File: forward.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (1728 lines) | stat: -rw-r--r-- 65,869 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Matti Hamalainen <msh@nmr.mgh.harvard.edu>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#
# License: BSD (3-clause)

from time import time
from copy import deepcopy
import re

import numpy as np
from scipy import linalg, sparse

import shutil
import os
from os import path as op
import tempfile

from ..externals.six import string_types
from ..io import RawArray, Info
from ..io.constants import FIFF
from ..io.open import fiff_open
from ..io.tree import dir_tree_find
from ..io.tag import find_tag, read_tag
from ..io.matrix import (_read_named_matrix, _transpose_named_matrix,
                         write_named_matrix)
from ..io.meas_info import read_bad_channels, write_info
from ..io.pick import (pick_channels_forward, pick_info, pick_channels,
                       pick_types)
from ..io.write import (write_int, start_block, end_block,
                        write_coord_trans, write_ch_info, write_name_list,
                        write_string, start_file, end_file, write_id)
from ..io.base import BaseRaw
from ..evoked import Evoked, EvokedArray
from ..epochs import BaseEpochs
from ..source_space import (_read_source_spaces_from_tree,
                            find_source_space_hemi,
                            _write_source_spaces_to_fid)
from ..source_estimate import VolSourceEstimate
from ..transforms import (transform_surface_to, invert_transform,
                          write_trans)
from ..utils import (_check_fname, get_subjects_dir, has_mne_c, warn,
                     run_subprocess, check_fname, logger, verbose,
                     _validate_type)
from ..label import Label


class Forward(dict):
    """Forward class to represent info from forward solution."""

    def copy(self):
        """Copy the Forward instance."""
        return Forward(deepcopy(self))

    def __repr__(self):
        """Summarize forward info instead of printing all."""
        entr = '<Forward'

        nchan = len(pick_types(self['info'], meg=True, eeg=False, exclude=[]))
        entr += ' | ' + 'MEG channels: %d' % nchan
        nchan = len(pick_types(self['info'], meg=False, eeg=True, exclude=[]))
        entr += ' | ' + 'EEG channels: %d' % nchan

        src_types = np.array([src['type'] for src in self['src']])
        if (src_types == 'surf').all():
            entr += (' | Source space: Surface with %d vertices'
                     % self['nsource'])
        elif (src_types == 'vol').all():
            entr += (' | Source space: Volume with %d grid points'
                     % self['nsource'])
        elif (src_types == 'discrete').all():
            entr += (' | Source space: Discrete with %d dipoles'
                     % self['nsource'])
        else:
            count_string = ''
            if (src_types == 'surf').any():
                count_string += '%d surface, ' % (src_types == 'surf').sum()
            if (src_types == 'vol').any():
                count_string += '%d volume, ' % (src_types == 'vol').sum()
            if (src_types == 'discrete').any():
                count_string += '%d discrete, ' \
                                % (src_types == 'discrete').sum()
            count_string = count_string.rstrip(', ')
            entr += (' | Source space: Mixed (%s) with %d vertices'
                     % (count_string, self['nsource']))

        if self['source_ori'] == FIFF.FIFFV_MNE_UNKNOWN_ORI:
            entr += (' | Source orientation: Unknown')
        elif self['source_ori'] == FIFF.FIFFV_MNE_FIXED_ORI:
            entr += (' | Source orientation: Fixed')
        elif self['source_ori'] == FIFF.FIFFV_MNE_FREE_ORI:
            entr += (' | Source orientation: Free')

        entr += '>'

        return entr


def _block_diag(A, n):
    """Construct a block diagonal from a packed structure.

    You have to try it on a matrix to see what it's doing.

    If A is not sparse, then returns a sparse block diagonal "bd",
    diagonalized from the
    elements in "A".
    "A" is ma x na, comprising bdn=(na/"n") blocks of submatrices.
    Each submatrix is ma x "n", and these submatrices are
    placed down the diagonal of the matrix.

    If A is already sparse, then the operation is reversed, yielding
    a block
    row matrix, where each set of n columns corresponds to a block element
    from the block diagonal.

    Parameters
    ----------
    A : array
        The matrix
    n : int
        The block size
    Returns
    -------
    bd : sparse matrix
        The block diagonal matrix
    """
    if sparse.issparse(A):  # then make block sparse
        raise NotImplementedError('sparse reversal not implemented yet')
    ma, na = A.shape
    bdn = na // int(n)  # number of submatrices

    if na % n > 0:
        raise ValueError('Width of matrix must be a multiple of n')

    tmp = np.arange(ma * bdn, dtype=np.int).reshape(bdn, ma)
    tmp = np.tile(tmp, (1, n))
    ii = tmp.ravel()

    jj = np.arange(na, dtype=np.int)[None, :]
    jj = jj * np.ones(ma, dtype=np.int)[:, None]
    jj = jj.T.ravel()  # column indices foreach sparse bd

    bd = sparse.coo_matrix((A.T.ravel(), np.c_[ii, jj].T)).tocsc()

    return bd


def _inv_block_diag(A, n):
    """Construct an inverse block diagonal from a packed structure.

    You have to try it on a matrix to see what it's doing.

    "A" is ma x na, comprising bdn=(na/"n") blocks of submatrices.
    Each submatrix is ma x "n", and the inverses of these submatrices
    are placed down the diagonal of the matrix.

    Parameters
    ----------
    A : array
        The matrix.
    n : int
        The block size.

    Returns
    -------
    bd : sparse matrix
        The block diagonal matrix.
    """
    ma, na = A.shape
    bdn = na // int(n)  # number of submatrices

    if na % n > 0:
        raise ValueError('Width of matrix must be a multiple of n')

    # modify A in-place to invert each sub-block
    A = A.copy()
    for start in range(0, na, 3):
        # this is a view
        A[:, start:start + 3] = linalg.inv(A[:, start:start + 3])

    tmp = np.arange(ma * bdn, dtype=np.int).reshape(bdn, ma)
    tmp = np.tile(tmp, (1, n))
    ii = tmp.ravel()

    jj = np.arange(na, dtype=np.int)[None, :]
    jj = jj * np.ones(ma, dtype=np.int)[:, None]
    jj = jj.T.ravel()  # column indices foreach sparse bd

    bd = sparse.coo_matrix((A.T.ravel(), np.c_[ii, jj].T)).tocsc()

    return bd


def _get_tag_int(fid, node, name, id_):
    """Check we have an appropriate tag."""
    tag = find_tag(fid, node, id_)
    if tag is None:
        fid.close()
        raise ValueError(name + ' tag not found')
    return int(tag.data)


def _read_one(fid, node):
    """Read all interesting stuff for one forward solution."""
    # This function assumes the fid is open as a context manager
    if node is None:
        return None

    one = Forward()
    one['source_ori'] = _get_tag_int(fid, node, 'Source orientation',
                                     FIFF.FIFF_MNE_SOURCE_ORIENTATION)
    one['coord_frame'] = _get_tag_int(fid, node, 'Coordinate frame',
                                      FIFF.FIFF_MNE_COORD_FRAME)
    one['nsource'] = _get_tag_int(fid, node, 'Number of sources',
                                  FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS)
    one['nchan'] = _get_tag_int(fid, node, 'Number of channels',
                                FIFF.FIFF_NCHAN)
    try:
        one['sol'] = _read_named_matrix(fid, node,
                                        FIFF.FIFF_MNE_FORWARD_SOLUTION,
                                        transpose=True)
        one['_orig_sol'] = one['sol']['data'].copy()
    except Exception:
        logger.error('Forward solution data not found')
        raise

    try:
        fwd_type = FIFF.FIFF_MNE_FORWARD_SOLUTION_GRAD
        one['sol_grad'] = _read_named_matrix(fid, node, fwd_type,
                                             transpose=True)
        one['_orig_sol_grad'] = one['sol_grad']['data'].copy()
    except Exception:
        one['sol_grad'] = None

    if one['sol']['data'].shape[0] != one['nchan'] or \
            (one['sol']['data'].shape[1] != one['nsource'] and
             one['sol']['data'].shape[1] != 3 * one['nsource']):
        raise ValueError('Forward solution matrix has wrong dimensions')

    if one['sol_grad'] is not None:
        if one['sol_grad']['data'].shape[0] != one['nchan'] or \
                (one['sol_grad']['data'].shape[1] != 3 * one['nsource'] and
                 one['sol_grad']['data'].shape[1] != 3 * 3 * one['nsource']):
            raise ValueError('Forward solution gradient matrix has '
                             'wrong dimensions')

    return one


def _read_forward_meas_info(tree, fid):
    """Read light measurement info from forward operator.

    Parameters
    ----------
    tree : tree
        FIF tree structure.
    fid : file id
        The file id.

    Returns
    -------
    info : instance of Info
        The measurement info.
    """
    # This function assumes fid is being used as a context manager
    info = Info()

    # Information from the MRI file
    parent_mri = dir_tree_find(tree, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
    if len(parent_mri) == 0:
        raise ValueError('No parent MEG information found in operator')
    parent_mri = parent_mri[0]

    tag = find_tag(fid, parent_mri, FIFF.FIFF_MNE_FILE_NAME)
    info['mri_file'] = tag.data if tag is not None else None
    tag = find_tag(fid, parent_mri, FIFF.FIFF_PARENT_FILE_ID)
    info['mri_id'] = tag.data if tag is not None else None

    # Information from the MEG file
    parent_meg = dir_tree_find(tree, FIFF.FIFFB_MNE_PARENT_MEAS_FILE)
    if len(parent_meg) == 0:
        raise ValueError('No parent MEG information found in operator')
    parent_meg = parent_meg[0]

    tag = find_tag(fid, parent_meg, FIFF.FIFF_MNE_FILE_NAME)
    info['meas_file'] = tag.data if tag is not None else None
    tag = find_tag(fid, parent_meg, FIFF.FIFF_PARENT_FILE_ID)
    info['meas_id'] = tag.data if tag is not None else None

    # Add channel information
    chs = list()
    for k in range(parent_meg['nent']):
        kind = parent_meg['directory'][k].kind
        pos = parent_meg['directory'][k].pos
        if kind == FIFF.FIFF_CH_INFO:
            tag = read_tag(fid, pos)
            chs.append(tag.data)
    info['chs'] = chs
    info._update_redundant()

    #   Get the MRI <-> head coordinate transformation
    tag = find_tag(fid, parent_mri, FIFF.FIFF_COORD_TRANS)
    coord_head = FIFF.FIFFV_COORD_HEAD
    coord_mri = FIFF.FIFFV_COORD_MRI
    coord_device = FIFF.FIFFV_COORD_DEVICE
    coord_ctf_head = FIFF.FIFFV_MNE_COORD_CTF_HEAD
    if tag is None:
        raise ValueError('MRI/head coordinate transformation not found')
    cand = tag.data
    if cand['from'] == coord_mri and cand['to'] == coord_head:
        info['mri_head_t'] = cand
    else:
        raise ValueError('MRI/head coordinate transformation not found')

    #   Get the MEG device <-> head coordinate transformation
    tag = find_tag(fid, parent_meg, FIFF.FIFF_COORD_TRANS)
    if tag is None:
        raise ValueError('MEG/head coordinate transformation not found')
    cand = tag.data
    if cand['from'] == coord_device and cand['to'] == coord_head:
        info['dev_head_t'] = cand
    elif cand['from'] == coord_ctf_head and cand['to'] == coord_head:
        info['ctf_head_t'] = cand
    else:
        raise ValueError('MEG/head coordinate transformation not found')

    info['bads'] = read_bad_channels(fid, parent_meg)
    # clean up our bad list, old versions could have non-existent bads
    info['bads'] = [bad for bad in info['bads'] if bad in info['ch_names']]

    # Check if a custom reference has been applied
    tag = find_tag(fid, parent_mri, FIFF.FIFF_MNE_CUSTOM_REF)
    if tag is None:
        tag = find_tag(fid, parent_mri, 236)  # Constant 236 used before v0.11

    info['custom_ref_applied'] = bool(tag.data) if tag is not None else False
    info._check_consistency()
    return info


def _subject_from_forward(forward):
    """Get subject id from inverse operator."""
    return forward['src'][0].get('subject_his_id', None)


@verbose
def _merge_meg_eeg_fwds(megfwd, eegfwd, verbose=None):
    """Merge loaded MEG and EEG forward dicts into one dict."""
    if megfwd is not None and eegfwd is not None:
        if (megfwd['sol']['data'].shape[1] != eegfwd['sol']['data'].shape[1] or
                megfwd['source_ori'] != eegfwd['source_ori'] or
                megfwd['nsource'] != eegfwd['nsource'] or
                megfwd['coord_frame'] != eegfwd['coord_frame']):
            raise ValueError('The MEG and EEG forward solutions do not match')

        fwd = megfwd
        fwd['sol']['data'] = np.r_[fwd['sol']['data'], eegfwd['sol']['data']]
        fwd['_orig_sol'] = np.r_[fwd['_orig_sol'], eegfwd['_orig_sol']]
        fwd['sol']['nrow'] = fwd['sol']['nrow'] + eegfwd['sol']['nrow']

        fwd['sol']['row_names'] = (fwd['sol']['row_names'] +
                                   eegfwd['sol']['row_names'])
        if fwd['sol_grad'] is not None:
            fwd['sol_grad']['data'] = np.r_[fwd['sol_grad']['data'],
                                            eegfwd['sol_grad']['data']]
            fwd['_orig_sol_grad'] = np.r_[fwd['_orig_sol_grad'],
                                          eegfwd['_orig_sol_grad']]
            fwd['sol_grad']['nrow'] = (fwd['sol_grad']['nrow'] +
                                       eegfwd['sol_grad']['nrow'])
            fwd['sol_grad']['row_names'] = (fwd['sol_grad']['row_names'] +
                                            eegfwd['sol_grad']['row_names'])

        fwd['nchan'] = fwd['nchan'] + eegfwd['nchan']
        logger.info('    MEG and EEG forward solutions combined')
    elif megfwd is not None:
        fwd = megfwd
    else:
        fwd = eegfwd
    return fwd


@verbose
def read_forward_solution(fname, include=(), exclude=(), verbose=None):
    """Read a forward solution a.k.a. lead field.

    Parameters
    ----------
    fname : string
        The file name, which should end with -fwd.fif or -fwd.fif.gz.
    include : list, optional
        List of names of channels to include. If empty all channels
        are included.
    exclude : list, optional
        List of names of channels to exclude. If empty include all
        channels.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    fwd : instance of Forward
        The forward solution.

    See Also
    --------
    write_forward_solution, make_forward_solution

    Notes
    -----
    Forward solutions, which are derived from an original forward solution with
    free orientation, are always stored on disk as forward solution with free
    orientation in X/Y/Z RAS coordinates. To apply any transformation to the
    forward operator (surface orientation, fixed orientation) please apply
    :func:`convert_forward_solution` after reading the forward solution with
    :func:`read_forward_solution`.

    Forward solutions, which are derived from an original forward solution with
    fixed orientation, are stored on disk as forward solution with fixed
    surface-based orientations. Please note that the transformation to
    surface-based, fixed orientation cannot be reverted after loading the
    forward solution with :func:`read_forward_solution`.
    """
    check_fname(fname, 'forward', ('-fwd.fif', '-fwd.fif.gz',
                                   '_fwd.fif', '_fwd.fif.gz'))

    #   Open the file, create directory
    logger.info('Reading forward solution from %s...' % fname)
    f, tree, _ = fiff_open(fname)
    with f as fid:
        #   Find all forward solutions
        fwds = dir_tree_find(tree, FIFF.FIFFB_MNE_FORWARD_SOLUTION)
        if len(fwds) == 0:
            raise ValueError('No forward solutions in %s' % fname)

        #   Parent MRI data
        parent_mri = dir_tree_find(tree, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
        if len(parent_mri) == 0:
            raise ValueError('No parent MRI information in %s' % fname)
        parent_mri = parent_mri[0]

        src = _read_source_spaces_from_tree(fid, tree, patch_stats=False)
        for s in src:
            s['id'] = find_source_space_hemi(s)

        fwd = None

        #   Locate and read the forward solutions
        megnode = None
        eegnode = None
        for k in range(len(fwds)):
            tag = find_tag(fid, fwds[k], FIFF.FIFF_MNE_INCLUDED_METHODS)
            if tag is None:
                raise ValueError('Methods not listed for one of the forward '
                                 'solutions')

            if tag.data == FIFF.FIFFV_MNE_MEG:
                megnode = fwds[k]
            elif tag.data == FIFF.FIFFV_MNE_EEG:
                eegnode = fwds[k]

        megfwd = _read_one(fid, megnode)
        if megfwd is not None:
            if is_fixed_orient(megfwd):
                ori = 'fixed'
            else:
                ori = 'free'
            logger.info('    Read MEG forward solution (%d sources, '
                        '%d channels, %s orientations)'
                        % (megfwd['nsource'], megfwd['nchan'], ori))

        eegfwd = _read_one(fid, eegnode)
        if eegfwd is not None:
            if is_fixed_orient(eegfwd):
                ori = 'fixed'
            else:
                ori = 'free'
            logger.info('    Read EEG forward solution (%d sources, '
                        '%d channels, %s orientations)'
                        % (eegfwd['nsource'], eegfwd['nchan'], ori))

        fwd = _merge_meg_eeg_fwds(megfwd, eegfwd)

        #   Get the MRI <-> head coordinate transformation
        tag = find_tag(fid, parent_mri, FIFF.FIFF_COORD_TRANS)
        if tag is None:
            raise ValueError('MRI/head coordinate transformation not found')
        mri_head_t = tag.data
        if (mri_head_t['from'] != FIFF.FIFFV_COORD_MRI or
                mri_head_t['to'] != FIFF.FIFFV_COORD_HEAD):
            mri_head_t = invert_transform(mri_head_t)
            if (mri_head_t['from'] != FIFF.FIFFV_COORD_MRI or
                    mri_head_t['to'] != FIFF.FIFFV_COORD_HEAD):
                fid.close()
                raise ValueError('MRI/head coordinate transformation not '
                                 'found')
        fwd['mri_head_t'] = mri_head_t

        #
        # get parent MEG info
        #
        fwd['info'] = _read_forward_meas_info(tree, fid)

        # MNE environment
        parent_env = dir_tree_find(tree, FIFF.FIFFB_MNE_ENV)
        if len(parent_env) > 0:
            parent_env = parent_env[0]
            tag = find_tag(fid, parent_env, FIFF.FIFF_MNE_ENV_WORKING_DIR)
            if tag is not None:
                fwd['info']['working_dir'] = tag.data
            tag = find_tag(fid, parent_env, FIFF.FIFF_MNE_ENV_COMMAND_LINE)
            if tag is not None:
                fwd['info']['command_line'] = tag.data

    #   Transform the source spaces to the correct coordinate frame
    #   if necessary

    # Make sure forward solution is in either the MRI or HEAD coordinate frame
    if fwd['coord_frame'] not in (FIFF.FIFFV_COORD_MRI, FIFF.FIFFV_COORD_HEAD):
        raise ValueError('Only forward solutions computed in MRI or head '
                         'coordinates are acceptable')

    # Transform each source space to the HEAD or MRI coordinate frame,
    # depending on the coordinate frame of the forward solution
    # NOTE: the function transform_surface_to will also work on discrete and
    # volume sources
    nuse = 0
    for s in src:
        try:
            s = transform_surface_to(s, fwd['coord_frame'], mri_head_t)
        except Exception as inst:
            raise ValueError('Could not transform source space (%s)' % inst)

        nuse += s['nuse']

    # Make sure the number of sources match after transformation
    if nuse != fwd['nsource']:
        raise ValueError('Source spaces do not match the forward solution.')

    logger.info('    Source spaces transformed to the forward solution '
                'coordinate frame')
    fwd['src'] = src

    #   Handle the source locations and orientations
    fwd['source_rr'] = np.concatenate([ss['rr'][ss['vertno'], :]
                                       for ss in src], axis=0)

    #   Store original source orientations
    fwd['_orig_source_ori'] = fwd['source_ori']

    #   Deal with include and exclude
    fwd = pick_channels_forward(fwd, include=include, exclude=exclude)

    if is_fixed_orient(fwd, orig=True):
        fwd['source_nn'] = np.concatenate([_src['nn'][_src['vertno'], :]
                                           for _src in fwd['src']], axis=0)
        fwd['source_ori'] = FIFF.FIFFV_MNE_FIXED_ORI
        fwd['surf_ori'] = True
    else:
        fwd['source_nn'] = np.kron(np.ones((fwd['nsource'], 1)), np.eye(3))
        fwd['source_ori'] = FIFF.FIFFV_MNE_FREE_ORI
        fwd['surf_ori'] = False
    return Forward(fwd)


@verbose
def convert_forward_solution(fwd, surf_ori=False, force_fixed=False,
                             copy=True, use_cps=True, verbose=None):
    """Convert forward solution between different source orientations.

    Parameters
    ----------
    fwd : Forward
        The forward solution to modify.
    surf_ori : bool, optional (default False)
        Use surface-based source coordinate system? Note that force_fixed=True
        implies surf_ori=True.
    force_fixed : bool, optional (default False)
        Force fixed source orientation mode?
    copy : bool
        Whether to return a new instance or modify in place.
    use_cps : bool (default True)
        Whether to use cortical patch statistics to define normal
        orientations. Only used when surf_ori and/or force_fixed are True.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    fwd : Forward
        The modified forward solution.
    """
    fwd = fwd.copy() if copy else fwd

    if force_fixed is True:
        surf_ori = True

    if any([src['type'] == 'vol' for src in fwd['src']]) and force_fixed:
        warn('Forward operator was generated with sources from a '
             'volume source space. Conversion to fixed orientation is not '
             'possible. Setting force_fixed to False. surf_ori is ignored for '
             'volume source spaces.')
        force_fixed = False

    if surf_ori:
        if use_cps:
            if any(s.get('patch_inds') is not None for s in fwd['src']):
                use_ave_nn = True
                logger.info('    Average patch normals will be employed in '
                            'the rotation to the local surface coordinates..'
                            '..')
            else:
                use_ave_nn = False
                logger.info('    No patch info available. The standard source '
                            'space normals will be employed in the rotation '
                            'to the local surface coordinates....')
        else:
            use_ave_nn = False

    # We need to change these entries (only):
    # 1. source_nn
    # 2. sol['data']
    # 3. sol['ncol']
    # 4. sol_grad['data']
    # 5. sol_grad['ncol']
    # 6. source_ori

    if is_fixed_orient(fwd, orig=True) or (force_fixed and not use_ave_nn):
        # Fixed
        fwd['source_nn'] = np.concatenate([s['nn'][s['vertno'], :]
                                           for s in fwd['src']], axis=0)
        if not is_fixed_orient(fwd, orig=True):
            logger.info('    Changing to fixed-orientation forward '
                        'solution with surface-based source orientations...')
            fix_rot = _block_diag(fwd['source_nn'].T, 1)
            # newer versions of numpy require explicit casting here, so *= no
            # longer works
            fwd['sol']['data'] = (fwd['_orig_sol'] *
                                  fix_rot).astype('float32')
            fwd['sol']['ncol'] = fwd['nsource']
            if fwd['sol_grad'] is not None:
                x = sparse.block_diag([fix_rot] * 3)
                fwd['sol_grad']['data'] = fwd['_orig_sol_grad'] * x  # dot prod
                fwd['sol_grad']['ncol'] = 3 * fwd['nsource']
        fwd['source_ori'] = FIFF.FIFFV_MNE_FIXED_ORI
        fwd['surf_ori'] = True

    elif surf_ori:  # Free, surf-oriented
        #   Rotate the local source coordinate systems
        fwd['source_nn'] = np.kron(np.ones((fwd['nsource'], 1)), np.eye(3))
        logger.info('    Converting to surface-based source orientations...')
        #   Actually determine the source orientations
        pp = 0
        for s in fwd['src']:
            if s['type'] in ['surf', 'discrete']:
                for p in range(s['nuse']):
                    #  Project out the surface normal and compute SVD
                    if use_ave_nn and s.get('patch_inds') is not None:
                        nn = s['nn'][s['pinfo'][s['patch_inds'][p]], :]
                        nn = np.sum(nn, axis=0)[:, np.newaxis]
                        nn /= linalg.norm(nn)
                    else:
                        nn = s['nn'][s['vertno'][p], :][:, np.newaxis]
                    U, S, _ = linalg.svd(np.eye(3, 3) - nn * nn.T)
                    #  Make sure that ez is in the direction of nn
                    if np.sum(nn.ravel() * U[:, 2].ravel()) < 0:
                        U *= -1.0
                    fwd['source_nn'][pp:pp + 3, :] = U.T
                    pp += 3
            else:
                pp += 3 * s['nuse']

        #   Rotate the solution components as well
        if force_fixed:
            fwd['source_nn'] = fwd['source_nn'][2::3, :]
            fix_rot = _block_diag(fwd['source_nn'].T, 1)
            # newer versions of numpy require explicit casting here, so *= no
            # longer works
            fwd['sol']['data'] = (fwd['_orig_sol'] *
                                  fix_rot).astype('float32')
            fwd['sol']['ncol'] = fwd['nsource']
            if fwd['sol_grad'] is not None:
                x = sparse.block_diag([fix_rot] * 3)
                fwd['sol_grad']['data'] = fwd['_orig_sol_grad'] * x  # dot prod
                fwd['sol_grad']['ncol'] = 3 * fwd['nsource']
            fwd['source_ori'] = FIFF.FIFFV_MNE_FIXED_ORI
            fwd['surf_ori'] = True
        else:
            surf_rot = _block_diag(fwd['source_nn'].T, 3)
            fwd['sol']['data'] = fwd['_orig_sol'] * surf_rot
            fwd['sol']['ncol'] = 3 * fwd['nsource']
            if fwd['sol_grad'] is not None:
                x = sparse.block_diag([surf_rot] * 3)
                fwd['sol_grad']['data'] = fwd['_orig_sol_grad'] * x  # dot prod
                fwd['sol_grad']['ncol'] = 9 * fwd['nsource']
            fwd['source_ori'] = FIFF.FIFFV_MNE_FREE_ORI
            fwd['surf_ori'] = True

    else:  # Free, cartesian
        logger.info('    Cartesian source orientations...')
        fwd['source_nn'] = np.kron(np.ones((fwd['nsource'], 1)), np.eye(3))
        fwd['sol']['data'] = fwd['_orig_sol'].copy()
        fwd['sol']['ncol'] = 3 * fwd['nsource']
        if fwd['sol_grad'] is not None:
            fwd['sol_grad']['data'] = fwd['_orig_sol_grad'].copy()
            fwd['sol_grad']['ncol'] = 9 * fwd['nsource']
        fwd['source_ori'] = FIFF.FIFFV_MNE_FREE_ORI
        fwd['surf_ori'] = False

    logger.info('    [done]')

    return fwd


@verbose
def write_forward_solution(fname, fwd, overwrite=False, verbose=None):
    """Write forward solution to a file.

    Parameters
    ----------
    fname : str
        File name to save the forward solution to. It should end with -fwd.fif
        or -fwd.fif.gz.
    fwd : Forward
        Forward solution.
    overwrite : bool
        If True, overwrite destination file (if it exists).
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    See Also
    --------
    read_forward_solution

    Notes
    -----
    Forward solutions, which are derived from an original forward solution with
    free orientation, are always stored on disk as forward solution with free
    orientation in X/Y/Z RAS coordinates. Transformations (surface orientation,
    fixed orientation) will be reverted. To reapply any transformation to the
    forward operator please apply :func:`convert_forward_solution` after
    reading the forward solution with :func:`read_forward_solution`.

    Forward solutions, which are derived from an original forward solution with
    fixed orientation, are stored on disk as forward solution with fixed
    surface-based orientations. Please note that the transformation to
    surface-based, fixed orientation cannot be reverted after loading the
    forward solution with :func:`read_forward_solution`.
    """
    check_fname(fname, 'forward', ('-fwd.fif', '-fwd.fif.gz',
                                   '_fwd.fif', '_fwd.fif.gz'))

    # check for file existence
    _check_fname(fname, overwrite)
    fid = start_file(fname)
    start_block(fid, FIFF.FIFFB_MNE)

    #
    # MNE env
    #
    start_block(fid, FIFF.FIFFB_MNE_ENV)
    write_id(fid, FIFF.FIFF_BLOCK_ID)
    data = fwd['info'].get('working_dir', None)
    if data is not None:
        write_string(fid, FIFF.FIFF_MNE_ENV_WORKING_DIR, data)
    data = fwd['info'].get('command_line', None)
    if data is not None:
        write_string(fid, FIFF.FIFF_MNE_ENV_COMMAND_LINE, data)
    end_block(fid, FIFF.FIFFB_MNE_ENV)

    #
    # Information from the MRI file
    #
    start_block(fid, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
    write_string(fid, FIFF.FIFF_MNE_FILE_NAME, fwd['info']['mri_file'])
    if fwd['info']['mri_id'] is not None:
        write_id(fid, FIFF.FIFF_PARENT_FILE_ID, fwd['info']['mri_id'])
    # store the MRI to HEAD transform in MRI file
    write_coord_trans(fid, fwd['info']['mri_head_t'])
    end_block(fid, FIFF.FIFFB_MNE_PARENT_MRI_FILE)

    # write measurement info
    write_forward_meas_info(fid, fwd['info'])

    # invert our original source space transform
    src = list()
    for s in fwd['src']:
        s = deepcopy(s)
        try:
            # returns source space to original coordinate frame
            # usually MRI
            s = transform_surface_to(s, fwd['mri_head_t']['from'],
                                     fwd['mri_head_t'])
        except Exception as inst:
            raise ValueError('Could not transform source space (%s)' % inst)
        src.append(s)

    #
    # Write the source spaces (again)
    #
    _write_source_spaces_to_fid(fid, src)
    n_vert = sum([ss['nuse'] for ss in src])
    if fwd['_orig_source_ori'] == FIFF.FIFFV_MNE_FIXED_ORI:
        n_col = n_vert
    else:
        n_col = 3 * n_vert

    # Undo transformations
    sol = fwd['_orig_sol'].copy()
    if fwd['sol_grad'] is not None:
        sol_grad = fwd['_orig_sol_grad'].copy()
    else:
        sol_grad = None

    if fwd['surf_ori'] is True:
        if fwd['_orig_source_ori'] == FIFF.FIFFV_MNE_FIXED_ORI:
            warn('The forward solution, which is stored on disk now, is based '
                 'on a forward solution with fixed orientation. Please note '
                 'that the transformation to surface-based, fixed orientation '
                 'cannot be reverted after loading the forward solution with '
                 'read_forward_solution.', RuntimeWarning)
        else:
            warn('This forward solution is based on a forward solution with '
                 'free orientation. The original forward solution is stored '
                 'on disk in X/Y/Z RAS coordinates. Any transformation '
                 '(surface orientation or fixed orientation) will be '
                 'reverted. To reapply any transformation to the forward '
                 'operator please apply convert_forward_solution after '
                 'reading the forward solution with read_forward_solution.',
                 RuntimeWarning)

    #
    # MEG forward solution
    #
    picks_meg = pick_types(fwd['info'], meg=True, eeg=False, ref_meg=False,
                           exclude=[])
    picks_eeg = pick_types(fwd['info'], meg=False, eeg=True, ref_meg=False,
                           exclude=[])
    n_meg = len(picks_meg)
    n_eeg = len(picks_eeg)
    row_names_meg = [fwd['sol']['row_names'][p] for p in picks_meg]
    row_names_eeg = [fwd['sol']['row_names'][p] for p in picks_eeg]

    if n_meg > 0:
        meg_solution = dict(data=sol[picks_meg], nrow=n_meg, ncol=n_col,
                            row_names=row_names_meg, col_names=[])
        _transpose_named_matrix(meg_solution)
        start_block(fid, FIFF.FIFFB_MNE_FORWARD_SOLUTION)
        write_int(fid, FIFF.FIFF_MNE_INCLUDED_METHODS, FIFF.FIFFV_MNE_MEG)
        write_int(fid, FIFF.FIFF_MNE_COORD_FRAME, fwd['coord_frame'])
        write_int(fid, FIFF.FIFF_MNE_SOURCE_ORIENTATION,
                  fwd['_orig_source_ori'])
        write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS, n_vert)
        write_int(fid, FIFF.FIFF_NCHAN, n_meg)
        write_named_matrix(fid, FIFF.FIFF_MNE_FORWARD_SOLUTION, meg_solution)
        if sol_grad is not None:
            meg_solution_grad = dict(data=sol_grad[picks_meg],
                                     nrow=n_meg, ncol=n_col * 3,
                                     row_names=row_names_meg, col_names=[])
            _transpose_named_matrix(meg_solution_grad)
            write_named_matrix(fid, FIFF.FIFF_MNE_FORWARD_SOLUTION_GRAD,
                               meg_solution_grad)
        end_block(fid, FIFF.FIFFB_MNE_FORWARD_SOLUTION)

    #
    #  EEG forward solution
    #
    if n_eeg > 0:
        eeg_solution = dict(data=sol[picks_eeg], nrow=n_eeg, ncol=n_col,
                            row_names=row_names_eeg, col_names=[])
        _transpose_named_matrix(eeg_solution)
        start_block(fid, FIFF.FIFFB_MNE_FORWARD_SOLUTION)
        write_int(fid, FIFF.FIFF_MNE_INCLUDED_METHODS, FIFF.FIFFV_MNE_EEG)
        write_int(fid, FIFF.FIFF_MNE_COORD_FRAME, fwd['coord_frame'])
        write_int(fid, FIFF.FIFF_MNE_SOURCE_ORIENTATION,
                  fwd['_orig_source_ori'])
        write_int(fid, FIFF.FIFF_NCHAN, n_eeg)
        write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS, n_vert)
        write_named_matrix(fid, FIFF.FIFF_MNE_FORWARD_SOLUTION, eeg_solution)
        if sol_grad is not None:
            eeg_solution_grad = dict(data=sol_grad[picks_eeg],
                                     nrow=n_eeg, ncol=n_col * 3,
                                     row_names=row_names_eeg, col_names=[])
            _transpose_named_matrix(eeg_solution_grad)
            write_named_matrix(fid, FIFF.FIFF_MNE_FORWARD_SOLUTION_GRAD,
                               eeg_solution_grad)
        end_block(fid, FIFF.FIFFB_MNE_FORWARD_SOLUTION)

    end_block(fid, FIFF.FIFFB_MNE)
    end_file(fid)


def is_fixed_orient(forward, orig=False):
    """Check if the forward operator is fixed orientation."""
    if orig:  # if we want to know about the original version
        fixed_ori = (forward['_orig_source_ori'] == FIFF.FIFFV_MNE_FIXED_ORI)
    else:  # most of the time we want to know about the current version
        fixed_ori = (forward['source_ori'] == FIFF.FIFFV_MNE_FIXED_ORI)
    return fixed_ori


def write_forward_meas_info(fid, info):
    """Write measurement info stored in forward solution.

    Parameters
    ----------
    fid : file id
        The file id
    info : instance of Info
        The measurement info.
    """
    info._check_consistency()
    #
    # Information from the MEG file
    #
    start_block(fid, FIFF.FIFFB_MNE_PARENT_MEAS_FILE)
    write_string(fid, FIFF.FIFF_MNE_FILE_NAME, info['meas_file'])
    if info['meas_id'] is not None:
        write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, info['meas_id'])
    # get transformation from CTF and DEVICE to HEAD coordinate frame
    meg_head_t = info.get('dev_head_t', info.get('ctf_head_t'))
    if meg_head_t is None:
        fid.close()
        raise ValueError('Head<-->sensor transform not found')
    write_coord_trans(fid, meg_head_t)

    if 'chs' in info:
        #  Channel information
        write_int(fid, FIFF.FIFF_NCHAN, len(info['chs']))
        for k, c in enumerate(info['chs']):
            #   Scan numbers may have been messed up
            c = deepcopy(c)
            c['scanno'] = k + 1
            write_ch_info(fid, c)
    if 'bads' in info and len(info['bads']) > 0:
        #   Bad channels
        start_block(fid, FIFF.FIFFB_MNE_BAD_CHANNELS)
        write_name_list(fid, FIFF.FIFF_MNE_CH_NAME_LIST, info['bads'])
        end_block(fid, FIFF.FIFFB_MNE_BAD_CHANNELS)

    end_block(fid, FIFF.FIFFB_MNE_PARENT_MEAS_FILE)


@verbose
def compute_orient_prior(forward, loose=0.2, verbose=None):
    """Compute orientation prior.

    Parameters
    ----------
    forward : dict
        Forward operator.
    loose : float in [0, 1]
        The loose orientation parameter.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    orient_prior : array
        Orientation priors.
    """
    is_fixed_ori = is_fixed_orient(forward)
    n_sources = forward['sol']['data'].shape[1]
    loose = float(loose)
    if not (0 <= loose <= 1):
        raise ValueError('loose value should be smaller than 1 and bigger '
                         'than 0, got %s.' % (loose,))
    if loose < 1 and not forward['surf_ori']:
        raise ValueError('Forward operator is not oriented in surface '
                         'coordinates. loose parameter should be 1 '
                         'not %s.' % loose)
    if is_fixed_ori and loose != 0:
        raise ValueError('loose must be 0. with forward operator '
                         'with fixed orientation.')

    orient_prior = np.ones(n_sources, dtype=np.float)
    if not is_fixed_ori and loose < 1:
        logger.info('Applying loose dipole orientations. Loose value '
                    'of %s.' % loose)
        orient_prior[np.mod(np.arange(n_sources), 3) != 2] *= loose

    return orient_prior


def _restrict_gain_matrix(G, info):
    """Restrict gain matrix entries for optimal depth weighting."""
    # Figure out which ones have been used
    if not (len(info['chs']) == G.shape[0]):
        raise ValueError("G.shape[0] and length of info['chs'] do not match: "
                         "%d != %d" % (G.shape[0], len(info['chs'])))
    sel = pick_types(info, meg='grad', ref_meg=False, exclude=[])
    if len(sel) > 0:
        G = G[sel]
        logger.info('    %d planar channels' % len(sel))
    else:
        sel = pick_types(info, meg='mag', ref_meg=False, exclude=[])
        if len(sel) > 0:
            G = G[sel]
            logger.info('    %d magnetometer or axial gradiometer '
                        'channels' % len(sel))
        else:
            sel = pick_types(info, meg=False, eeg=True, exclude=[])
            if len(sel) > 0:
                G = G[sel]
                logger.info('    %d EEG channels' % len(sel))
            else:
                warn('Could not find MEG or EEG channels')
    return G


def compute_depth_prior(G, gain_info, is_fixed_ori, exp=0.8, limit=10.0,
                        patch_areas=None, limit_depth_chs=False):
    """Compute weighting for depth prior."""
    logger.info('Creating the depth weighting matrix...')

    # If possible, pick best depth-weighting channels
    if limit_depth_chs is True:
        G = _restrict_gain_matrix(G, gain_info)

    # Compute the gain matrix
    if is_fixed_ori:
        d = np.sum(G ** 2, axis=0)
    else:
        n_pos = G.shape[1] // 3
        d = np.zeros(n_pos)
        for k in range(n_pos):
            Gk = G[:, 3 * k:3 * (k + 1)]
            d[k] = linalg.svdvals(np.dot(Gk.T, Gk))[0]

    # XXX Currently the fwd solns never have "patch_areas" defined
    if patch_areas is not None:
        d /= patch_areas ** 2
        logger.info('    Patch areas taken into account in the depth '
                    'weighting')

    w = 1.0 / d
    ws = np.sort(w)
    weight_limit = limit ** 2
    if limit_depth_chs is False:
        # match old mne-python behavor
        ind = np.argmin(ws)
        n_limit = ind
        limit = ws[ind] * weight_limit
        wpp = (np.minimum(w / limit, 1)) ** exp
    else:
        # match C code behavior
        limit = ws[-1]
        n_limit = len(d)
        if ws[-1] > weight_limit * ws[0]:
            ind = np.where(ws > weight_limit * ws[0])[0][0]
            limit = ws[ind]
            n_limit = ind

    logger.info('    limit = %d/%d = %f'
                % (n_limit + 1, len(d),
                   np.sqrt(limit / ws[0])))
    scale = 1.0 / limit
    logger.info('    scale = %g exp = %g' % (scale, exp))
    wpp = np.minimum(w / limit, 1) ** exp

    depth_prior = wpp if is_fixed_ori else np.repeat(wpp, 3)

    return depth_prior


def _stc_src_sel(src, stc):
    """Select the vertex indices of a source space using a source estimate."""
    if isinstance(stc, VolSourceEstimate):
        vertices = [stc.vertices]
    else:
        vertices = stc.vertices
    if not len(src) == len(vertices):
        raise RuntimeError('Mismatch between number of source spaces (%s) and '
                           'STC vertices (%s)' % (len(src), len(vertices)))
    src_sels = []
    offset = 0
    for s, v in zip(src, vertices):
        src_sel = np.intersect1d(s['vertno'], v)
        src_sel = np.searchsorted(s['vertno'], src_sel)
        src_sels.append(src_sel + offset)
        offset += len(s['vertno'])
    src_sel = np.concatenate(src_sels)
    return src_sel


def _fill_measurement_info(info, fwd, sfreq):
    """Fill the measurement info of a Raw or Evoked object."""
    sel = pick_channels(info['ch_names'], fwd['sol']['row_names'])
    info = pick_info(info, sel)
    info['bads'] = []

    # this is probably correct based on what's done in meas_info.py...
    info['meas_id'] = fwd['info']['meas_id']
    info['file_id'] = info['meas_id']

    now = time()
    sec = np.floor(now)
    usec = 1e6 * (now - sec)

    info['meas_date'] = (int(sec), int(usec))
    info['highpass'] = 0.0
    info['lowpass'] = sfreq / 2.0
    info['sfreq'] = sfreq
    info['projs'] = []

    return info


@verbose
def _apply_forward(fwd, stc, start=None, stop=None, verbose=None):
    """Apply forward model and return data, times, ch_names."""
    if not is_fixed_orient(fwd):
        raise ValueError('Only fixed-orientation forward operators are '
                         'supported.')

    if np.all(stc.data > 0):
        warn('Source estimate only contains currents with positive values. '
             'Use pick_ori="normal" when computing the inverse to compute '
             'currents not current magnitudes.')

    max_cur = np.max(np.abs(stc.data))
    if max_cur > 1e-7:  # 100 nAm threshold for warning
        warn('The maximum current magnitude is %0.1f nAm, which is very large.'
             ' Are you trying to apply the forward model to noise-normalized '
             '(dSPM, sLORETA, or eLORETA) values? The result will only be '
             'correct if currents (in units of Am) are used.'
             % (1e9 * max_cur))

    src_sel = _stc_src_sel(fwd['src'], stc)
    if isinstance(stc, VolSourceEstimate):
        n_src = len(stc.vertices)
    else:
        n_src = sum([len(v) for v in stc.vertices])
    if len(src_sel) != n_src:
        raise RuntimeError('Only %i of %i SourceEstimate vertices found in '
                           'fwd' % (len(src_sel), n_src))

    gain = fwd['sol']['data'][:, src_sel]

    logger.info('Projecting source estimate to sensor space...')
    data = np.dot(gain, stc.data[:, start:stop])
    logger.info('[done]')

    times = deepcopy(stc.times[start:stop])

    return data, times


@verbose
def apply_forward(fwd, stc, info, start=None, stop=None, use_cps=True,
                  verbose=None):
    """Project source space currents to sensor space using a forward operator.

    The sensor space data is computed for all channels present in fwd. Use
    pick_channels_forward or pick_types_forward to restrict the solution to a
    subset of channels.

    The function returns an Evoked object, which is constructed from
    evoked_template. The evoked_template should be from the same MEG system on
    which the original data was acquired. An exception will be raised if the
    forward operator contains channels that are not present in the template.


    Parameters
    ----------
    fwd : Forward
        Forward operator to use.
    stc : SourceEstimate
        The source estimate from which the sensor space data is computed.
    info : instance of Info
        Measurement info to generate the evoked.
    start : int, optional
        Index of first time sample (index not time is seconds).
    stop : int, optional
        Index of first time sample not to include (index not time is seconds).
    use_cps : bool (default True)
        Whether to use cortical patch statistics to define normal
        orientations when converting to fixed orientation (if necessary).

        .. versionadded:: 0.15
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    evoked : Evoked
        Evoked object with computed sensor space data.

    See Also
    --------
    apply_forward_raw: Compute sensor space data and return a Raw object.
    """
    # make sure evoked_template contains all channels in fwd
    for ch_name in fwd['sol']['row_names']:
        if ch_name not in info['ch_names']:
            raise ValueError('Channel %s of forward operator not present in '
                             'evoked_template.' % ch_name)

    # project the source estimate to the sensor space
    if not is_fixed_orient(fwd):
        fwd = convert_forward_solution(fwd, force_fixed=True, use_cps=use_cps)
    data, times = _apply_forward(fwd, stc, start, stop)

    # fill the measurement info
    sfreq = float(1.0 / stc.tstep)
    info_out = _fill_measurement_info(info, fwd, sfreq)

    evoked = EvokedArray(data, info_out, times[0], nave=1)

    evoked.times = times
    evoked.first = int(np.round(evoked.times[0] * sfreq))
    evoked.last = evoked.first + evoked.data.shape[1] - 1

    return evoked


@verbose
def apply_forward_raw(fwd, stc, info, start=None, stop=None,
                      verbose=None):
    """Project source space currents to sensor space using a forward operator.

    The sensor space data is computed for all channels present in fwd. Use
    pick_channels_forward or pick_types_forward to restrict the solution to a
    subset of channels.

    The function returns a Raw object, which is constructed using provided
    info. The info object should be from the same MEG system on which the
    original data was acquired. An exception will be raised if the forward
    operator contains channels that are not present in the info.

    Parameters
    ----------
    fwd : Forward
        Forward operator to use. Has to be fixed-orientation.
    stc : SourceEstimate
        The source estimate from which the sensor space data is computed.
    info : instance of Info
        The measurement info.
    start : int, optional
        Index of first time sample (index not time is seconds).
    stop : int, optional
        Index of first time sample not to include (index not time is seconds).
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    Returns
    -------
    raw : Raw object
        Raw object with computed sensor space data.

    See Also
    --------
    apply_forward: Compute sensor space data and return an Evoked object.
    """
    # make sure info contains all channels in fwd
    for ch_name in fwd['sol']['row_names']:
        if ch_name not in info['ch_names']:
            raise ValueError('Channel %s of forward operator not present in '
                             'info.' % ch_name)

    # project the source estimate to the sensor space
    data, times = _apply_forward(fwd, stc, start, stop)

    sfreq = 1.0 / stc.tstep
    info = _fill_measurement_info(info, fwd, sfreq)
    info['projs'] = []
    # store sensor data in Raw object using the info
    raw = RawArray(data, info)
    raw.preload = True

    raw._first_samps = np.array([int(np.round(times[0] * sfreq))])
    raw._last_samps = np.array([raw.first_samp + raw._data.shape[1] - 1])
    raw._projector = None
    raw._update_times()
    return raw


def restrict_forward_to_stc(fwd, stc):
    """Restrict forward operator to active sources in a source estimate.

    Parameters
    ----------
    fwd : Forward
        Forward operator.
    stc : SourceEstimate
        Source estimate.

    Returns
    -------
    fwd_out : dict
        Restricted forward operator.

    See Also
    --------
    restrict_forward_to_label
    """
    fwd_out = deepcopy(fwd)
    src_sel = _stc_src_sel(fwd['src'], stc)

    fwd_out['source_rr'] = fwd['source_rr'][src_sel]
    fwd_out['nsource'] = len(src_sel)

    if is_fixed_orient(fwd):
        idx = src_sel
        if fwd['sol_grad'] is not None:
            idx_grad = (3 * src_sel[:, None] + np.arange(3)).ravel()
    else:
        idx = (3 * src_sel[:, None] + np.arange(3)).ravel()
        if fwd['sol_grad'] is not None:
            idx_grad = (9 * src_sel[:, None] + np.arange(9)).ravel()

    fwd_out['source_nn'] = fwd['source_nn'][idx]
    fwd_out['sol']['data'] = fwd['sol']['data'][:, idx]
    if fwd['sol_grad'] is not None:
        fwd_out['sol_grad']['data'] = fwd['sol_grad']['data'][:, idx_grad]
    fwd_out['sol']['ncol'] = len(idx)

    if is_fixed_orient(fwd, orig=True):
        idx = src_sel
        if fwd['sol_grad'] is not None:
            idx_grad = (3 * src_sel[:, None] + np.arange(3)).ravel()
    else:
        idx = (3 * src_sel[:, None] + np.arange(3)).ravel()
        if fwd['sol_grad'] is not None:
            idx_grad = (9 * src_sel[:, None] + np.arange(9)).ravel()

    fwd_out['_orig_sol'] = fwd['_orig_sol'][:, idx]
    if fwd['sol_grad'] is not None:
        fwd_out['_orig_sol_grad'] = fwd['_orig_sol_grad'][:, idx_grad]

    for i in range(2):
        fwd_out['src'][i]['vertno'] = stc.vertices[i]
        fwd_out['src'][i]['nuse'] = len(stc.vertices[i])
        fwd_out['src'][i]['inuse'] = fwd['src'][i]['inuse'].copy()
        fwd_out['src'][i]['inuse'].fill(0)
        fwd_out['src'][i]['inuse'][stc.vertices[i]] = 1
        fwd_out['src'][i]['use_tris'] = np.array([[]], int)
        fwd_out['src'][i]['nuse_tri'] = np.array([0])

    return fwd_out


def restrict_forward_to_label(fwd, labels):
    """Restrict forward operator to labels.

    Parameters
    ----------
    fwd : Forward
        Forward operator.
    labels : label object | list
        Label object or list of label objects.

    Returns
    -------
    fwd_out : dict
        Restricted forward operator.

    See Also
    --------
    restrict_forward_to_stc
    """
    vertices = [np.array([], int), np.array([], int)]

    if not isinstance(labels, list):
        labels = [labels]

    # Get vertices separately of each hemisphere from all label
    for label in labels:
        _validate_type(label, Label, "label", "Label or list")
        i = 0 if label.hemi == 'lh' else 1
        vertices[i] = np.append(vertices[i], label.vertices)
    # Remove duplicates and sort
    vertices = [np.unique(vert_hemi) for vert_hemi in vertices]

    fwd_out = deepcopy(fwd)
    fwd_out['source_rr'] = np.zeros((0, 3))
    fwd_out['nsource'] = 0
    fwd_out['source_nn'] = np.zeros((0, 3))
    fwd_out['sol']['data'] = np.zeros((fwd['sol']['data'].shape[0], 0))
    fwd_out['_orig_sol'] = np.zeros((fwd['_orig_sol'].shape[0], 0))
    if fwd['sol_grad'] is not None:
        fwd_out['sol_grad']['data'] = np.zeros(
            (fwd['sol_grad']['data'].shape[0], 0))
        fwd_out['_orig_sol_grad'] = np.zeros(
            (fwd['_orig_sol_grad'].shape[0], 0))
    fwd_out['sol']['ncol'] = 0
    nuse_lh = fwd['src'][0]['nuse']

    for i in range(2):
        fwd_out['src'][i]['vertno'] = np.array([], int)
        fwd_out['src'][i]['nuse'] = 0
        fwd_out['src'][i]['inuse'] = fwd['src'][i]['inuse'].copy()
        fwd_out['src'][i]['inuse'].fill(0)
        fwd_out['src'][i]['use_tris'] = np.array([[]], int)
        fwd_out['src'][i]['nuse_tri'] = np.array([0])

        # src_sel is idx to cols in fwd that are in any label per hemi
        src_sel = np.intersect1d(fwd['src'][i]['vertno'], vertices[i])
        src_sel = np.searchsorted(fwd['src'][i]['vertno'], src_sel)

        # Reconstruct each src
        vertno = fwd['src'][i]['vertno'][src_sel]
        fwd_out['src'][i]['inuse'][vertno] = 1
        fwd_out['src'][i]['nuse'] += len(vertno)
        fwd_out['src'][i]['vertno'] = np.where(fwd_out['src'][i]['inuse'])[0]

        # Reconstruct part of fwd that is not sol data
        src_sel += i * nuse_lh  # Add column shift to right hemi
        fwd_out['source_rr'] = np.vstack([fwd_out['source_rr'],
                                          fwd['source_rr'][src_sel]])
        fwd_out['nsource'] += len(src_sel)

        if is_fixed_orient(fwd):
            idx = src_sel
            if fwd['sol_grad'] is not None:
                idx_grad = (3 * src_sel[:, None] + np.arange(3)).ravel()
        else:
            idx = (3 * src_sel[:, None] + np.arange(3)).ravel()
            if fwd['sol_grad'] is not None:
                idx_grad = (9 * src_sel[:, None] + np.arange(9)).ravel()

        fwd_out['source_nn'] = np.vstack(
            [fwd_out['source_nn'], fwd['source_nn'][idx]])
        fwd_out['sol']['data'] = np.hstack(
            [fwd_out['sol']['data'], fwd['sol']['data'][:, idx]])
        if fwd['sol_grad'] is not None:
            fwd_out['sol_grad']['data'] = np.hstack(
                [fwd_out['sol_grad']['data'],
                 fwd['sol_rad']['data'][:, idx_grad]])
        fwd_out['sol']['ncol'] += len(idx)

        if is_fixed_orient(fwd, orig=True):
            idx = src_sel
            if fwd['sol_grad'] is not None:
                idx_grad = (3 * src_sel[:, None] + np.arange(3)).ravel()
        else:
            idx = (3 * src_sel[:, None] + np.arange(3)).ravel()
            if fwd['sol_grad'] is not None:
                idx_grad = (9 * src_sel[:, None] + np.arange(9)).ravel()

        fwd_out['_orig_sol'] = np.hstack(
            [fwd_out['_orig_sol'], fwd['_orig_sol'][:, idx]])
        if fwd['sol_grad'] is not None:
            fwd_out['_orig_sol_grad'] = np.hstack(
                [fwd_out['_orig_sol_grad'],
                 fwd['_orig_sol_grad'][:, idx_grad]])

    return fwd_out


def _do_forward_solution(subject, meas, fname=None, src=None, spacing=None,
                         mindist=None, bem=None, mri=None, trans=None,
                         eeg=True, meg=True, fixed=False, grad=False,
                         mricoord=False, overwrite=False, subjects_dir=None,
                         verbose=None):
    """Calculate a forward solution for a subject using MNE-C routines.

    This is kept around for testing purposes.

    This function wraps to mne_do_forward_solution, so the mne
    command-line tools must be installed and accessible from Python.

    Parameters
    ----------
    subject : str
        Name of the subject.
    meas : Raw | Epochs | Evoked | str
        If Raw or Epochs, a temporary evoked file will be created and
        saved to a temporary directory. If str, then it should be a
        filename to a file with measurement information the mne
        command-line tools can understand (i.e., raw or evoked).
    fname : str | None
        Destination forward solution filename. If None, the solution
        will be created in a temporary directory, loaded, and deleted.
    src : str | None
        Source space name. If None, the MNE default is used.
    spacing : str
        The spacing to use. Can be ``'#'`` for spacing in mm, ``'ico#'`` for a
        recursively subdivided icosahedron, or ``'oct#'`` for a recursively
        subdivided octahedron (e.g., ``spacing='ico4'``). Default is 7 mm.
    mindist : float | str | None
        Minimum distance of sources from inner skull surface (in mm).
        If None, the MNE default value is used. If string, 'all'
        indicates to include all points.
    bem : str | None
        Name of the BEM to use (e.g., "sample-5120-5120-5120"). If None
        (Default), the MNE default will be used.
    mri : str | None
        The name of the trans file in FIF format.
        If None, trans must not be None.
    trans : dict | str | None
        File name of the trans file in text format.
        If None, mri must not be None.
    eeg : bool
        If True (Default), include EEG computations.
    meg : bool
        If True (Default), include MEG computations.
    fixed : bool
        If True, make a fixed-orientation forward solution (Default:
        False). Note that fixed-orientation inverses can still be
        created from free-orientation forward solutions.
    grad : bool
        If True, compute the gradient of the field with respect to the
        dipole coordinates as well (Default: False).
    mricoord : bool
        If True, calculate in MRI coordinates (Default: False).
    overwrite : bool
        If True, the destination file (if it exists) will be overwritten.
        If False (default), an error will be raised if the file exists.
    subjects_dir : None | str
        Override the SUBJECTS_DIR environment variable.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see :func:`mne.verbose`
        and :ref:`Logging documentation <tut_logging>` for more).

    See Also
    --------
    make_forward_solution

    Returns
    -------
    fwd : Forward
        The generated forward solution.
    """
    if not has_mne_c():
        raise RuntimeError('mne command line tools could not be found')

    # check for file existence
    temp_dir = tempfile.mkdtemp()
    if fname is None:
        fname = op.join(temp_dir, 'temp-fwd.fif')
    _check_fname(fname, overwrite)
    _validate_type(subject, "str", "subject")

    # check for meas to exist as string, or try to make evoked
    if isinstance(meas, string_types):
        if not op.isfile(meas):
            raise IOError('measurement file "%s" could not be found' % meas)
    elif isinstance(meas, (BaseRaw, BaseEpochs, Evoked)):
        meas_file = op.join(temp_dir, 'info.fif')
        write_info(meas_file, meas.info)
        meas = meas_file
    else:
        raise ValueError('meas must be string, Raw, Epochs, or Evoked')

    # deal with trans/mri
    if mri is not None and trans is not None:
        raise ValueError('trans and mri cannot both be specified')
    if mri is None and trans is None:
        # MNE allows this to default to a trans/mri in the subject's dir,
        # but let's be safe here and force the user to pass us a trans/mri
        raise ValueError('Either trans or mri must be specified')

    if trans is not None:
        _validate_type(trans, "str", "trans")
        if not op.isfile(trans):
            raise IOError('trans file "%s" not found' % trans)
    if mri is not None:
        # deal with trans
        if not isinstance(mri, string_types):
            if isinstance(mri, dict):
                mri_data = deepcopy(mri)
                mri = op.join(temp_dir, 'mri-trans.fif')
                try:
                    write_trans(mri, mri_data)
                except Exception:
                    raise IOError('mri was a dict, but could not be '
                                  'written to disk as a transform file')
            else:
                raise ValueError('trans must be a string or dict (trans)')
        if not op.isfile(mri):
            raise IOError('trans file "%s" could not be found' % trans)

    # deal with meg/eeg
    if not meg and not eeg:
        raise ValueError('meg or eeg (or both) must be True')

    path, fname = op.split(fname)
    if not op.splitext(fname)[1] == '.fif':
        raise ValueError('Forward name does not end with .fif')
    path = op.abspath(path)

    # deal with mindist
    if mindist is not None:
        if isinstance(mindist, string_types):
            if not mindist.lower() == 'all':
                raise ValueError('mindist, if string, must be "all"')
            mindist = ['--all']
        else:
            mindist = ['--mindist', '%g' % mindist]

    # src, spacing, bem
    for element, name in zip((src, spacing, bem), ("src", "spacing", "bem")):
        if element is not None:
            _validate_type(element, "str", name, "string or None")

    # put together the actual call
    cmd = ['mne_do_forward_solution',
           '--subject', subject,
           '--meas', meas,
           '--fwd', fname,
           '--destdir', path]
    if src is not None:
        cmd += ['--src', src]
    if spacing is not None:
        if spacing.isdigit():
            pass  # spacing in mm
        else:
            # allow both "ico4" and "ico-4" style values
            match = re.match(r"(oct|ico)-?(\d+)$", spacing)
            if match is None:
                raise ValueError("Invalid spacing parameter: %r" % spacing)
            spacing = '-'.join(match.groups())
        cmd += ['--spacing', spacing]
    if mindist is not None:
        cmd += mindist
    if bem is not None:
        cmd += ['--bem', bem]
    if mri is not None:
        cmd += ['--mri', '%s' % mri]
    if trans is not None:
        cmd += ['--trans', '%s' % trans]
    if not meg:
        cmd.append('--eegonly')
    if not eeg:
        cmd.append('--megonly')
    if fixed:
        cmd.append('--fixed')
    if grad:
        cmd.append('--grad')
    if mricoord:
        cmd.append('--mricoord')
    if overwrite:
        cmd.append('--overwrite')

    env = os.environ.copy()
    subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
    env['SUBJECTS_DIR'] = subjects_dir

    try:
        logger.info('Running forward solution generation command with '
                    'subjects_dir %s' % subjects_dir)
        run_subprocess(cmd, env=env)
    except Exception:
        raise
    else:
        fwd = read_forward_solution(op.join(path, fname), verbose=False)
    finally:
        shutil.rmtree(temp_dir, ignore_errors=True)
    return fwd


@verbose
def average_forward_solutions(fwds, weights=None):
    """Average forward solutions.

    Parameters
    ----------
    fwds : list of Forward
        Forward solutions to average. Each entry (dict) should be a
        forward solution.
    weights : array | None
        Weights to apply to each forward solution in averaging. If None,
        forward solutions will be equally weighted. Weights must be
        non-negative, and will be adjusted to sum to one.

    Returns
    -------
    fwd : Forward
        The averaged forward solution.
    """
    # check for fwds being a list
    _validate_type(fwds, list, "fwds")
    if not len(fwds) > 0:
        raise ValueError('fwds must not be empty')

    # check weights
    if weights is None:
        weights = np.ones(len(fwds))
    weights = np.asanyarray(weights)  # in case it's a list, convert it
    if not np.all(weights >= 0):
        raise ValueError('weights must be non-negative')
    if not len(weights) == len(fwds):
        raise ValueError('weights must be None or the same length as fwds')
    w_sum = np.sum(weights)
    if not w_sum > 0:
        raise ValueError('weights cannot all be zero')
    weights /= w_sum

    # check our forward solutions
    for fwd in fwds:
        # check to make sure it's a forward solution
        _validate_type(fwd, dict, "each entry in fwds", "dict")
        # check to make sure the dict is actually a fwd
        check_keys = ['info', 'sol_grad', 'nchan', 'src', 'source_nn', 'sol',
                      'source_rr', 'source_ori', 'surf_ori', 'coord_frame',
                      'mri_head_t', 'nsource']
        if not all(key in fwd for key in check_keys):
            raise KeyError('forward solution dict does not have all standard '
                           'entries, cannot compute average.')

    # check forward solution compatibility
    if any(fwd['sol'][k] != fwds[0]['sol'][k]
           for fwd in fwds[1:] for k in ['nrow', 'ncol']):
        raise ValueError('Forward solutions have incompatible dimensions')
    if any(fwd[k] != fwds[0][k] for fwd in fwds[1:]
           for k in ['source_ori', 'surf_ori', 'coord_frame']):
        raise ValueError('Forward solutions have incompatible orientations')

    # actually average them (solutions and gradients)
    fwd_ave = deepcopy(fwds[0])
    fwd_ave['sol']['data'] *= weights[0]
    fwd_ave['_orig_sol'] *= weights[0]
    for fwd, w in zip(fwds[1:], weights[1:]):
        fwd_ave['sol']['data'] += w * fwd['sol']['data']
        fwd_ave['_orig_sol'] += w * fwd['_orig_sol']
    if fwd_ave['sol_grad'] is not None:
        fwd_ave['sol_grad']['data'] *= weights[0]
        fwd_ave['_orig_sol_grad'] *= weights[0]
        for fwd, w in zip(fwds[1:], weights[1:]):
            fwd_ave['sol_grad']['data'] += w * fwd['sol_grad']['data']
            fwd_ave['_orig_sol_grad'] += w * fwd['_orig_sol_grad']
    return fwd_ave