1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
|
# Authors: Eric Larson <larsoner@uw.edu>
# Mainak Jas <mainak.jas@telecom-paristech.fr>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
#
# License: BSD (3-clause)
import os
from os import path as op
import numpy as np
from numpy.polynomial import legendre
from ..fixes import einsum
from ..parallel import parallel_func
from ..utils import logger, verbose, _get_extra_data_path
##############################################################################
# FAST LEGENDRE (DERIVATIVE) POLYNOMIALS USING LOOKUP TABLE
def _next_legen_der(n, x, p0, p01, p0d, p0dd):
"""Compute the next Legendre polynomial and its derivatives."""
# only good for n > 1 !
help_ = p0
helpd = p0d
p0 = ((2 * n - 1) * x * help_ - (n - 1) * p01) / n
p0d = n * help_ + x * helpd
p0dd = (n + 1) * helpd + x * p0dd
p01 = help_
return p0, p0d, p0dd
def _get_legen(x, n_coeff=100):
"""Get Legendre polynomials expanded about x."""
return legendre.legvander(x, n_coeff - 1)
def _get_legen_der(xx, n_coeff=100):
"""Get Legendre polynomial derivatives expanded about x."""
coeffs = np.empty((len(xx), n_coeff, 3))
for c, x in zip(coeffs, xx):
p0s, p0ds, p0dds = c[:, 0], c[:, 1], c[:, 2]
p0s[:2] = [1.0, x]
p0ds[:2] = [0.0, 1.0]
p0dds[:2] = [0.0, 0.0]
for n in range(2, n_coeff):
p0s[n], p0ds[n], p0dds[n] = _next_legen_der(
n, x, p0s[n - 1], p0s[n - 2], p0ds[n - 1], p0dds[n - 1])
return coeffs
@verbose
def _get_legen_table(ch_type, volume_integral=False, n_coeff=100,
n_interp=20000, force_calc=False, verbose=None):
"""Return a (generated) LUT of Legendre (derivative) polynomial coeffs."""
if n_interp % 2 != 0:
raise RuntimeError('n_interp must be even')
fname = op.join(_get_extra_data_path(), 'tables')
if not op.isdir(fname):
# Updated due to API chang (GH 1167)
os.makedirs(fname)
if ch_type == 'meg':
fname = op.join(fname, 'legder_%s_%s.bin' % (n_coeff, n_interp))
leg_fun = _get_legen_der
extra_str = ' derivative'
lut_shape = (n_interp + 1, n_coeff, 3)
else: # 'eeg'
fname = op.join(fname, 'legval_%s_%s.bin' % (n_coeff, n_interp))
leg_fun = _get_legen
extra_str = ''
lut_shape = (n_interp + 1, n_coeff)
if not op.isfile(fname) or force_calc:
logger.info('Generating Legendre%s table...' % extra_str)
x_interp = np.linspace(-1, 1, n_interp + 1)
lut = leg_fun(x_interp, n_coeff).astype(np.float32)
if not force_calc:
with open(fname, 'wb') as fid:
fid.write(lut.tostring())
else:
logger.info('Reading Legendre%s table...' % extra_str)
with open(fname, 'rb', buffering=0) as fid:
lut = np.fromfile(fid, np.float32)
lut.shape = lut_shape
# we need this for the integration step
n_fact = np.arange(1, n_coeff, dtype=float)
if ch_type == 'meg':
n_facts = list() # multn, then mult, then multn * (n + 1)
if volume_integral:
n_facts.append(n_fact / ((2.0 * n_fact + 1.0) *
(2.0 * n_fact + 3.0)))
else:
n_facts.append(n_fact / (2.0 * n_fact + 1.0))
n_facts.append(n_facts[0] / (n_fact + 1.0))
n_facts.append(n_facts[0] * (n_fact + 1.0))
# skip the first set of coefficients because they are not used
lut = lut[:, 1:, [0, 1, 1, 2]] # for multiplicative convenience later
# reshape this for convenience, too
n_facts = np.array(n_facts)[[2, 0, 1, 1], :].T
n_facts = np.ascontiguousarray(n_facts)
n_fact = n_facts
else: # 'eeg'
n_fact = (2.0 * n_fact + 1.0) * (2.0 * n_fact + 1.0) / n_fact
# skip the first set of coefficients because they are not used
lut = lut[:, 1:].copy()
return lut, n_fact
def _comp_sum_eeg(beta, ctheta, lut_fun, n_fact):
"""Lead field dot products using Legendre polynomial (P_n) series."""
# Compute the sum occurring in the evaluation.
# The result is
# sums[:] (2n+1)^2/n beta^n P_n
n_chunk = 50000000 // (8 * max(n_fact.shape) * 2)
lims = np.concatenate([np.arange(0, beta.size, n_chunk), [beta.size]])
s0 = np.empty(beta.shape)
for start, stop in zip(lims[:-1], lims[1:]):
coeffs = lut_fun(ctheta[start:stop])
betans = np.tile(beta[start:stop][:, np.newaxis], (1, n_fact.shape[0]))
np.cumprod(betans, axis=1, out=betans) # run inplace
coeffs *= betans
s0[start:stop] = np.dot(coeffs, n_fact) # == weighted sum across cols
return s0
def _comp_sums_meg(beta, ctheta, lut_fun, n_fact, volume_integral):
"""Lead field dot products using Legendre polynomial (P_n) series.
Parameters
----------
beta : array, shape (n_points * n_points, 1)
Coefficients of the integration.
ctheta : array, shape (n_points * n_points, 1)
Cosine of the angle between the sensor integration points.
lut_fun : callable
Look-up table for evaluating Legendre polynomials.
n_fact : array
Coefficients in the integration sum.
volume_integral : bool
If True, compute volume integral.
Returns
-------
sums : array, shape (4, n_points * n_points)
The results.
"""
# Compute the sums occurring in the evaluation.
# Two point magnetometers on the xz plane are assumed.
# The four sums are:
# * sums[:, 0] n(n+1)/(2n+1) beta^(n+1) P_n
# * sums[:, 1] n/(2n+1) beta^(n+1) P_n'
# * sums[:, 2] n/((2n+1)(n+1)) beta^(n+1) P_n'
# * sums[:, 3] n/((2n+1)(n+1)) beta^(n+1) P_n''
# This is equivalent, but slower:
# sums = np.sum(bbeta[:, :, np.newaxis].T * n_fact * coeffs, axis=1)
# sums = np.rollaxis(sums, 2)
# or
# sums = einsum('ji,jk,ijk->ki', bbeta, n_fact, lut_fun(ctheta)))
sums = np.empty((n_fact.shape[1], len(beta)))
# beta can be e.g. 3 million elements, which ends up using lots of memory
# so we split up the computations into ~50 MB blocks
n_chunk = 50000000 // (8 * max(n_fact.shape) * 2)
lims = np.concatenate([np.arange(0, beta.size, n_chunk), [beta.size]])
for start, stop in zip(lims[:-1], lims[1:]):
bbeta = np.tile(beta[start:stop][np.newaxis], (n_fact.shape[0], 1))
bbeta[0] *= beta[start:stop]
np.cumprod(bbeta, axis=0, out=bbeta) # run inplace
einsum('ji,jk,ijk->ki', bbeta, n_fact, lut_fun(ctheta[start:stop]),
out=sums[:, start:stop])
return sums
###############################################################################
# SPHERE DOTS
_meg_const = 4e-14 * np.pi # This is \mu_0^2/4\pi
_eeg_const = 1.0 / (4.0 * np.pi)
def _fast_sphere_dot_r0(r, rr1_orig, rr2s, lr1, lr2s, cosmags1, cosmags2s,
w1, w2s, volume_integral, lut, n_fact, ch_type):
"""Lead field dot product computation for M/EEG in the sphere model.
Parameters
----------
r : float
The integration radius. It is used to calculate beta as:
beta = (r * r) / (lr1 * lr2).
rr1 : array, shape (n_points x 3)
Normalized position vectors of integrations points in first sensor.
rr2s : list
Normalized position vector of integration points in second sensor.
lr1 : array, shape (n_points x 1)
Magnitude of position vector of integration points in first sensor.
lr2s : list
Magnitude of position vector of integration points in second sensor.
cosmags1 : array, shape (n_points x 1)
Direction of integration points in first sensor.
cosmags2s : list
Direction of integration points in second sensor.
w1 : array, shape (n_points x 1) | None
Weights of integration points in the first sensor.
w2s : list
Weights of integration points in the second sensor.
volume_integral : bool
If True, compute volume integral.
lut : callable
Look-up table for evaluating Legendre polynomials.
n_fact : array
Coefficients in the integration sum.
ch_type : str
The channel type. It can be 'meg' or 'eeg'.
Returns
-------
result : float
The integration sum.
"""
if w1 is None: # operating on surface, treat independently
out_shape = (len(rr2s), len(rr1_orig))
sum_axis = 1 # operate along second axis only at the end
else:
out_shape = (len(rr2s),)
sum_axis = None # operate on flattened array at the end
out = np.empty(out_shape)
rr2 = np.concatenate(rr2s)
lr2 = np.concatenate(lr2s)
cosmags2 = np.concatenate(cosmags2s)
# outer product, sum over coords
ct = einsum('ik,jk->ij', rr1_orig, rr2)
np.clip(ct, -1, 1, ct)
# expand axes
rr1 = rr1_orig[:, np.newaxis, :] # (n_rr1, n_rr2, n_coord) e.g. 4x4x3
rr2 = rr2[np.newaxis, :, :]
lr1lr2 = lr1[:, np.newaxis] * lr2[np.newaxis, :]
beta = (r * r) / lr1lr2
if ch_type == 'meg':
sums = _comp_sums_meg(beta.flatten(), ct.flatten(), lut, n_fact,
volume_integral)
sums.shape = (4,) + beta.shape
# Accumulate the result, a little bit streamlined version
# cosmags1 = cosmags1[:, np.newaxis, :]
# cosmags2 = cosmags2[np.newaxis, :, :]
# n1c1 = np.sum(cosmags1 * rr1, axis=2)
# n1c2 = np.sum(cosmags1 * rr2, axis=2)
# n2c1 = np.sum(cosmags2 * rr1, axis=2)
# n2c2 = np.sum(cosmags2 * rr2, axis=2)
# n1n2 = np.sum(cosmags1 * cosmags2, axis=2)
n1c1 = einsum('ik,ijk->ij', cosmags1, rr1)
n1c2 = einsum('ik,ijk->ij', cosmags1, rr2)
n2c1 = einsum('jk,ijk->ij', cosmags2, rr1)
n2c2 = einsum('jk,ijk->ij', cosmags2, rr2)
n1n2 = einsum('ik,jk->ij', cosmags1, cosmags2)
part1 = ct * n1c1 * n2c2
part2 = n1c1 * n2c1 + n1c2 * n2c2
result = (n1c1 * n2c2 * sums[0] +
(2.0 * part1 - part2) * sums[1] +
(n1n2 + part1 - part2) * sums[2] +
(n1c2 - ct * n1c1) * (n2c1 - ct * n2c2) * sums[3])
# Give it a finishing touch!
result *= (_meg_const / lr1lr2)
if volume_integral:
result *= r
else: # 'eeg'
result = _comp_sum_eeg(beta.flatten(), ct.flatten(), lut, n_fact)
result.shape = beta.shape
# Give it a finishing touch!
result *= _eeg_const
result /= lr1lr2
# now we add them all up with weights
offset = 0
result *= np.concatenate(w2s)
if w1 is not None:
result *= w1[:, np.newaxis]
for ii, w2 in enumerate(w2s):
out[ii] = np.sum(result[:, offset:offset + len(w2)], axis=sum_axis)
offset += len(w2)
return out
def _do_self_dots(intrad, volume, coils, r0, ch_type, lut, n_fact, n_jobs):
"""Perform the lead field dot product integrations.
Parameters
----------
intrad : float
The integration radius. It is used to calculate beta as:
beta = (intrad * intrad) / (r1 * r2).
volume : bool
If True, perform volume integral.
coils : list of dict
The coils.
r0 : array, shape (3 x 1)
The origin of the sphere.
ch_type : str
The channel type. It can be 'meg' or 'eeg'.
lut : callable
Look-up table for evaluating Legendre polynomials.
n_fact : array
Coefficients in the integration sum.
n_jobs : int
Number of jobs to run in parallel.
Returns
-------
products : array, shape (n_coils, n_coils)
The integration products.
"""
if ch_type == 'eeg':
intrad *= 0.7
# convert to normalized distances from expansion center
rmags = [coil['rmag'] - r0[np.newaxis, :] for coil in coils]
rlens = [np.sqrt(np.sum(r * r, axis=1)) for r in rmags]
rmags = [r / rl[:, np.newaxis] for r, rl in zip(rmags, rlens)]
cosmags = [coil['cosmag'] for coil in coils]
ws = [coil['w'] for coil in coils]
parallel, p_fun, _ = parallel_func(_do_self_dots_subset, n_jobs)
prods = parallel(p_fun(intrad, rmags, rlens, cosmags,
ws, volume, lut, n_fact, ch_type, idx)
for idx in np.array_split(np.arange(len(rmags)), n_jobs))
products = np.sum(prods, axis=0)
return products
def _do_self_dots_subset(intrad, rmags, rlens, cosmags, ws, volume, lut,
n_fact, ch_type, idx):
"""Parallelize."""
# all possible combinations of two magnetometers
products = np.zeros((len(rmags), len(rmags)))
for ci1 in idx:
ci2 = ci1 + 1
res = _fast_sphere_dot_r0(
intrad, rmags[ci1], rmags[:ci2], rlens[ci1], rlens[:ci2],
cosmags[ci1], cosmags[:ci2], ws[ci1], ws[:ci2], volume, lut,
n_fact, ch_type)
products[ci1, :ci2] = res
products[:ci2, ci1] = res
return products
def _do_cross_dots(intrad, volume, coils1, coils2, r0, ch_type,
lut, n_fact):
"""Compute lead field dot product integrations between two coil sets.
The code is a direct translation of MNE-C code found in
`mne_map_data/lead_dots.c`.
Parameters
----------
intrad : float
The integration radius. It is used to calculate beta as:
beta = (intrad * intrad) / (r1 * r2).
volume : bool
If True, compute volume integral.
coils1 : list of dict
The original coils.
coils2 : list of dict
The coils to which data is being mapped.
r0 : array, shape (3 x 1).
The origin of the sphere.
ch_type : str
The channel type. It can be 'meg' or 'eeg'
lut : callable
Look-up table for evaluating Legendre polynomials.
n_fact : array
Coefficients in the integration sum.
Returns
-------
products : array, shape (n_coils, n_coils)
The integration products.
"""
rmags1 = [coil['rmag'] - r0[np.newaxis, :] for coil in coils1]
rmags2 = [coil['rmag'] - r0[np.newaxis, :] for coil in coils2]
rlens1 = [np.sqrt(np.sum(r * r, axis=1)) for r in rmags1]
rlens2 = [np.sqrt(np.sum(r * r, axis=1)) for r in rmags2]
rmags1 = [r / rl[:, np.newaxis] for r, rl in zip(rmags1, rlens1)]
rmags2 = [r / rl[:, np.newaxis] for r, rl in zip(rmags2, rlens2)]
ws1 = [coil['w'] for coil in coils1]
ws2 = [coil['w'] for coil in coils2]
cosmags1 = [coil['cosmag'] for coil in coils1]
cosmags2 = [coil['cosmag'] for coil in coils2]
products = np.zeros((len(rmags1), len(rmags2)))
for ci1 in range(len(coils1)):
res = _fast_sphere_dot_r0(
intrad, rmags1[ci1], rmags2, rlens1[ci1], rlens2, cosmags1[ci1],
cosmags2, ws1[ci1], ws2, volume, lut, n_fact, ch_type)
products[ci1, :] = res
return products
def _do_surface_dots(intrad, volume, coils, surf, sel, r0, ch_type,
lut, n_fact, n_jobs):
"""Compute the map construction products.
Parameters
----------
intrad : float
The integration radius. It is used to calculate beta as:
beta = (intrad * intrad) / (r1 * r2)
volume : bool
If True, compute a volume integral.
coils : list of dict
The coils.
surf : dict
The surface on which the field is interpolated.
sel : array
Indices of the surface vertices to select.
r0 : array, shape (3 x 1)
The origin of the sphere.
ch_type : str
The channel type. It can be 'meg' or 'eeg'.
lut : callable
Look-up table for Legendre polynomials.
n_fact : array
Coefficients in the integration sum.
n_jobs : int
Number of jobs to run in parallel.
Returns
-------
products : array, shape (n_coils, n_coils)
The integration products.
"""
# convert to normalized distances from expansion center
rmags = [coil['rmag'] - r0[np.newaxis, :] for coil in coils]
rlens = [np.sqrt(np.sum(r * r, axis=1)) for r in rmags]
rmags = [r / rl[:, np.newaxis] for r, rl in zip(rmags, rlens)]
cosmags = [coil['cosmag'] for coil in coils]
ws = [coil['w'] for coil in coils]
rref = None
refl = None
# virt_ref = False
if ch_type == 'eeg':
intrad *= 0.7
# The virtual ref code is untested and unused, so it is
# commented out for now
# if virt_ref:
# rref = virt_ref[np.newaxis, :] - r0[np.newaxis, :]
# refl = np.sqrt(np.sum(rref * rref, axis=1))
# rref /= refl[:, np.newaxis]
rsurf = surf['rr'][sel] - r0[np.newaxis, :]
lsurf = np.sqrt(np.sum(rsurf * rsurf, axis=1))
rsurf /= lsurf[:, np.newaxis]
this_nn = surf['nn'][sel]
# loop over the coils
parallel, p_fun, _ = parallel_func(_do_surface_dots_subset, n_jobs)
prods = parallel(p_fun(intrad, rsurf, rmags, rref, refl, lsurf, rlens,
this_nn, cosmags, ws, volume, lut, n_fact, ch_type,
idx)
for idx in np.array_split(np.arange(len(rmags)), n_jobs))
products = np.sum(prods, axis=0)
return products
def _do_surface_dots_subset(intrad, rsurf, rmags, rref, refl, lsurf, rlens,
this_nn, cosmags, ws, volume, lut, n_fact, ch_type,
idx):
"""Parallelize.
Parameters
----------
refl : array | None
If ch_type is 'eeg', the magnitude of position vector of the
virtual reference (never used).
lsurf : array
Magnitude of position vector of the surface points.
rlens : list of arrays of length n_coils
Magnitude of position vector.
this_nn : array, shape (n_vertices, 3)
Surface normals.
cosmags : list of array.
Direction of the integration points in the coils.
ws : list of array
Integration weights of the coils.
volume : bool
If True, compute volume integral.
lut : callable
Look-up table for evaluating Legendre polynomials.
n_fact : array
Coefficients in the integration sum.
ch_type : str
'meg' or 'eeg'
idx : array, shape (n_coils x 1)
Index of coil.
Returns
-------
products : array, shape (n_coils, n_coils)
The integration products.
"""
products = _fast_sphere_dot_r0(
intrad, rsurf, rmags, lsurf, rlens, this_nn, cosmags, None, ws,
volume, lut, n_fact, ch_type).T
if rref is not None:
raise NotImplementedError # we don't ever use this, isn't tested
# vres = _fast_sphere_dot_r0(
# intrad, rref, rmags, refl, rlens, this_nn, cosmags, None, ws,
# volume, lut, n_fact, ch_type)
# products -= vres
return products
|