dipole coords)
parallel, p_fun, _ = parallel_func(_do_prim_curr, n_jobs)
pcc = np.concatenate(parallel(p_fun(rr, c)
for c in nas(coils, n_jobs)), axis=1)
B += pcc
B *= _MAG_FACTOR
return B
def _do_prim_curr(rr, coils):
"""Calculate primary currents in a set of MEG coils.
See Mosher et al., 1999 Section II for discussion of primary vs. volume
currents.
Parameters
----------
rr : ndarray, shape (n_dipoles, 3)
3D dipole source positions in head coordinates
coils : list of dict
List of MEG coils where each element contains coil specific information
Returns
-------
pc : ndarray, shape (n_sources, n_MEG_sensors)
Primary current for set of MEG coils due to all sources
"""
pc = np.empty((len(rr) * 3, len(coils)))
for ci, c in enumerate(coils):
# For all integration points, multiply by weights, sum across pts
# and then flatten
pc[:, ci] = np.sum(c['w'] * _bem_inf_fields(rr, c['rmag'],
c['cosmag']), 2).ravel()
return pc
def _do_inf_pots(mri_rr, bem_rr, mri_Q, sol):
"""Calculate infinite potentials for MEG or EEG sensors using chunks.
Parameters
----------
mri_rr : ndarray, shape (n_dipoles, 3)
3D dipole source positions in MRI coordinates
bem_rr : ndarray, shape (n_BEM_vertices, 3)
3D vertex positions for all surfaces in the BEM
mri_Q :
3x3 head -> MRI transform. I.e., head_mri_t.dot(np.eye(3))
sol : ndarray, shape (n_sensors_subset, n_BEM_vertices_subset)
Comes from _bem_specify_coils
Returns
-------
B : ndarray, (n_dipoles * 3, n_sensors)
Forward solution for sensors due to volume currents
"""
# Doing work of 'fwd_bem_pot_calc' in MNE-C
# The following code is equivalent to this, but saves memory
# v0s = _bem_inf_pots(rr, bem_rr, Q) # n_rr x 3 x n_bem_rr
# v0s.shape = (len(rr) * 3, v0s.shape[2])
# B = np.dot(v0s, sol)
# We chunk the source mri_rr's in order to save memory
bounds = np.concatenate([np.arange(0, len(mri_rr), 200), [len(mri_rr)]])
B = np.empty((len(mri_rr) * 3, sol.shape[1]))
for bi in range(len(bounds) - 1):
# v0 in Hamalainen et al., 1989 == v_inf in Mosher, et al., 1999
v0s = _bem_inf_pots(mri_rr[bounds[bi]:bounds[bi + 1]], bem_rr, mri_Q)
v0s = v0s.reshape(-1, v0s.shape[2])
B[3 * bounds[bi]:3 * bounds[bi + 1]] = np.dot(v0s, sol)
return B
# #############################################################################
# SPHERE COMPUTATION
def _sphere_pot_or_field(rr, mri_rr, mri_Q, coils, sphere, bem_rr,
n_jobs, coil_type):
"""Do potential or field for spherical model."""
fun = _eeg_spherepot_coil if coil_type == 'eeg' else _sphere_field
parallel, p_fun, _ = parallel_func(fun, n_jobs)
B = np.concatenate(parallel(p_fun(r, coils, sphere)
for r in np.array_split(rr, n_jobs)))
return B
def _sphere_field(rrs, coils, sphere):
"""Compute field for spherical model using Jukka Sarvas' field computation.
Jukka Sarvas, "Basic mathematical and electromagnetic concepts of the
biomagnetic inverse problem", Phys. Med. Biol. 1987, Vol. 32, 1, 11-22.
The formulas have been manipulated for efficient computation
by Matti Hamalainen, February 1990
"""
rmags, cosmags, ws, bins = _concatenate_coils(coils)
# Shift to the sphere model coordinates
rrs = rrs - sphere['r0']
B = np.zeros((3 * len(rrs), len(coils)))
for ri, rr in enumerate(rrs):
# Check for a dipole at the origin
if np.sqrt(np.dot(rr, rr)) <= 1e-10:
continue
this_poss = rmags - sphere['r0']
# Vector from dipole to the field point
a_vec = this_poss - rr
a = np.sqrt(np.sum(a_vec * a_vec, axis=1))
r = np.sqrt(np.sum(this_poss * this_poss, axis=1))
rr0 = np.sum(this_poss * rr, axis=1)
ar = (r * r) - rr0
ar0 = ar / a
F = a * (r * a + ar)
gr = (a * a) / r + ar0 + 2.0 * (a + r)
g0 = a + 2 * r + ar0
# Compute the dot products needed
re = np.sum(this_poss * cosmags, axis=1)
r0e = np.sum(rr * cosmags, axis=1)
g = (g0 * r0e - gr * re) / (F * F)
good = (a > 0) | (r > 0) | ((a * r) + 1 > 1e-5)
v1 = fast_cross_3d(rr[np.newaxis, :], cosmags)
v2 = fast_cross_3d(rr[np.newaxis, :], this_poss)
xx = ((good * ws)[:, np.newaxis] *
(v1 / F[:, np.newaxis] + v2 * g[:, np.newaxis]))
zz = np.array([np.bincount(bins, x, bins[-1] + 1) for x in xx.T])
B[3 * ri:3 * ri + 3, :] = zz
B *= _MAG_FACTOR
return B
def _eeg_spherepot_coil(rrs, coils, sphere):
"""Calculate the EEG in the sphere model."""
rmags, cosmags, ws, bins = _concatenate_coils(coils)
# Shift to the sphere model coordinates
rrs = rrs - sphere['r0']
B = np.zeros((3 * len(rrs), len(coils)))
for ri, rr in enumerate(rrs):
# Only process dipoles inside the innermost sphere
if np.sqrt(np.dot(rr, rr)) >= sphere['layers'][0]['rad']:
continue
# fwd_eeg_spherepot_vec
vval_one = np.zeros((len(rmags), 3))
# Make a weighted sum over the equivalence parameters
for eq in range(sphere['nfit']):
# Scale the dipole position
rd = sphere['mu'][eq] * rr
rd2 = np.sum(rd * rd)
rd2_inv = 1.0 / rd2
# Go over all electrodes
this_pos = rmags - sphere['r0']
# Scale location onto the surface of the sphere (not used)
# if sphere['scale_pos']:
# pos_len = (sphere['layers'][-1]['rad'] /
# np.sqrt(np.sum(this_pos * this_pos, axis=1)))
# this_pos *= pos_len
# Vector from dipole to the field point
a_vec = this_pos - rd
# Compute the dot products needed
a = np.sqrt(np.sum(a_vec * a_vec, axis=1))
a3 = 2.0 / (a * a * a)
r2 = np.sum(this_pos * this_pos, axis=1)
r = np.sqrt(r2)
rrd = np.sum(this_pos * rd, axis=1)
ra = r2 - rrd
rda = rrd - rd2
# The main ingredients
F = a * (r * a + ra)
c1 = a3 * rda + 1.0 / a - 1.0 / r
c2 = a3 + (a + r) / (r * F)
# Mix them together and scale by lambda/(rd*rd)
m1 = (c1 - c2 * rrd)
m2 = c2 * rd2
vval_one += (sphere['lambda'][eq] * rd2_inv *
(m1[:, np.newaxis] * rd +
m2[:, np.newaxis] * this_pos))
# compute total result
xx = vval_one * ws[:, np.newaxis]
zz = np.array([np.bincount(bins, x, bins[-1] + 1) for x in xx.T])
B[3 * ri:3 * ri + 3, :] = zz
# finishing by scaling by 1/(4*M_PI)
B *= 0.25 / np.pi
return B
# #############################################################################
# MAGNETIC DIPOLE (e.g. CHPI)
def _magnetic_dipole_field_vec(rrs, coils, too_close='raise'):
"""Compute an MEG forward solution for a set of magnetic dipoles."""
# The code below is a more efficient version (~30x) of this:
# for ri, rr in enumerate(rrs):
# for k in range(len(coils)):
# this_coil = coils[k]
# # Go through all points
# diff = this_coil['rmag'] - rr
# dist2 = np.sum(diff * diff, axis=1)[:, np.newaxis]
# dist = np.sqrt(dist2)
# if (dist < 1e-5).any():
# raise RuntimeError('Coil too close')
# dist5 = dist2 * dist2 * dist
# sum_ = (3 * diff * np.sum(diff * this_coil['cosmag'],
# axis=1)[:, np.newaxis] -
# dist2 * this_coil['cosmag']) / dist5
# fwd[3*ri:3*ri+3, k] = 1e-7 * np.dot(this_coil['w'], sum_)
if isinstance(coils, tuple):
rmags, cosmags, ws, bins = coils
else:
rmags, cosmags, ws, bins = _concatenate_coils(coils)
del coils
fwd = np.empty((3 * len(rrs), bins[-1] + 1))
for ri, rr in enumerate(rrs):
diff = rmags - rr
dist2 = np.sum(diff * diff, axis=1)[:, np.newaxis]
dist = np.sqrt(dist2)
if (dist < 1e-5).any():
msg = 'Coil too close (dist = %g m)' % dist.min()
if too_close == 'raise':
raise RuntimeError(msg)
else: # warning
func = warn if too_close == 'warning' else logger.info
func('Coil too close (dist = %g m)' % dist.min())
sum_ = ws[:, np.newaxis] * (3 * diff * np.sum(diff * cosmags,
axis=1)[:, np.newaxis] -
dist2 * cosmags) / (dist2 * dist2 * dist)
for ii in range(3):
fwd[3 * ri + ii] = np.bincount(bins, sum_[:, ii], bins[-1] + 1)
fwd *= 1e-7
return fwd
# #############################################################################
# MAIN TRIAGING FUNCTION
@verbose
def _prep_field_computation(rr, bem, fwd_data, n_jobs, verbose=None):
"""Precompute and store some things that are used for both MEG and EEG.
Calculation includes multiplication factors, coordinate transforms,
compensations, and forward solutions. All are stored in modified fwd_data.
Parameters
----------
rr : ndarray, shape (n_dipoles, 3)
3D dipole source positions in head coordinates
bem : dict
Boundary Element Model information
fwd_data : dict
Dict containing sensor information. Gets updated here with BEM and
sensor information for later forward calculations
n_jobs : int
Number of jobs to run in parallel
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
"""
bem_rr = mults = mri_Q = head_mri_t = None
if not bem['is_sphere']:
if bem['bem_method'] != FWD.BEM_LINEAR_COLL:
raise RuntimeError('only linear collocation supported')
# Store (and apply soon) μ_0/(4π) factor before source computations
mults = np.repeat(bem['source_mult'] / (4.0 * np.pi),
[len(s['rr']) for s in bem['surfs']])[np.newaxis, :]
# Get positions of BEM points for every surface
bem_rr = np.concatenate([s['rr'] for s in bem['surfs']])
# The dipole location and orientation must be transformed
head_mri_t = bem['head_mri_t']
mri_Q = bem['head_mri_t']['trans'][:3, :3].T
# Compute solution and compensation for dif sensor types ('meg', 'eeg')
if len(set(fwd_data['coil_types'])) != len(fwd_data['coil_types']):
raise RuntimeError('Non-unique sensor types found')
compensators, solutions, csolutions = [], [], []
for coil_type, coils, ccoils, info in zip(fwd_data['coil_types'],
fwd_data['coils_list'],
fwd_data['ccoils_list'],
fwd_data['infos']):
compensator = solution = csolution = None
if len(coils) > 0: # Only proceed if sensors exist
if coil_type == 'meg':
# Compose a compensation data set if necessary
compensator = _make_ctf_comp_coils(info, coils)
if not bem['is_sphere']:
if coil_type == 'meg':
# MEG field computation matrices for BEM
start = 'Composing the field computation matrix'
logger.info('\n' + start + '...')
cf = FIFF.FIFFV_COORD_HEAD
# multiply solution by "mults" here for simplicity
solution = _bem_specify_coils(bem, coils, cf, mults,
n_jobs)
if compensator is not None:
logger.info(start + ' (compensation coils)...')
csolution = _bem_specify_coils(bem, ccoils, cf,
mults, n_jobs)
else:
# Compute solution for EEG sensor
solution = _bem_specify_els(bem, coils, mults)
else:
solution = csolution = bem
if coil_type == 'eeg':
logger.info('Using the equivalent source approach in the '
'homogeneous sphere for EEG')
compensators.append(compensator)
solutions.append(solution)
csolutions.append(csolution)
# Get appropriate forward physics function depending on sphere or BEM model
fun = _sphere_pot_or_field if bem['is_sphere'] else _bem_pot_or_field
# Update fwd_data with
# bem_rr (3D BEM vertex positions)
# mri_Q (3x3 Head->MRI coord transformation applied to identity matrix)
# head_mri_t (head->MRI coord transform dict)
# fun (_bem_pot_or_field if not 'sphere'; otherwise _sph_pot_or_field)
# solutions (len 2 list; [ndarray, shape (n_MEG_sens, n BEM vertices),
# ndarray, shape (n_EEG_sens, n BEM vertices)]
# csolutions (compensation for solution)
fwd_data.update(dict(bem_rr=bem_rr, mri_Q=mri_Q, head_mri_t=head_mri_t,
compensators=compensators, solutions=solutions,
csolutions=csolutions, fun=fun))
@verbose
def _compute_forwards_meeg(rr, fd, n_jobs, verbose=None):
"""Compute MEG and EEG forward solutions for all sensor types.
Parameters
----------
rr : ndarray, shape (n_dipoles, 3)
3D dipole positions in head coordinates
fd : dict
Dict containing forward data after update in _prep_field_computation
n_jobs : int
Number of jobs to run in parallel
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
Bs : list
Each element contains ndarray, shape (3 * n_dipoles, n_sensors) where
n_sensors depends on which channel types are requested (MEG and/or EEG)
"""
n_jobs = max(min(n_jobs, len(rr)), 1)
Bs = list()
# The dipole location and orientation must be transformed to mri coords
mri_rr = None
if fd['head_mri_t'] is not None:
mri_rr = apply_trans(fd['head_mri_t']['trans'], rr)
mri_Q, bem_rr, fun = fd['mri_Q'], fd['bem_rr'], fd['fun']
for ci in range(len(fd['coils_list'])):
coils, ccoils = fd['coils_list'][ci], fd['ccoils_list'][ci]
if len(coils) == 0: # nothing to do
Bs.append(np.zeros((3 * len(rr), 0)))
continue
coil_type, compensator = fd['coil_types'][ci], fd['compensators'][ci]
solution, csolution = fd['solutions'][ci], fd['csolutions'][ci]
info = fd['infos'][ci]
# Do the actual forward calculation for a list MEG/EEG sensors
logger.info('Computing %s at %d source location%s '
'(free orientations)...'
% (coil_type.upper(), len(rr), _pl(rr)))
# Calculate forward solution using spherical or BEM model
B = fun(rr, mri_rr, mri_Q, coils, solution, bem_rr, n_jobs,
coil_type)
# Compensate if needed (only done for MEG systems w/compensation)
if compensator is not None:
# Compute the field in the compensation sensors
work = fun(rr, mri_rr, mri_Q, ccoils, csolution, bem_rr,
n_jobs, coil_type)
# Combine solutions so we can do the compensation
both = np.zeros((work.shape[0], B.shape[1] + work.shape[1]))
picks = pick_types(info, meg=True, ref_meg=False, exclude=[])
both[:, picks] = B
picks = pick_types(info, meg=False, ref_meg=True, exclude=[])
both[:, picks] = work
B = np.dot(both, compensator.T)
Bs.append(B)
return Bs
@verbose
def _compute_forwards(rr, bem, coils_list, ccoils_list, infos, coil_types,
n_jobs, verbose=None):
"""Compute the MEG and EEG forward solutions.
This effectively combines compute_forward_meg and compute_forward_eeg
from MNE-C.
Parameters
----------
rr : ndarray, shape (n_sources, 3)
3D dipole in head coordinates
bem : dict
Boundary Element Model information for all surfaces
coils_list : list
List of MEG and/or EEG sensor information dicts
ccoils_list : list
Optional list of MEG compensation information
coil_types : list of str
Sensor types. May contain 'meg' and/or 'eeg'
n_jobs: int
Number of jobs to run in parallel
infos : list, len(2)
infos[0] is MEG info, infos[1] is EEG info
Returns
-------
Bs : list of ndarray
Each element contains ndarray, shape (3 * n_dipoles, n_sensors) where
n_sensors depends on which channel types are requested (MEG and/or EEG)
"""
# Split calculation into two steps to save (potentially) a lot of time
# when e.g. dipole fitting
fwd_data = dict(coils_list=coils_list, ccoils_list=ccoils_list,
infos=infos, coil_types=coil_types)
_prep_field_computation(rr, bem, fwd_data, n_jobs)
Bs = _compute_forwards_meeg(rr, fwd_data, n_jobs)
return Bs
|