File: test_make_forward.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (436 lines) | stat: -rw-r--r-- 20,126 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
from itertools import product
import os
import os.path as op

import pytest
import numpy as np
from numpy.testing import assert_equal, assert_allclose, assert_array_equal

from mne.datasets import testing
from mne.io import read_raw_fif, read_raw_kit, read_raw_bti, read_info
from mne.io.constants import FIFF
from mne import (read_forward_solution, write_forward_solution,
                 make_forward_solution, convert_forward_solution,
                 setup_volume_source_space, read_source_spaces,
                 make_sphere_model, pick_types_forward, pick_info, pick_types,
                 read_evokeds, read_cov, read_dipole, SourceSpaces)
from mne.utils import (requires_mne, requires_nibabel, _TempDir,
                       run_tests_if_main, run_subprocess)
from mne.forward._make_forward import _create_meg_coils, make_forward_dipole
from mne.forward._compute_forward import _magnetic_dipole_field_vec
from mne.forward import Forward, _do_forward_solution
from mne.dipole import Dipole, fit_dipole
from mne.simulation import simulate_evoked
from mne.source_estimate import VolSourceEstimate
from mne.source_space import (get_volume_labels_from_aseg, write_source_spaces,
                              _compare_source_spaces, setup_source_space)

data_path = testing.data_path(download=False)
fname_meeg = op.join(data_path, 'MEG', 'sample',
                     'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
fname_raw = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data',
                    'test_raw.fif')
fname_evo = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-ave.fif')
fname_cov = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-cov.fif')
fname_dip = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_set1.dip')
fname_trans = op.join(data_path, 'MEG', 'sample',
                      'sample_audvis_trunc-trans.fif')
subjects_dir = os.path.join(data_path, 'subjects')
fname_src = op.join(subjects_dir, 'sample', 'bem', 'sample-oct-4-src.fif')
fname_bem = op.join(subjects_dir, 'sample', 'bem',
                    'sample-1280-1280-1280-bem-sol.fif')
fname_aseg = op.join(subjects_dir, 'sample', 'mri', 'aseg.mgz')
fname_bem_meg = op.join(subjects_dir, 'sample', 'bem',
                        'sample-1280-bem-sol.fif')


def _compare_forwards(fwd, fwd_py, n_sensors, n_src,
                      meg_rtol=1e-4, meg_atol=1e-9,
                      eeg_rtol=1e-3, eeg_atol=1e-3):
    """Test forwards."""
    # check source spaces
    assert_equal(len(fwd['src']), len(fwd_py['src']))
    _compare_source_spaces(fwd['src'], fwd_py['src'], mode='approx')
    for surf_ori, force_fixed in product([False, True], [False, True]):
        # use copy here to leave our originals unmodified
        fwd = convert_forward_solution(fwd, surf_ori, force_fixed, copy=True,
                                       use_cps=True)
        fwd_py = convert_forward_solution(fwd_py, surf_ori, force_fixed,
                                          copy=True, use_cps=True)
        check_src = n_src // 3 if force_fixed else n_src

        for key in ('nchan', 'source_rr', 'source_ori',
                    'surf_ori', 'coord_frame', 'nsource'):
            assert_allclose(fwd_py[key], fwd[key], rtol=1e-4, atol=1e-7,
                            err_msg=key)
        # In surf_ori=True only Z matters for source_nn
        if surf_ori and not force_fixed:
            ori_sl = slice(2, None, 3)
        else:
            ori_sl = slice(None)
        assert_allclose(fwd_py['source_nn'][ori_sl], fwd['source_nn'][ori_sl],
                        rtol=1e-4, atol=1e-6)
        assert_allclose(fwd_py['mri_head_t']['trans'],
                        fwd['mri_head_t']['trans'], rtol=1e-5, atol=1e-8)

        assert_equal(fwd_py['sol']['data'].shape, (n_sensors, check_src))
        assert_equal(len(fwd['sol']['row_names']), n_sensors)
        assert_equal(len(fwd_py['sol']['row_names']), n_sensors)

        # check MEG
        assert_allclose(fwd['sol']['data'][:306, ori_sl],
                        fwd_py['sol']['data'][:306, ori_sl],
                        rtol=meg_rtol, atol=meg_atol,
                        err_msg='MEG mismatch')
        # check EEG
        if fwd['sol']['data'].shape[0] > 306:
            assert_allclose(fwd['sol']['data'][306:, ori_sl],
                            fwd_py['sol']['data'][306:, ori_sl],
                            rtol=eeg_rtol, atol=eeg_atol,
                            err_msg='EEG mismatch')


def test_magnetic_dipole():
    """Test basic magnetic dipole forward calculation."""
    info = read_info(fname_raw)
    picks = pick_types(info, meg=True, eeg=False, exclude=[])
    info = pick_info(info, picks[:12])
    coils = _create_meg_coils(info['chs'], 'normal', None)
    # magnetic dipole far (meters!) from device origin
    r0 = np.array([0., 13., -6.])
    for ch, coil in zip(info['chs'], coils):
        rr = (ch['loc'][:3] + r0) / 2.  # get halfway closer
        far_fwd = _magnetic_dipole_field_vec(r0[np.newaxis, :], [coil])
        near_fwd = _magnetic_dipole_field_vec(rr[np.newaxis, :], [coil])
        ratio = 8. if ch['ch_name'][-1] == '1' else 16.  # grad vs mag
        assert_allclose(np.median(near_fwd / far_fwd), ratio, atol=1e-1)
    # degenerate case
    r0 = coils[0]['rmag'][[0]]
    with pytest.raises(RuntimeError, match='Coil too close'):
        _magnetic_dipole_field_vec(r0, coils[:1])
    with pytest.warns(RuntimeWarning, match='Coil too close'):
        fwd = _magnetic_dipole_field_vec(r0, coils[:1], too_close='warning')
    assert not np.isfinite(fwd).any()
    with np.errstate(invalid='ignore'):
        fwd = _magnetic_dipole_field_vec(r0, coils[:1], too_close='info')
    assert not np.isfinite(fwd).any()


@testing.requires_testing_data
@requires_mne
def test_make_forward_solution_kit():
    """Test making fwd using KIT, BTI, and CTF (compensated) files."""
    kit_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'kit',
                      'tests', 'data')
    sqd_path = op.join(kit_dir, 'test.sqd')
    mrk_path = op.join(kit_dir, 'test_mrk.sqd')
    elp_path = op.join(kit_dir, 'test_elp.txt')
    hsp_path = op.join(kit_dir, 'test_hsp.txt')
    trans_path = op.join(kit_dir, 'trans-sample.fif')
    fname_kit_raw = op.join(kit_dir, 'test_bin_raw.fif')

    bti_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'bti',
                      'tests', 'data')
    bti_pdf = op.join(bti_dir, 'test_pdf_linux')
    bti_config = op.join(bti_dir, 'test_config_linux')
    bti_hs = op.join(bti_dir, 'test_hs_linux')
    fname_bti_raw = op.join(bti_dir, 'exported4D_linux_raw.fif')

    fname_ctf_raw = op.join(op.dirname(__file__), '..', '..', 'io', 'tests',
                            'data', 'test_ctf_comp_raw.fif')

    # first set up a small testing source space
    temp_dir = _TempDir()
    fname_src_small = op.join(temp_dir, 'sample-oct-2-src.fif')
    src = setup_source_space('sample', 'oct2', subjects_dir=subjects_dir,
                             add_dist=False)
    write_source_spaces(fname_src_small, src)  # to enable working with MNE-C
    n_src = 108  # this is the resulting # of verts in fwd

    # first use mne-C: convert file, make forward solution
    fwd = _do_forward_solution('sample', fname_kit_raw, src=fname_src_small,
                               bem=fname_bem_meg, mri=trans_path,
                               eeg=False, meg=True, subjects_dir=subjects_dir)
    assert (isinstance(fwd, Forward))

    # now let's use python with the same raw file
    fwd_py = make_forward_solution(fname_kit_raw, trans_path, src,
                                   fname_bem_meg, eeg=False, meg=True)
    _compare_forwards(fwd, fwd_py, 157, n_src)
    assert (isinstance(fwd_py, Forward))

    # now let's use mne-python all the way
    raw_py = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path)
    # without ignore_ref=True, this should throw an error:
    pytest.raises(NotImplementedError, make_forward_solution, raw_py.info,
                  src=src, eeg=False, meg=True,
                  bem=fname_bem_meg, trans=trans_path)

    # check that asking for eeg channels (even if they don't exist) is handled
    meg_only_info = pick_info(raw_py.info, pick_types(raw_py.info, meg=True,
                                                      eeg=False))
    fwd_py = make_forward_solution(meg_only_info, src=src, meg=True, eeg=True,
                                   bem=fname_bem_meg, trans=trans_path,
                                   ignore_ref=True)
    _compare_forwards(fwd, fwd_py, 157, n_src,
                      meg_rtol=1e-3, meg_atol=1e-7)

    # BTI python end-to-end versus C
    fwd = _do_forward_solution('sample', fname_bti_raw, src=fname_src_small,
                               bem=fname_bem_meg, mri=trans_path,
                               eeg=False, meg=True, subjects_dir=subjects_dir)
    raw_py = read_raw_bti(bti_pdf, bti_config, bti_hs, preload=False)
    fwd_py = make_forward_solution(raw_py.info, src=src, eeg=False, meg=True,
                                   bem=fname_bem_meg, trans=trans_path)
    _compare_forwards(fwd, fwd_py, 248, n_src)

    # now let's test CTF w/compensation
    fwd_py = make_forward_solution(fname_ctf_raw, fname_trans, src,
                                   fname_bem_meg, eeg=False, meg=True)

    fwd = _do_forward_solution('sample', fname_ctf_raw, mri=fname_trans,
                               src=fname_src_small, bem=fname_bem_meg,
                               eeg=False, meg=True, subjects_dir=subjects_dir)
    _compare_forwards(fwd, fwd_py, 274, n_src)

    # CTF with compensation changed in python
    ctf_raw = read_raw_fif(fname_ctf_raw)
    ctf_raw.info['bads'] = ['MRO24-2908']  # test that it works with some bads
    ctf_raw.apply_gradient_compensation(2)

    fwd_py = make_forward_solution(ctf_raw.info, fname_trans, src,
                                   fname_bem_meg, eeg=False, meg=True)
    fwd = _do_forward_solution('sample', ctf_raw, mri=fname_trans,
                               src=fname_src_small, bem=fname_bem_meg,
                               eeg=False, meg=True,
                               subjects_dir=subjects_dir)
    _compare_forwards(fwd, fwd_py, 274, n_src)

    temp_dir = _TempDir()
    fname_temp = op.join(temp_dir, 'test-ctf-fwd.fif')
    write_forward_solution(fname_temp, fwd_py)
    fwd_py2 = read_forward_solution(fname_temp)
    _compare_forwards(fwd_py, fwd_py2, 274, n_src)
    repr(fwd_py)


@pytest.mark.slowtest
@testing.requires_testing_data
def test_make_forward_solution():
    """Test making M-EEG forward solution from python."""
    fwd_py = make_forward_solution(fname_raw, fname_trans, fname_src,
                                   fname_bem, mindist=5.0, eeg=True, meg=True)
    assert (isinstance(fwd_py, Forward))
    fwd = read_forward_solution(fname_meeg)
    assert (isinstance(fwd, Forward))
    _compare_forwards(fwd, fwd_py, 366, 1494, meg_rtol=1e-3)


@testing.requires_testing_data
def test_make_forward_solution_discrete():
    """Test making and converting a forward solution with discrete src."""
    # smoke test for depth weighting and discrete source spaces
    src = read_source_spaces(fname_src)[0]
    src = SourceSpaces([src] + setup_volume_source_space(
        pos=dict(rr=src['rr'][src['vertno'][:3]].copy(),
                 nn=src['nn'][src['vertno'][:3]].copy())))
    sphere = make_sphere_model()
    fwd = make_forward_solution(fname_raw, fname_trans, src, sphere,
                                meg=True, eeg=False)
    convert_forward_solution(fwd, surf_ori=True)


@testing.requires_testing_data
@requires_mne
def test_make_forward_solution_sphere():
    """Test making a forward solution with a sphere model."""
    temp_dir = _TempDir()
    fname_src_small = op.join(temp_dir, 'sample-oct-2-src.fif')
    src = setup_source_space('sample', 'oct2', subjects_dir=subjects_dir,
                             add_dist=False)
    write_source_spaces(fname_src_small, src)  # to enable working with MNE-C
    out_name = op.join(temp_dir, 'tmp-fwd.fif')
    run_subprocess(['mne_forward_solution', '--meg', '--eeg',
                    '--meas', fname_raw, '--src', fname_src_small,
                    '--mri', fname_trans, '--fwd', out_name])
    fwd = read_forward_solution(out_name)
    sphere = make_sphere_model(verbose=True)
    fwd_py = make_forward_solution(fname_raw, fname_trans, src, sphere,
                                   meg=True, eeg=True, verbose=True)
    _compare_forwards(fwd, fwd_py, 366, 108,
                      meg_rtol=5e-1, meg_atol=1e-6,
                      eeg_rtol=5e-1, eeg_atol=5e-1)
    # Since the above is pretty lax, let's check a different way
    for meg, eeg in zip([True, False], [False, True]):
        fwd_ = pick_types_forward(fwd, meg=meg, eeg=eeg)
        fwd_py_ = pick_types_forward(fwd, meg=meg, eeg=eeg)
        assert_allclose(np.corrcoef(fwd_['sol']['data'].ravel(),
                                    fwd_py_['sol']['data'].ravel())[0, 1],
                        1.0, rtol=1e-3)
    # Number of layers in the sphere model doesn't matter for MEG
    # (as long as no sources are omitted due to distance)
    assert len(sphere['layers']) == 4
    fwd = make_forward_solution(fname_raw, fname_trans, src, sphere,
                                meg=True, eeg=False)
    sphere_1 = make_sphere_model(head_radius=None)
    assert len(sphere_1['layers']) == 0
    assert_array_equal(sphere['r0'], sphere_1['r0'])
    fwd_1 = make_forward_solution(fname_raw, fname_trans, src, sphere,
                                  meg=True, eeg=False)
    _compare_forwards(fwd, fwd_1, 306, 108, meg_rtol=1e-12, meg_atol=1e-12)


@pytest.mark.slowtest
@testing.requires_testing_data
@requires_nibabel(False)
def test_forward_mixed_source_space():
    """Test making the forward solution for a mixed source space."""
    temp_dir = _TempDir()
    # get the surface source space
    surf = read_source_spaces(fname_src)

    # setup two volume source spaces
    label_names = get_volume_labels_from_aseg(fname_aseg)
    vol_labels = [label_names[int(np.random.rand() * len(label_names))]
                  for _ in range(2)]
    vol1 = setup_volume_source_space('sample', pos=20., mri=fname_aseg,
                                     volume_label=vol_labels[0],
                                     add_interpolator=False)
    vol2 = setup_volume_source_space('sample', pos=20., mri=fname_aseg,
                                     volume_label=vol_labels[1],
                                     add_interpolator=False)

    # merge surfaces and volume
    src = surf + vol1 + vol2

    # calculate forward solution
    fwd = make_forward_solution(fname_raw, fname_trans, src, fname_bem, None)
    assert (repr(fwd))

    # extract source spaces
    src_from_fwd = fwd['src']

    # get the coordinate frame of each source space
    coord_frames = np.array([s['coord_frame'] for s in src_from_fwd])

    # assert that all source spaces are in head coordinates
    assert ((coord_frames == FIFF.FIFFV_COORD_HEAD).all())

    # run tests for SourceSpaces.export_volume
    fname_img = op.join(temp_dir, 'temp-image.mgz')

    # head coordinates and mri_resolution, but trans file
    pytest.raises(ValueError, src_from_fwd.export_volume, fname_img,
                  mri_resolution=True, trans=None)

    # head coordinates and mri_resolution, but wrong trans file
    vox_mri_t = vol1[0]['vox_mri_t']
    pytest.raises(ValueError, src_from_fwd.export_volume, fname_img,
                  mri_resolution=True, trans=vox_mri_t)


@pytest.mark.slowtest
@testing.requires_testing_data
def test_make_forward_dipole():
    """Test forward-projecting dipoles."""
    rng = np.random.RandomState(0)

    evoked = read_evokeds(fname_evo)[0]
    cov = read_cov(fname_cov)
    cov['projs'] = []  # avoid proj warning
    dip_c = read_dipole(fname_dip)

    # Only use magnetometers for speed!
    picks = pick_types(evoked.info, meg='mag', eeg=False)[::8]
    evoked.pick_channels([evoked.ch_names[p] for p in picks])
    evoked.info.normalize_proj()
    info = evoked.info

    # Make new Dipole object with n_test_dipoles picked from the dipoles
    # in the test dataset.
    n_test_dipoles = 3  # minimum 3 needed to get uneven sampling in time
    dipsel = np.sort(rng.permutation(np.arange(len(dip_c)))[:n_test_dipoles])
    dip_test = Dipole(times=dip_c.times[dipsel],
                      pos=dip_c.pos[dipsel],
                      amplitude=dip_c.amplitude[dipsel],
                      ori=dip_c.ori[dipsel],
                      gof=dip_c.gof[dipsel])

    sphere = make_sphere_model(head_radius=0.1)

    # Warning emitted due to uneven sampling in time
    with pytest.warns(RuntimeWarning, match='unevenly spaced'):
        fwd, stc = make_forward_dipole(dip_test, sphere, info,
                                       trans=fname_trans)

    # stc is list of VolSourceEstimate's
    assert isinstance(stc, list)
    for n_dip in range(n_test_dipoles):
        assert isinstance(stc[n_dip], VolSourceEstimate)

    # Now simulate evoked responses for each of the test dipoles,
    # and fit dipoles to them (sphere model, MEG and EEG)
    times, pos, amplitude, ori, gof = [], [], [], [], []
    nave = 100  # add a tiny amount of noise to the simulated evokeds
    for s in stc:
        evo_test = simulate_evoked(fwd, s, info, cov,
                                   nave=nave, random_state=rng)
        # evo_test.add_proj(make_eeg_average_ref_proj(evo_test.info))
        dfit, resid = fit_dipole(evo_test, cov, sphere, None)
        times += dfit.times.tolist()
        pos += dfit.pos.tolist()
        amplitude += dfit.amplitude.tolist()
        ori += dfit.ori.tolist()
        gof += dfit.gof.tolist()

    # Create a new Dipole object with the dipole fits
    dip_fit = Dipole(times, pos, amplitude, ori, gof)

    # check that true (test) dipoles and fits are "close"
    # cf. mne/tests/test_dipole.py
    diff = dip_test.pos - dip_fit.pos
    corr = np.corrcoef(dip_test.pos.ravel(), dip_fit.pos.ravel())[0, 1]
    dist = np.sqrt(np.mean(np.sum(diff * diff, axis=1)))
    gc_dist = 180 / np.pi * \
        np.mean(np.arccos(np.sum(dip_test.ori * dip_fit.ori, axis=1)))
    amp_err = np.sqrt(np.mean((dip_test.amplitude - dip_fit.amplitude) ** 2))

    # Make sure each coordinate is close to reference
    # NB tolerance should be set relative to snr of simulated evoked!
    assert_allclose(dip_fit.pos, dip_test.pos, rtol=0, atol=1e-2,
                    err_msg='position mismatch')
    assert dist < 1e-2  # within 1 cm
    assert corr > 0.985
    assert gc_dist < 20  # less than 20 degrees
    assert amp_err < 10e-9  # within 10 nAm

    # Make sure rejection works with BEM: one dipole at z=1m
    # NB _make_forward.py:_prepare_for_forward will raise a RuntimeError
    # if no points are left after min_dist exclusions, hence 2 dips here!
    dip_outside = Dipole(times=[0., 0.001],
                         pos=[[0., 0., 1.0], [0., 0., 0.040]],
                         amplitude=[100e-9, 100e-9],
                         ori=[[1., 0., 0.], [1., 0., 0.]], gof=1)
    pytest.raises(ValueError, make_forward_dipole, dip_outside, fname_bem,
                  info, fname_trans)
    # if we get this far, can safely assume the code works with BEMs too
    # -> use sphere again below for speed

    # Now make an evenly sampled set of dipoles, some simultaneous,
    # should return a VolSourceEstimate regardless
    times = [0., 0., 0., 0.001, 0.001, 0.002]
    pos = np.random.rand(6, 3) * 0.020 + \
        np.array([0., 0., 0.040])[np.newaxis, :]
    amplitude = np.random.rand(6) * 100e-9
    ori = np.eye(6, 3) + np.eye(6, 3, -3)
    gof = np.arange(len(times)) / len(times)  # arbitrary

    dip_even_samp = Dipole(times, pos, amplitude, ori, gof)

    fwd, stc = make_forward_dipole(dip_even_samp, sphere, info,
                                   trans=fname_trans)
    assert isinstance(stc, VolSourceEstimate)
    assert_allclose(stc.times, np.arange(0., 0.003, 0.001))


run_tests_if_main()