File: _field_interpolation.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (433 lines) | stat: -rw-r--r-- 16,856 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
# -*- coding: utf-8 -*-

from copy import deepcopy

import numpy as np
from scipy import linalg

from ..io.constants import FWD
from ..bem import _check_origin
from ..io.pick import pick_types, pick_info
from ..surface import get_head_surf, get_meg_helmet_surf

from ..io.proj import _has_eeg_average_ref_proj, make_projector
from ..transforms import (transform_surface_to, read_trans, _find_trans,
                          _ensure_trans)
from ._make_forward import _create_meg_coils, _create_eeg_els, _read_coil_defs
from ._lead_dots import (_do_self_dots, _do_surface_dots, _get_legen_table,
                         _do_cross_dots)
from ..parallel import check_n_jobs
from ..utils import logger, verbose
from ..externals.six import string_types


def _is_axial_coil(coil):
    """Determine if the coil is axial."""
    is_ax = coil['coil_class'] in (
        FWD.COILC_MAG, FWD.COILC_AXIAL_GRAD, FWD.COILC_AXIAL_GRAD2)
    return is_ax


def _ad_hoc_noise(coils, ch_type='meg'):
    """Create ad-hoc noise covariance."""
    # XXX should de-duplicate with make_ad_hoc_cov
    v = np.empty(len(coils))
    if ch_type == 'meg':
        axs = np.array([_is_axial_coil(coil) for coil in coils], dtype=bool)
        v[axs] = 4e-28  # 20e-15 ** 2
        v[np.logical_not(axs)] = 2.5e-25  # 5e-13 ** 2
    else:
        v.fill(1e-12)  # 1e-6 ** 2
    cov = dict(diag=True, data=v, eig=None, eigvec=None)
    return cov


def _setup_dots(mode, coils, ch_type):
    """Set up dot products."""
    from scipy.interpolate import interp1d
    int_rad = 0.06
    noise = _ad_hoc_noise(coils, ch_type)
    n_coeff, interp = (50, 'nearest') if mode == 'fast' else (100, 'linear')
    lut, n_fact = _get_legen_table(ch_type, False, n_coeff, verbose=False)
    lut_fun = interp1d(np.linspace(-1, 1, lut.shape[0]), lut, interp, axis=0)
    return int_rad, noise, lut_fun, n_fact


def _compute_mapping_matrix(fmd, info):
    """Do the hairy computations."""
    logger.info('    Preparing the mapping matrix...')
    # assemble a projector and apply it to the data
    ch_names = fmd['ch_names']
    projs = info.get('projs', list())
    proj_op = make_projector(projs, ch_names)[0]
    proj_dots = np.dot(proj_op.T, np.dot(fmd['self_dots'], proj_op))

    noise_cov = fmd['noise']
    # Whiten
    if not noise_cov['diag']:
        raise NotImplementedError  # this shouldn't happen
    whitener = np.diag(1.0 / np.sqrt(noise_cov['data'].ravel()))
    whitened_dots = np.dot(whitener.T, np.dot(proj_dots, whitener))

    # SVD is numerically better than the eigenvalue composition even if
    # mat is supposed to be symmetric and positive definite
    uu, sing, vv = linalg.svd(whitened_dots, full_matrices=False,
                              overwrite_a=True)

    # Eigenvalue truncation
    sumk = np.cumsum(sing)
    sumk /= sumk[-1]
    fmd['nest'] = np.where(sumk > (1.0 - fmd['miss']))[0][0] + 1
    logger.info('    Truncating at %d/%d components to omit less than %g '
                '(%0.2g)' % (fmd['nest'], len(sing), fmd['miss'],
                             1. - sumk[fmd['nest'] - 1]))
    sing = 1.0 / sing[:fmd['nest']]

    # Put the inverse together
    inv = np.dot(uu[:, :fmd['nest']] * sing, vv[:fmd['nest']]).T

    # Sandwich with the whitener
    inv_whitened = np.dot(whitener.T, np.dot(inv, whitener))

    # Take into account that the lead fields used to compute
    # d->surface_dots were unprojected
    inv_whitened_proj = (np.dot(inv_whitened.T, proj_op)).T

    # Finally sandwich in the selection matrix
    # This one picks up the correct lead field projection
    mapping_mat = np.dot(fmd['surface_dots'], inv_whitened_proj)

    # Optionally apply the average electrode reference to the final field map
    if fmd['kind'] == 'eeg':
        if _has_eeg_average_ref_proj(projs):
            logger.info('    The map will have average electrode reference')
            mapping_mat -= np.mean(mapping_mat, axis=0)[np.newaxis, :]
    return mapping_mat


def _map_meg_channels(info_from, info_to, mode='fast', origin=(0., 0., 0.04)):
    """Find mapping from one set of channels to another.

    Parameters
    ----------
    info_from : instance of Info
        The measurement data to interpolate from.
    info_to : instance of Info
        The measurement info to interpolate to.
    mode : str
        Either `'accurate'` or `'fast'`, determines the quality of the
        Legendre polynomial expansion used. `'fast'` should be sufficient
        for most applications.
    origin : array-like, shape (3,) | str
        Origin of the sphere in the head coordinate frame and in meters.
        Can be ``'auto'``, which means a head-digitization-based origin
        fit. Default is ``(0., 0., 0.04)``.

    Returns
    -------
    mapping : array
        A mapping matrix of shape len(pick_to) x len(pick_from).
    """
    # no need to apply trans because both from and to coils are in device
    # coordinates
    templates = _read_coil_defs(verbose=False)
    coils_from = _create_meg_coils(info_from['chs'], 'normal',
                                   info_from['dev_head_t'], templates)
    coils_to = _create_meg_coils(info_to['chs'], 'normal',
                                 info_to['dev_head_t'], templates)
    miss = 1e-4  # Smoothing criterion for MEG
    origin = _check_origin(origin, info_from)
    #
    # Step 2. Calculate the dot products
    #
    int_rad, noise, lut_fun, n_fact = _setup_dots(mode, coils_from, 'meg')
    logger.info('    Computing dot products for %i coils...'
                % (len(coils_from)))
    self_dots = _do_self_dots(int_rad, False, coils_from, origin, 'meg',
                              lut_fun, n_fact, n_jobs=1)
    logger.info('    Computing cross products for coils %i x %i coils...'
                % (len(coils_from), len(coils_to)))
    cross_dots = _do_cross_dots(int_rad, False, coils_from, coils_to,
                                origin, 'meg', lut_fun, n_fact).T

    ch_names = [c['ch_name'] for c in info_from['chs']]
    fmd = dict(kind='meg', ch_names=ch_names,
               origin=origin, noise=noise, self_dots=self_dots,
               surface_dots=cross_dots, int_rad=int_rad, miss=miss)

    #
    # Step 3. Compute the mapping matrix
    #
    mapping = _compute_mapping_matrix(fmd, info_from)
    return mapping


def _as_meg_type_evoked(evoked, ch_type='grad', mode='fast'):
    """Compute virtual evoked using interpolated fields in mag/grad channels.

    Parameters
    ----------
    evoked : instance of mne.Evoked
        The evoked object.
    ch_type : str
        The destination channel type. It can be 'mag' or 'grad'.
    mode : str
        Either `'accurate'` or `'fast'`, determines the quality of the
        Legendre polynomial expansion used. `'fast'` should be sufficient
        for most applications.

    Returns
    -------
    evoked : instance of mne.Evoked
        The transformed evoked object containing only virtual channels.
    """
    evoked = evoked.copy()

    if ch_type not in ['mag', 'grad']:
        raise ValueError('to_type must be "mag" or "grad", not "%s"'
                         % ch_type)
    # pick the original and destination channels
    pick_from = pick_types(evoked.info, meg=True, eeg=False,
                           ref_meg=False)
    pick_to = pick_types(evoked.info, meg=ch_type, eeg=False,
                         ref_meg=False)

    if len(pick_to) == 0:
        raise ValueError('No channels matching the destination channel type'
                         ' found in info. Please pass an evoked containing'
                         'both the original and destination channels. Only the'
                         ' locations of the destination channels will be used'
                         ' for interpolation.')

    info_from = pick_info(evoked.info, pick_from)
    info_to = pick_info(evoked.info, pick_to)
    mapping = _map_meg_channels(info_from, info_to, mode=mode)

    # compute evoked data by multiplying by the 'gain matrix' from
    # original sensors to virtual sensors
    data = np.dot(mapping, evoked.data[pick_from])

    # keep only the destination channel types
    evoked.pick_types(meg=ch_type, eeg=False, ref_meg=False)
    evoked.data = data

    # change channel names to emphasize they contain interpolated data
    for ch in evoked.info['chs']:
        ch['ch_name'] += '_v'
    evoked.info._update_redundant()
    evoked.info._check_consistency()
    return evoked


@verbose
def _make_surface_mapping(info, surf, ch_type='meg', trans=None, mode='fast',
                          n_jobs=1, origin=(0., 0., 0.04), verbose=None):
    """Re-map M/EEG data to a surface.

    Parameters
    ----------
    info : instance of Info
        Measurement info.
    surf : dict
        The surface to map the data to. The required fields are `'rr'`,
        `'nn'`, and `'coord_frame'`. Must be in head coordinates.
    ch_type : str
        Must be either `'meg'` or `'eeg'`, determines the type of field.
    trans : None | dict
        If None, no transformation applied. Should be a Head<->MRI
        transformation.
    mode : str
        Either `'accurate'` or `'fast'`, determines the quality of the
        Legendre polynomial expansion used. `'fast'` should be sufficient
        for most applications.
    n_jobs : int
        Number of permutations to run in parallel (requires joblib package).
    origin : array-like, shape (3,) | str
        Origin of the sphere in the head coordinate frame and in meters.
        The default is ``'auto'``, which means a head-digitization-based
        origin fit.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    mapping : array
        A n_vertices x n_sensors array that remaps the MEG or EEG data,
        as `new_data = np.dot(mapping, data)`.
    """
    if not all(key in surf for key in ['rr', 'nn']):
        raise KeyError('surf must have both "rr" and "nn"')
    if 'coord_frame' not in surf:
        raise KeyError('The surface coordinate frame must be specified '
                       'in surf["coord_frame"]')
    if mode not in ['accurate', 'fast']:
        raise ValueError('mode must be "accurate" or "fast", not "%s"' % mode)

    # deal with coordinate frames here -- always go to "head" (easiest)
    orig_surf = surf
    surf = transform_surface_to(deepcopy(surf), 'head', trans)
    n_jobs = check_n_jobs(n_jobs)
    origin = _check_origin(origin, info)

    #
    # Step 1. Prepare the coil definitions
    # Do the dot products, assume surf in head coords
    #
    if ch_type not in ('meg', 'eeg'):
        raise ValueError('unknown coil type "%s"' % ch_type)
    if ch_type == 'meg':
        picks = pick_types(info, meg=True, eeg=False, ref_meg=False)
        logger.info('Prepare MEG mapping...')
    else:
        picks = pick_types(info, meg=False, eeg=True, ref_meg=False)
        logger.info('Prepare EEG mapping...')
    if len(picks) == 0:
        raise RuntimeError('cannot map, no channels found')
    # XXX this code does not do any checking for compensation channels,
    # but it seems like this must be intentional from the ref_meg=False
    # (presumably from the C code)
    chs = [info['chs'][pick] for pick in picks]

    # create coil defs in head coordinates
    if ch_type == 'meg':
        # Put them in head coordinates
        coils = _create_meg_coils(chs, 'normal', info['dev_head_t'])
        type_str = 'coils'
        miss = 1e-4  # Smoothing criterion for MEG
    else:  # EEG
        coils = _create_eeg_els(chs)
        type_str = 'electrodes'
        miss = 1e-3  # Smoothing criterion for EEG

    #
    # Step 2. Calculate the dot products
    #
    int_rad, noise, lut_fun, n_fact = _setup_dots(mode, coils, ch_type)
    logger.info('Computing dot products for %i %s...' % (len(coils), type_str))
    self_dots = _do_self_dots(int_rad, False, coils, origin, ch_type,
                              lut_fun, n_fact, n_jobs)
    sel = np.arange(len(surf['rr']))  # eventually we should do sub-selection
    logger.info('Computing dot products for %i surface locations...'
                % len(sel))
    surface_dots = _do_surface_dots(int_rad, False, coils, surf, sel,
                                    origin, ch_type, lut_fun, n_fact,
                                    n_jobs)

    #
    # Step 4. Return the result
    #
    ch_names = [c['ch_name'] for c in chs]
    fmd = dict(kind=ch_type, surf=surf, ch_names=ch_names, coils=coils,
               origin=origin, noise=noise, self_dots=self_dots,
               surface_dots=surface_dots, int_rad=int_rad, miss=miss)
    logger.info('Field mapping data ready')

    fmd['data'] = _compute_mapping_matrix(fmd, info)
    # bring the original back, whatever coord frame it was in
    fmd['surf'] = orig_surf

    # Remove some unnecessary fields
    del fmd['self_dots']
    del fmd['surface_dots']
    del fmd['int_rad']
    del fmd['miss']
    return fmd


@verbose
def make_field_map(evoked, trans='auto', subject=None, subjects_dir=None,
                   ch_type=None, mode='fast', meg_surf='helmet',
                   origin=(0., 0., 0.04), n_jobs=1, verbose=None):
    """Compute surface maps used for field display in 3D.

    Parameters
    ----------
    evoked : Evoked | Epochs | Raw
        The measurement file. Need to have info attribute.
    trans : str | 'auto' | None
        The full path to the `*-trans.fif` file produced during
        coregistration. If present or found using 'auto'
        the maps will be in MRI coordinates.
        If None, map for EEG data will not be available.
    subject : str | None
        The subject name corresponding to FreeSurfer environment
        variable SUBJECT. If None, map for EEG data will not be available.
    subjects_dir : str
        The path to the freesurfer subjects reconstructions.
        It corresponds to Freesurfer environment variable SUBJECTS_DIR.
    ch_type : None | 'eeg' | 'meg'
        If None, a map for each available channel type will be returned.
        Else only the specified type will be used.
    mode : str
        Either `'accurate'` or `'fast'`, determines the quality of the
        Legendre polynomial expansion used. `'fast'` should be sufficient
        for most applications.
    meg_surf : str
        Should be ``'helmet'`` or ``'head'`` to specify in which surface
        to compute the MEG field map. The default value is ``'helmet'``
    origin : array-like, shape (3,) | str
        Origin of the sphere in the head coordinate frame and in meters.
        Can be ``'auto'``, which means a head-digitization-based origin
        fit. Default is ``(0., 0., 0.04)``.

        .. versionadded:: 0.11
    n_jobs : int
        The number of jobs to run in parallel.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    surf_maps : list
        The surface maps to be used for field plots. The list contains
        separate ones for MEG and EEG (if both MEG and EEG are present).
    """
    info = evoked.info

    if ch_type is None:
        types = [t for t in ['eeg', 'meg'] if t in evoked]
    else:
        if ch_type not in ['eeg', 'meg']:
            raise ValueError("ch_type should be 'eeg' or 'meg' (got %s)"
                             % ch_type)
        types = [ch_type]

    if trans == 'auto':
        # let's try to do this in MRI coordinates so they're easy to plot
        trans = _find_trans(subject, subjects_dir)

    if 'eeg' in types and trans is None:
        logger.info('No trans file available. EEG data ignored.')
        types.remove('eeg')

    if len(types) == 0:
        raise RuntimeError('No data available for mapping.')

    if trans is not None:
        if isinstance(trans, string_types):
            trans = read_trans(trans)
        trans = _ensure_trans(trans, 'head', 'mri')

    if meg_surf not in ['helmet', 'head']:
        raise ValueError('Surface to plot MEG fields must be '
                         '"helmet" or "head"')

    surfs = []
    for this_type in types:
        if this_type == 'meg' and meg_surf == 'helmet':
            surf = get_meg_helmet_surf(info, trans)
        else:
            surf = get_head_surf(subject, subjects_dir=subjects_dir)
        surfs.append(surf)

    surf_maps = list()

    for this_type, this_surf in zip(types, surfs):
        this_map = _make_surface_mapping(evoked.info, this_surf, this_type,
                                         trans, n_jobs=n_jobs, origin=origin,
                                         mode=mode)
        surf_maps.append(this_map)

    return surf_maps