1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
from itertools import product
import os
import os.path as op
import pytest
import numpy as np
from numpy.testing import assert_equal, assert_allclose, assert_array_equal
from mne.datasets import testing
from mne.io import read_raw_fif, read_raw_kit, read_raw_bti, read_info
from mne.io.constants import FIFF
from mne import (read_forward_solution, write_forward_solution,
make_forward_solution, convert_forward_solution,
setup_volume_source_space, read_source_spaces,
make_sphere_model, pick_types_forward, pick_info, pick_types,
read_evokeds, read_cov, read_dipole, SourceSpaces)
from mne.utils import (requires_mne, requires_nibabel, _TempDir,
run_tests_if_main, run_subprocess)
from mne.forward._make_forward import _create_meg_coils, make_forward_dipole
from mne.forward._compute_forward import _magnetic_dipole_field_vec
from mne.forward import Forward, _do_forward_solution
from mne.dipole import Dipole, fit_dipole
from mne.simulation import simulate_evoked
from mne.source_estimate import VolSourceEstimate
from mne.source_space import (get_volume_labels_from_aseg, write_source_spaces,
_compare_source_spaces, setup_source_space)
data_path = testing.data_path(download=False)
fname_meeg = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
fname_raw = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data',
'test_raw.fif')
fname_evo = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-ave.fif')
fname_cov = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-cov.fif')
fname_dip = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_set1.dip')
fname_trans = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-trans.fif')
subjects_dir = os.path.join(data_path, 'subjects')
fname_src = op.join(subjects_dir, 'sample', 'bem', 'sample-oct-4-src.fif')
fname_bem = op.join(subjects_dir, 'sample', 'bem',
'sample-1280-1280-1280-bem-sol.fif')
fname_aseg = op.join(subjects_dir, 'sample', 'mri', 'aseg.mgz')
fname_bem_meg = op.join(subjects_dir, 'sample', 'bem',
'sample-1280-bem-sol.fif')
def _compare_forwards(fwd, fwd_py, n_sensors, n_src,
meg_rtol=1e-4, meg_atol=1e-9,
eeg_rtol=1e-3, eeg_atol=1e-3):
"""Test forwards."""
# check source spaces
assert_equal(len(fwd['src']), len(fwd_py['src']))
_compare_source_spaces(fwd['src'], fwd_py['src'], mode='approx')
for surf_ori, force_fixed in product([False, True], [False, True]):
# use copy here to leave our originals unmodified
fwd = convert_forward_solution(fwd, surf_ori, force_fixed, copy=True,
use_cps=True)
fwd_py = convert_forward_solution(fwd_py, surf_ori, force_fixed,
copy=True, use_cps=True)
check_src = n_src // 3 if force_fixed else n_src
for key in ('nchan', 'source_rr', 'source_ori',
'surf_ori', 'coord_frame', 'nsource'):
assert_allclose(fwd_py[key], fwd[key], rtol=1e-4, atol=1e-7,
err_msg=key)
# In surf_ori=True only Z matters for source_nn
if surf_ori and not force_fixed:
ori_sl = slice(2, None, 3)
else:
ori_sl = slice(None)
assert_allclose(fwd_py['source_nn'][ori_sl], fwd['source_nn'][ori_sl],
rtol=1e-4, atol=1e-6)
assert_allclose(fwd_py['mri_head_t']['trans'],
fwd['mri_head_t']['trans'], rtol=1e-5, atol=1e-8)
assert_equal(fwd_py['sol']['data'].shape, (n_sensors, check_src))
assert_equal(len(fwd['sol']['row_names']), n_sensors)
assert_equal(len(fwd_py['sol']['row_names']), n_sensors)
# check MEG
assert_allclose(fwd['sol']['data'][:306, ori_sl],
fwd_py['sol']['data'][:306, ori_sl],
rtol=meg_rtol, atol=meg_atol,
err_msg='MEG mismatch')
# check EEG
if fwd['sol']['data'].shape[0] > 306:
assert_allclose(fwd['sol']['data'][306:, ori_sl],
fwd_py['sol']['data'][306:, ori_sl],
rtol=eeg_rtol, atol=eeg_atol,
err_msg='EEG mismatch')
def test_magnetic_dipole():
"""Test basic magnetic dipole forward calculation."""
info = read_info(fname_raw)
picks = pick_types(info, meg=True, eeg=False, exclude=[])
info = pick_info(info, picks[:12])
coils = _create_meg_coils(info['chs'], 'normal', None)
# magnetic dipole far (meters!) from device origin
r0 = np.array([0., 13., -6.])
for ch, coil in zip(info['chs'], coils):
rr = (ch['loc'][:3] + r0) / 2. # get halfway closer
far_fwd = _magnetic_dipole_field_vec(r0[np.newaxis, :], [coil])
near_fwd = _magnetic_dipole_field_vec(rr[np.newaxis, :], [coil])
ratio = 8. if ch['ch_name'][-1] == '1' else 16. # grad vs mag
assert_allclose(np.median(near_fwd / far_fwd), ratio, atol=1e-1)
# degenerate case
r0 = coils[0]['rmag'][[0]]
with pytest.raises(RuntimeError, match='Coil too close'):
_magnetic_dipole_field_vec(r0, coils[:1])
with pytest.warns(RuntimeWarning, match='Coil too close'):
fwd = _magnetic_dipole_field_vec(r0, coils[:1], too_close='warning')
assert not np.isfinite(fwd).any()
with np.errstate(invalid='ignore'):
fwd = _magnetic_dipole_field_vec(r0, coils[:1], too_close='info')
assert not np.isfinite(fwd).any()
@testing.requires_testing_data
@requires_mne
def test_make_forward_solution_kit():
"""Test making fwd using KIT, BTI, and CTF (compensated) files."""
kit_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'kit',
'tests', 'data')
sqd_path = op.join(kit_dir, 'test.sqd')
mrk_path = op.join(kit_dir, 'test_mrk.sqd')
elp_path = op.join(kit_dir, 'test_elp.txt')
hsp_path = op.join(kit_dir, 'test_hsp.txt')
trans_path = op.join(kit_dir, 'trans-sample.fif')
fname_kit_raw = op.join(kit_dir, 'test_bin_raw.fif')
bti_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'bti',
'tests', 'data')
bti_pdf = op.join(bti_dir, 'test_pdf_linux')
bti_config = op.join(bti_dir, 'test_config_linux')
bti_hs = op.join(bti_dir, 'test_hs_linux')
fname_bti_raw = op.join(bti_dir, 'exported4D_linux_raw.fif')
fname_ctf_raw = op.join(op.dirname(__file__), '..', '..', 'io', 'tests',
'data', 'test_ctf_comp_raw.fif')
# first set up a small testing source space
temp_dir = _TempDir()
fname_src_small = op.join(temp_dir, 'sample-oct-2-src.fif')
src = setup_source_space('sample', 'oct2', subjects_dir=subjects_dir,
add_dist=False)
write_source_spaces(fname_src_small, src) # to enable working with MNE-C
n_src = 108 # this is the resulting # of verts in fwd
# first use mne-C: convert file, make forward solution
fwd = _do_forward_solution('sample', fname_kit_raw, src=fname_src_small,
bem=fname_bem_meg, mri=trans_path,
eeg=False, meg=True, subjects_dir=subjects_dir)
assert (isinstance(fwd, Forward))
# now let's use python with the same raw file
fwd_py = make_forward_solution(fname_kit_raw, trans_path, src,
fname_bem_meg, eeg=False, meg=True)
_compare_forwards(fwd, fwd_py, 157, n_src)
assert (isinstance(fwd_py, Forward))
# now let's use mne-python all the way
raw_py = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path)
# without ignore_ref=True, this should throw an error:
pytest.raises(NotImplementedError, make_forward_solution, raw_py.info,
src=src, eeg=False, meg=True,
bem=fname_bem_meg, trans=trans_path)
# check that asking for eeg channels (even if they don't exist) is handled
meg_only_info = pick_info(raw_py.info, pick_types(raw_py.info, meg=True,
eeg=False))
fwd_py = make_forward_solution(meg_only_info, src=src, meg=True, eeg=True,
bem=fname_bem_meg, trans=trans_path,
ignore_ref=True)
_compare_forwards(fwd, fwd_py, 157, n_src,
meg_rtol=1e-3, meg_atol=1e-7)
# BTI python end-to-end versus C
fwd = _do_forward_solution('sample', fname_bti_raw, src=fname_src_small,
bem=fname_bem_meg, mri=trans_path,
eeg=False, meg=True, subjects_dir=subjects_dir)
raw_py = read_raw_bti(bti_pdf, bti_config, bti_hs, preload=False)
fwd_py = make_forward_solution(raw_py.info, src=src, eeg=False, meg=True,
bem=fname_bem_meg, trans=trans_path)
_compare_forwards(fwd, fwd_py, 248, n_src)
# now let's test CTF w/compensation
fwd_py = make_forward_solution(fname_ctf_raw, fname_trans, src,
fname_bem_meg, eeg=False, meg=True)
fwd = _do_forward_solution('sample', fname_ctf_raw, mri=fname_trans,
src=fname_src_small, bem=fname_bem_meg,
eeg=False, meg=True, subjects_dir=subjects_dir)
_compare_forwards(fwd, fwd_py, 274, n_src)
# CTF with compensation changed in python
ctf_raw = read_raw_fif(fname_ctf_raw)
ctf_raw.info['bads'] = ['MRO24-2908'] # test that it works with some bads
ctf_raw.apply_gradient_compensation(2)
fwd_py = make_forward_solution(ctf_raw.info, fname_trans, src,
fname_bem_meg, eeg=False, meg=True)
fwd = _do_forward_solution('sample', ctf_raw, mri=fname_trans,
src=fname_src_small, bem=fname_bem_meg,
eeg=False, meg=True,
subjects_dir=subjects_dir)
_compare_forwards(fwd, fwd_py, 274, n_src)
temp_dir = _TempDir()
fname_temp = op.join(temp_dir, 'test-ctf-fwd.fif')
write_forward_solution(fname_temp, fwd_py)
fwd_py2 = read_forward_solution(fname_temp)
_compare_forwards(fwd_py, fwd_py2, 274, n_src)
repr(fwd_py)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_make_forward_solution():
"""Test making M-EEG forward solution from python."""
fwd_py = make_forward_solution(fname_raw, fname_trans, fname_src,
fname_bem, mindist=5.0, eeg=True, meg=True)
assert (isinstance(fwd_py, Forward))
fwd = read_forward_solution(fname_meeg)
assert (isinstance(fwd, Forward))
_compare_forwards(fwd, fwd_py, 366, 1494, meg_rtol=1e-3)
@testing.requires_testing_data
def test_make_forward_solution_discrete():
"""Test making and converting a forward solution with discrete src."""
# smoke test for depth weighting and discrete source spaces
src = read_source_spaces(fname_src)[0]
src = SourceSpaces([src] + setup_volume_source_space(
pos=dict(rr=src['rr'][src['vertno'][:3]].copy(),
nn=src['nn'][src['vertno'][:3]].copy())))
sphere = make_sphere_model()
fwd = make_forward_solution(fname_raw, fname_trans, src, sphere,
meg=True, eeg=False)
convert_forward_solution(fwd, surf_ori=True)
@testing.requires_testing_data
@requires_mne
def test_make_forward_solution_sphere():
"""Test making a forward solution with a sphere model."""
temp_dir = _TempDir()
fname_src_small = op.join(temp_dir, 'sample-oct-2-src.fif')
src = setup_source_space('sample', 'oct2', subjects_dir=subjects_dir,
add_dist=False)
write_source_spaces(fname_src_small, src) # to enable working with MNE-C
out_name = op.join(temp_dir, 'tmp-fwd.fif')
run_subprocess(['mne_forward_solution', '--meg', '--eeg',
'--meas', fname_raw, '--src', fname_src_small,
'--mri', fname_trans, '--fwd', out_name])
fwd = read_forward_solution(out_name)
sphere = make_sphere_model(verbose=True)
fwd_py = make_forward_solution(fname_raw, fname_trans, src, sphere,
meg=True, eeg=True, verbose=True)
_compare_forwards(fwd, fwd_py, 366, 108,
meg_rtol=5e-1, meg_atol=1e-6,
eeg_rtol=5e-1, eeg_atol=5e-1)
# Since the above is pretty lax, let's check a different way
for meg, eeg in zip([True, False], [False, True]):
fwd_ = pick_types_forward(fwd, meg=meg, eeg=eeg)
fwd_py_ = pick_types_forward(fwd, meg=meg, eeg=eeg)
assert_allclose(np.corrcoef(fwd_['sol']['data'].ravel(),
fwd_py_['sol']['data'].ravel())[0, 1],
1.0, rtol=1e-3)
# Number of layers in the sphere model doesn't matter for MEG
# (as long as no sources are omitted due to distance)
assert len(sphere['layers']) == 4
fwd = make_forward_solution(fname_raw, fname_trans, src, sphere,
meg=True, eeg=False)
sphere_1 = make_sphere_model(head_radius=None)
assert len(sphere_1['layers']) == 0
assert_array_equal(sphere['r0'], sphere_1['r0'])
fwd_1 = make_forward_solution(fname_raw, fname_trans, src, sphere,
meg=True, eeg=False)
_compare_forwards(fwd, fwd_1, 306, 108, meg_rtol=1e-12, meg_atol=1e-12)
@pytest.mark.slowtest
@testing.requires_testing_data
@requires_nibabel(False)
def test_forward_mixed_source_space():
"""Test making the forward solution for a mixed source space."""
temp_dir = _TempDir()
# get the surface source space
surf = read_source_spaces(fname_src)
# setup two volume source spaces
label_names = get_volume_labels_from_aseg(fname_aseg)
vol_labels = [label_names[int(np.random.rand() * len(label_names))]
for _ in range(2)]
vol1 = setup_volume_source_space('sample', pos=20., mri=fname_aseg,
volume_label=vol_labels[0],
add_interpolator=False)
vol2 = setup_volume_source_space('sample', pos=20., mri=fname_aseg,
volume_label=vol_labels[1],
add_interpolator=False)
# merge surfaces and volume
src = surf + vol1 + vol2
# calculate forward solution
fwd = make_forward_solution(fname_raw, fname_trans, src, fname_bem, None)
assert (repr(fwd))
# extract source spaces
src_from_fwd = fwd['src']
# get the coordinate frame of each source space
coord_frames = np.array([s['coord_frame'] for s in src_from_fwd])
# assert that all source spaces are in head coordinates
assert ((coord_frames == FIFF.FIFFV_COORD_HEAD).all())
# run tests for SourceSpaces.export_volume
fname_img = op.join(temp_dir, 'temp-image.mgz')
# head coordinates and mri_resolution, but trans file
pytest.raises(ValueError, src_from_fwd.export_volume, fname_img,
mri_resolution=True, trans=None)
# head coordinates and mri_resolution, but wrong trans file
vox_mri_t = vol1[0]['vox_mri_t']
pytest.raises(ValueError, src_from_fwd.export_volume, fname_img,
mri_resolution=True, trans=vox_mri_t)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_make_forward_dipole():
"""Test forward-projecting dipoles."""
rng = np.random.RandomState(0)
evoked = read_evokeds(fname_evo)[0]
cov = read_cov(fname_cov)
cov['projs'] = [] # avoid proj warning
dip_c = read_dipole(fname_dip)
# Only use magnetometers for speed!
picks = pick_types(evoked.info, meg='mag', eeg=False)[::8]
evoked.pick_channels([evoked.ch_names[p] for p in picks])
evoked.info.normalize_proj()
info = evoked.info
# Make new Dipole object with n_test_dipoles picked from the dipoles
# in the test dataset.
n_test_dipoles = 3 # minimum 3 needed to get uneven sampling in time
dipsel = np.sort(rng.permutation(np.arange(len(dip_c)))[:n_test_dipoles])
dip_test = Dipole(times=dip_c.times[dipsel],
pos=dip_c.pos[dipsel],
amplitude=dip_c.amplitude[dipsel],
ori=dip_c.ori[dipsel],
gof=dip_c.gof[dipsel])
sphere = make_sphere_model(head_radius=0.1)
# Warning emitted due to uneven sampling in time
with pytest.warns(RuntimeWarning, match='unevenly spaced'):
fwd, stc = make_forward_dipole(dip_test, sphere, info,
trans=fname_trans)
# stc is list of VolSourceEstimate's
assert isinstance(stc, list)
for n_dip in range(n_test_dipoles):
assert isinstance(stc[n_dip], VolSourceEstimate)
# Now simulate evoked responses for each of the test dipoles,
# and fit dipoles to them (sphere model, MEG and EEG)
times, pos, amplitude, ori, gof = [], [], [], [], []
nave = 100 # add a tiny amount of noise to the simulated evokeds
for s in stc:
evo_test = simulate_evoked(fwd, s, info, cov,
nave=nave, random_state=rng)
# evo_test.add_proj(make_eeg_average_ref_proj(evo_test.info))
dfit, resid = fit_dipole(evo_test, cov, sphere, None)
times += dfit.times.tolist()
pos += dfit.pos.tolist()
amplitude += dfit.amplitude.tolist()
ori += dfit.ori.tolist()
gof += dfit.gof.tolist()
# Create a new Dipole object with the dipole fits
dip_fit = Dipole(times, pos, amplitude, ori, gof)
# check that true (test) dipoles and fits are "close"
# cf. mne/tests/test_dipole.py
diff = dip_test.pos - dip_fit.pos
corr = np.corrcoef(dip_test.pos.ravel(), dip_fit.pos.ravel())[0, 1]
dist = np.sqrt(np.mean(np.sum(diff * diff, axis=1)))
gc_dist = 180 / np.pi * \
np.mean(np.arccos(np.sum(dip_test.ori * dip_fit.ori, axis=1)))
amp_err = np.sqrt(np.mean((dip_test.amplitude - dip_fit.amplitude) ** 2))
# Make sure each coordinate is close to reference
# NB tolerance should be set relative to snr of simulated evoked!
assert_allclose(dip_fit.pos, dip_test.pos, rtol=0, atol=1e-2,
err_msg='position mismatch')
assert dist < 1e-2 # within 1 cm
assert corr > 0.985
assert gc_dist < 20 # less than 20 degrees
assert amp_err < 10e-9 # within 10 nAm
# Make sure rejection works with BEM: one dipole at z=1m
# NB _make_forward.py:_prepare_for_forward will raise a RuntimeError
# if no points are left after min_dist exclusions, hence 2 dips here!
dip_outside = Dipole(times=[0., 0.001],
pos=[[0., 0., 1.0], [0., 0., 0.040]],
amplitude=[100e-9, 100e-9],
ori=[[1., 0., 0.], [1., 0., 0.]], gof=1)
pytest.raises(ValueError, make_forward_dipole, dip_outside, fname_bem,
info, fname_trans)
# if we get this far, can safely assume the code works with BEMs too
# -> use sphere again below for speed
# Now make an evenly sampled set of dipoles, some simultaneous,
# should return a VolSourceEstimate regardless
times = [0., 0., 0., 0.001, 0.001, 0.002]
pos = np.random.rand(6, 3) * 0.020 + \
np.array([0., 0., 0.040])[np.newaxis, :]
amplitude = np.random.rand(6) * 100e-9
ori = np.eye(6, 3) + np.eye(6, 3, -3)
gof = np.arange(len(times)) / len(times) # arbitrary
dip_even_samp = Dipole(times, pos, amplitude, ori, gof)
fwd, stc = make_forward_dipole(dip_even_samp, sphere, info,
trans=fname_trans)
assert isinstance(stc, VolSourceEstimate)
assert_allclose(stc.times, np.arange(0., 0.003, 0.001))
run_tests_if_main()
|