File: _coreg_gui.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (2070 lines) | stat: -rw-r--r-- 86,188 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
# -*- coding: utf-8 -*-
u"""Traits-based GUI for head-MRI coregistration.

Hierarchy
---------
This is the hierarchy of classes for control. Brackets like [1] denote
properties that are set to be equivalent.

::

  CoregFrame: GUI for head-MRI coregistration.
  |-- CoregModel (model): Traits object for estimating the head mri transform.
  |   |-- MRIHeadWithFiducialsModel (mri) [1]: Represent an MRI head shape (high and low res) with fiducials.
  |   |   |-- SurfaceSource (bem_high_res): High-res MRI head
  |   |   |-- SurfaceSource (bem_low_res): Low-res MRI head
  |   |   +-- MRISubjectSource (subject_source) [2]: Find subjects in SUBJECTS_DIR and select one.
  |   |-- FiducialsSource (fid): Expose points of a given fiducials fif file.
  |   +-- DigSource (hsp): Expose measurement information from a inst file.
  |-- MlabSceneModel (scene) [3]: mayavi.core.ui.mayavi_scene
  |-- DataPanel (data_panel)
  |   |-- HeadViewController (headview) [4]: Set head views for the given coordinate system.
  |   |   +-- MlabSceneModel (scene) [3*]: ``HeadViewController(scene=CoregFrame.scene)``
  |   |-- SubjectSelectorPanel (subject_panel): Subject selector panel
  |   |   +-- MRISubjectSource (model) [2*]: ``SubjectSelectorPanel(model=self.model.mri.subject_source)``
  |   +-- FiducialsPanel (fid_panel): Set fiducials on an MRI surface.
  |       |-- MRIHeadWithFiducialsModel (model) [1*]: ``FiducialsPanel(model=CoregFrame.model.mri, headview=CoregFrame.headview)``
  |       |-- HeadViewController (headview) [4*]: ``FiducialsPanel(model=CoregFrame.model.mri, headview=CoregFrame.headview)``
  |       +-- SurfaceObject (hsp_obj) [5*]: ``CoregFrame.fid_panel.hsp_obj = CoregFrame.mri_obj``
  |-- CoregPanel (coreg_panel): Coregistration panel for Head<->MRI with scaling.
  |   +-- FittingOptionsPanel (fitting_options_panel): panel for fitting options.
  |-- SurfaceObject (mri_obj) [5]: Represent a solid object in a mayavi scene.
  +-- PointObject ({hsp, eeg, lpa, nasion, rpa, hsp_lpa, hsp_nasion, hsp_rpa} + _obj): Represent a group of individual points in a mayavi scene.

In the MRI viewing frame, MRI points and transformed via scaling, then by
mri_head_t to the Neuromag head coordinate frame. Digitized points (in head
coordinate frame) are never transformed.

Units
-----
User-facing GUI values are in readable units:

- ``scale_*`` are in %
- ``trans_*`` are in mm
- ``rot_*`` are in °

Internal computation quantities ``parameters`` are in units of (for X/Y/Z):

- ``parameters[:3]`` are in radians
- ``parameters[3:6]`` are in m
- ``paramteres[6:9]`` are in scale proportion

Conversions are handled via `np.deg2rad`, `np.rad2deg`, and appropriate
multiplications / divisions.
"""  # noqa: E501

# Authors: Christian Brodbeck <christianbrodbeck@nyu.edu>
#
# License: BSD (3-clause)

import os
from ..externals.six.moves import queue
import re
from threading import Thread
import traceback
import warnings

import numpy as np

from mayavi.core.ui.mayavi_scene import MayaviScene
from mayavi.tools.mlab_scene_model import MlabSceneModel
from pyface.api import (error, confirm, OK, YES, NO, CANCEL, information,
                        FileDialog, GUI)
from traits.api import (Bool, Button, cached_property, DelegatesTo, Directory,
                        Enum, Float, HasTraits, HasPrivateTraits, Instance,
                        Int, on_trait_change, Property, Str, List, RGBColor)
from traitsui.api import (View, Item, Group, HGroup, VGroup, VGrid, EnumEditor,
                          Handler, Label, Spring, InstanceEditor, StatusItem,
                          UIInfo)
from traitsui.menu import Action, UndoButton, CancelButton, NoButtons
from tvtk.pyface.scene_editor import SceneEditor

from ..bem import make_bem_solution, write_bem_solution
from ..coreg import bem_fname, trans_fname
from ..defaults import DEFAULTS
from ..surface import _DistanceQuery
from ..transforms import (write_trans, read_trans, apply_trans, rotation,
                          rotation_angles, Transform, _ensure_trans,
                          rot_to_quat, _angle_between_quats)
from ..coreg import fit_matched_points, scale_mri, _find_fiducials_files
from ..viz._3d import _toggle_mlab_render
from ..utils import logger, set_config, _pl
from ._fiducials_gui import MRIHeadWithFiducialsModel, FiducialsPanel
from ._file_traits import trans_wildcard, DigSource, SubjectSelectorPanel
from ._viewer import (HeadViewController, PointObject, SurfaceObject,
                      _DEG_WIDTH, _MM_WIDTH, _BUTTON_WIDTH,
                      _SHOW_BORDER, _COREG_WIDTH, _SCALE_STEP_WIDTH,
                      _INC_BUTTON_WIDTH, _SCALE_WIDTH, _WEIGHT_WIDTH,
                      _MM_STEP_WIDTH, _DEG_STEP_WIDTH, _REDUCED_TEXT_WIDTH,
                      _RESET_LABEL, _RESET_WIDTH,
                      laggy_float_editor_scale, laggy_float_editor_deg,
                      laggy_float_editor_mm, laggy_float_editor_weight)

defaults = DEFAULTS['coreg']


class busy(object):
    """Set the GUI state to busy."""

    def __enter__(self):  # noqa: D105
        GUI.set_busy(True)

    def __exit__(self, type, value, traceback):  # noqa: D105
        GUI.set_busy(False)


def _pass(x):
    """Format text without changing it."""
    return x


class CoregModel(HasPrivateTraits):
    """Traits object for estimating the head mri transform.

    Notes
    -----
    Transform from head to mri space is modelled with the following steps:

    * move the head shape to its nasion position
    * rotate the head shape with user defined rotation around its nasion
    * move the head shape by user defined translation
    * move the head shape origin to the mri nasion

    If MRI scaling is enabled,

    * the MRI is scaled relative to its origin center (prior to any
      transformation of the digitizer head)

    Don't sync transforms to anything to prevent them from being recomputed
    upon every parameter change.
    """

    # data sources
    mri = Instance(MRIHeadWithFiducialsModel, ())
    hsp = Instance(DigSource, ())

    # parameters
    guess_mri_subject = Bool(True)  # change MRI subject when dig file changes
    grow_hair = Float(label=u"ΔHair", desc="Move the back of the MRI "
                      "head outwards to compensate for hair on the digitizer "
                      "head shape (mm)")
    n_scale_params = Enum(0, 1, 3, desc="Scale the MRI to better fit the "
                          "subject's head shape (a new MRI subject will be "
                          "created with a name specified upon saving)")
    scale_x = Float(100, label="X")
    scale_y = Float(100, label="Y")
    scale_z = Float(100, label="Z")
    trans_x = Float(0, label=u"ΔX")
    trans_y = Float(0, label=u"ΔY")
    trans_z = Float(0, label=u"ΔZ")
    rot_x = Float(0, label=u"∠X")
    rot_y = Float(0, label=u"∠Y")
    rot_z = Float(0, label=u"∠Z")
    parameters = List()
    last_parameters = List()
    lpa_weight = Float(1.)
    nasion_weight = Float(10.)
    rpa_weight = Float(1.)
    hsp_weight = Float(1.)
    eeg_weight = Float(1.)
    hpi_weight = Float(1.)
    iteration = Int(-1)
    icp_iterations = Int(20)
    icp_angle = Float(0.2)
    icp_distance = Float(0.2)
    icp_scale = Float(0.2)
    icp_fid_match = Enum('nearest', 'matched')
    fit_icp_running = Bool(False)
    fits_icp_running = Bool(False)
    coord_frame = Enum('mri', 'head', desc='Display coordinate frame')
    status_text = Str()

    # options during scaling
    scale_labels = Bool(True, desc="whether to scale *.label files")
    copy_annot = Bool(True, desc="whether to copy *.annot files for scaled "
                      "subject")
    prepare_bem_model = Bool(True, desc="whether to run mne_prepare_bem_model "
                             "after scaling the MRI")

    # secondary to parameters
    has_nasion_data = Property(
        Bool, depends_on=['mri:nasion', 'hsp:nasion'])
    has_lpa_data = Property(
        Bool, depends_on=['mri:lpa', 'hsp:lpa'])
    has_rpa_data = Property(
        Bool, depends_on=['mri:rpa', 'hsp:rpa'])
    has_fid_data = Property(  # conjunction
        Bool, depends_on=['has_nasion_data', 'has_lpa_data', 'has_rpa_data'])
    has_mri_data = Property(
        Bool, depends_on=['transformed_high_res_mri_points'])
    has_hsp_data = Property(
        Bool, depends_on=['has_mri_data', 'hsp:points'])
    has_eeg_data = Property(
        Bool, depends_on=['has_mri_data', 'hsp:eeg_points'])
    has_hpi_data = Property(
        Bool, depends_on=['has_mri_data', 'hsp:hpi_points'])
    n_icp_points = Property(
        Int, depends_on=['has_nasion_data', 'nasion_weight',
                         'has_lpa_data', 'lpa_weight',
                         'has_rpa_data', 'rpa_weight',
                         'hsp:points', 'hsp_weight',
                         'hsp:eeg_points', 'eeg_weight',
                         'hsp:hpi_points', 'hpi_weight'])
    changes = Property(depends_on=['parameters', 'old_parameters'])

    # target transforms
    mri_head_t = Property(
        desc="Transformation of the scaled MRI to the head coordinate frame.",
        depends_on=['parameters[]'])
    head_mri_t = Property(depends_on=['mri_head_t'])
    mri_trans = Property(depends_on=['mri_head_t', 'parameters[]',
                                     'coord_frame'])
    hsp_trans = Property(depends_on=['head_mri_t', 'coord_frame'])

    # info
    subject_has_bem = DelegatesTo('mri')
    lock_fiducials = DelegatesTo('mri')
    can_prepare_bem_model = Property(
        Bool,
        depends_on=['n_scale_params', 'subject_has_bem'])
    can_save = Property(Bool, depends_on=['mri_head_t'])
    raw_subject = Property(
        desc="Subject guess based on the raw file name.",
        depends_on=['hsp:inst_fname'])

    # MRI geometry transformed to viewing coordinate system
    processed_high_res_mri_points = Property(
        depends_on=['mri:bem_high_res:surf', 'grow_hair'])
    processed_low_res_mri_points = Property(
        depends_on=['mri:bem_low_res:surf', 'grow_hair'])
    transformed_high_res_mri_points = Property(
        depends_on=['processed_high_res_mri_points', 'mri_trans'])
    transformed_low_res_mri_points = Property(
        depends_on=['processed_low_res_mri_points', 'mri_trans'])
    nearest_calc = Property(
        Instance(_DistanceQuery),
        depends_on=['transformed_high_res_mri_points'])
    nearest_transformed_high_res_mri_idx_lpa = Property(
        depends_on=['nearest_calc', 'transformed_hsp_lpa'])
    nearest_transformed_high_res_mri_idx_nasion = Property(
        depends_on=['nearest_calc', 'transformed_hsp_nasion'])
    nearest_transformed_high_res_mri_idx_rpa = Property(
        depends_on=['nearest_calc', 'transformed_hsp_rpa'])
    nearest_transformed_high_res_mri_idx_hsp = Property(
        depends_on=['nearest_calc', 'transformed_hsp_points'])
    nearest_transformed_high_res_mri_idx_orig_hsp = Property(
        depends_on=['nearest_calc', 'transformed_orig_hsp_points'])
    nearest_transformed_high_res_mri_idx_eeg = Property(
        depends_on=['nearest_calc', 'transformed_hsp_eeg_points'])
    nearest_transformed_high_res_mri_idx_hpi = Property(
        depends_on=['nearest_calc', 'transformed_hsp_hpi'])
    transformed_mri_lpa = Property(
        depends_on=['mri:lpa', 'mri_trans'])
    transformed_mri_nasion = Property(
        depends_on=['mri:nasion', 'mri_trans'])
    transformed_mri_rpa = Property(
        depends_on=['mri:rpa', 'mri_trans'])
    # HSP geometry transformed to viewing coordinate system
    transformed_hsp_points = Property(
        depends_on=['hsp:points', 'hsp_trans'])
    transformed_orig_hsp_points = Property(
        depends_on=['hsp:_hsp_points', 'hsp_trans'])
    transformed_hsp_lpa = Property(
        depends_on=['hsp:lpa', 'hsp_trans'])
    transformed_hsp_nasion = Property(
        depends_on=['hsp:nasion', 'hsp_trans'])
    transformed_hsp_rpa = Property(
        depends_on=['hsp:rpa', 'hsp_trans'])
    transformed_hsp_eeg_points = Property(
        depends_on=['hsp:eeg_points', 'hsp_trans'])
    transformed_hsp_hpi = Property(
        depends_on=['hsp:hpi', 'hsp_trans'])

    # fit properties
    lpa_distance = Property(
        depends_on=['transformed_mri_lpa', 'transformed_hsp_lpa'])
    nasion_distance = Property(
        depends_on=['transformed_mri_nasion', 'transformed_hsp_nasion'])
    rpa_distance = Property(
        depends_on=['transformed_mri_rpa', 'transformed_hsp_rpa'])
    point_distance = Property(  # use low res points
        depends_on=['nearest_transformed_high_res_mri_idx_hsp',
                    'nearest_transformed_high_res_mri_idx_eeg',
                    'nearest_transformed_high_res_mri_idx_hpi',
                    'hsp_weight',
                    'eeg_weight',
                    'hpi_weight'])
    orig_hsp_point_distance = Property(  # use low res points
        depends_on=['nearest_transformed_high_res_mri_idx_orig_hsp',
                    'hpi_weight'])

    # fit property info strings
    fid_eval_str = Property(
        depends_on=['lpa_distance', 'nasion_distance', 'rpa_distance'])
    points_eval_str = Property(
        depends_on=['point_distance'])

    def _parameters_default(self):
        return list(_DEFAULT_PARAMETERS)

    def _last_parameters_default(self):
        return list(_DEFAULT_PARAMETERS)

    @cached_property
    def _get_can_prepare_bem_model(self):
        return self.subject_has_bem and self.n_scale_params > 0

    @cached_property
    def _get_can_save(self):
        return np.any(self.mri_head_t != np.eye(4))

    @cached_property
    def _get_has_lpa_data(self):
        return (np.any(self.mri.lpa) and np.any(self.hsp.lpa))

    @cached_property
    def _get_has_nasion_data(self):
        return (np.any(self.mri.nasion) and np.any(self.hsp.nasion))

    @cached_property
    def _get_has_rpa_data(self):
        return (np.any(self.mri.rpa) and np.any(self.hsp.rpa))

    @cached_property
    def _get_has_fid_data(self):
        return self.has_nasion_data and self.has_lpa_data and self.has_rpa_data

    @cached_property
    def _get_has_mri_data(self):
        return len(self.transformed_high_res_mri_points) > 0

    @cached_property
    def _get_has_hsp_data(self):
        return (self.has_mri_data and
                len(self.nearest_transformed_high_res_mri_idx_hsp) > 0)

    @cached_property
    def _get_has_eeg_data(self):
        return (self.has_mri_data and
                len(self.nearest_transformed_high_res_mri_idx_eeg) > 0)

    @cached_property
    def _get_has_hpi_data(self):
        return (self.has_mri_data and
                len(self.nearest_transformed_high_res_mri_idx_hpi) > 0)

    @cached_property
    def _get_n_icp_points(self):
        """Get parameters for an ICP iteration."""
        n = (self.hsp_weight > 0) * len(self.hsp.points)
        for key in ('lpa', 'nasion', 'rpa'):
            if getattr(self, 'has_%s_data' % key):
                n += 1
        n += (self.eeg_weight > 0) * len(self.hsp.eeg_points)
        n += (self.hpi_weight > 0) * len(self.hsp.hpi_points)
        return n

    @cached_property
    def _get_changes(self):
        new = np.array(self.parameters, float)
        old = np.array(self.last_parameters, float)
        move = np.linalg.norm(old[3:6] - new[3:6]) * 1e3
        angle = np.rad2deg(_angle_between_quats(
            rot_to_quat(rotation(*new[:3])[:3, :3]),
            rot_to_quat(rotation(*old[:3])[:3, :3])))
        percs = 100 * (new[6:] - old[6:]) / old[6:]
        return move, angle, percs

    @cached_property
    def _get_mri_head_t(self):
        # rotate and translate hsp
        trans = rotation(*self.parameters[:3])
        trans[:3, 3] = np.array(self.parameters[3:6])
        return trans

    @cached_property
    def _get_head_mri_t(self):
        trans = rotation(*self.parameters[:3]).T
        trans[:3, 3] = -np.dot(trans[:3, :3], self.parameters[3:6])
        # should be the same as np.linalg.inv(self.mri_head_t)
        return trans

    @cached_property
    def _get_processed_high_res_mri_points(self):
        if self.grow_hair:
            if len(self.mri.bem_high_res.surf.nn):
                scaled_hair_dist = (1e-3 * self.grow_hair /
                                    np.array(self.parameters[6:9]))
                points = self.mri.bem_high_res.surf.rr.copy()
                hair = points[:, 2] > points[:, 1]
                points[hair] += (self.mri.bem_high_res.surf.nn[hair] *
                                 scaled_hair_dist)
                return points
            else:
                error(None, "Norms missing from bem, can't grow hair")
                self.grow_hair = 0
        else:
            return self.mri.bem_high_res.surf.rr

    @cached_property
    def _get_processed_low_res_mri_points(self):
        if self.grow_hair:
            if len(self.mri.bem_low_res.surf.nn):
                scaled_hair_dist = (1e-3 * self.grow_hair /
                                    np.array(self.parameters[6:9]))
                points = self.mri.bem_low_res.surf.rr.copy()
                hair = points[:, 2] > points[:, 1]
                points[hair] += (self.mri.bem_low_res.surf.nn[hair] *
                                 scaled_hair_dist)
                return points
            else:
                error(None, "Norms missing from bem, can't grow hair")
                self.grow_hair = 0
        else:
            return self.mri.bem_low_res.surf.rr

    @cached_property
    def _get_mri_trans(self):
        mri_scaling = np.ones(4)
        mri_scaling[:3] = self.parameters[6:9]
        if self.coord_frame == 'head':
            t = self.mri_head_t
        else:
            t = np.eye(4)
        return t * mri_scaling

    @cached_property
    def _get_hsp_trans(self):
        if self.coord_frame == 'head':
            t = np.eye(4)
        else:
            t = self.head_mri_t
        return t

    @cached_property
    def _get_nearest_transformed_high_res_mri_idx_lpa(self):
        return self.nearest_calc.query(self.transformed_hsp_lpa)[1]

    @cached_property
    def _get_nearest_transformed_high_res_mri_idx_nasion(self):
        return self.nearest_calc.query(self.transformed_hsp_nasion)[1]

    @cached_property
    def _get_nearest_transformed_high_res_mri_idx_rpa(self):
        return self.nearest_calc.query(self.transformed_hsp_rpa)[1]

    @cached_property
    def _get_nearest_transformed_high_res_mri_idx_hsp(self):
        return self.nearest_calc.query(self.transformed_hsp_points)[1]

    @cached_property
    def _get_nearest_transformed_high_res_mri_idx_orig_hsp(self):
        # This is redundant to some extent with the one above due to
        # overlapping points, but it's fast and the refactoring to
        # remove redundancy would be a pain.
        return self.nearest_calc.query(self.transformed_orig_hsp_points)[1]

    @cached_property
    def _get_nearest_transformed_high_res_mri_idx_eeg(self):
        return self.nearest_calc.query(self.transformed_hsp_eeg_points)[1]

    @cached_property
    def _get_nearest_transformed_high_res_mri_idx_hpi(self):
        return self.nearest_calc.query(self.transformed_hsp_hpi)[1]

    # MRI view-transformed data
    @cached_property
    def _get_transformed_low_res_mri_points(self):
        points = apply_trans(self.mri_trans,
                             self.processed_low_res_mri_points)
        return points

    @cached_property
    def _get_nearest_calc(self):
        return _DistanceQuery(self.transformed_high_res_mri_points)

    @cached_property
    def _get_transformed_high_res_mri_points(self):
        points = apply_trans(self.mri_trans,
                             self.processed_high_res_mri_points)
        return points

    @cached_property
    def _get_transformed_mri_lpa(self):
        return apply_trans(self.mri_trans, self.mri.lpa)

    @cached_property
    def _get_transformed_mri_nasion(self):
        return apply_trans(self.mri_trans, self.mri.nasion)

    @cached_property
    def _get_transformed_mri_rpa(self):
        return apply_trans(self.mri_trans, self.mri.rpa)

    # HSP view-transformed data
    @cached_property
    def _get_transformed_hsp_points(self):
        return apply_trans(self.hsp_trans, self.hsp.points)

    @cached_property
    def _get_transformed_orig_hsp_points(self):
        return apply_trans(self.hsp_trans, self.hsp._hsp_points)

    @cached_property
    def _get_transformed_hsp_lpa(self):
        return apply_trans(self.hsp_trans, self.hsp.lpa)

    @cached_property
    def _get_transformed_hsp_nasion(self):
        return apply_trans(self.hsp_trans, self.hsp.nasion)

    @cached_property
    def _get_transformed_hsp_rpa(self):
        return apply_trans(self.hsp_trans, self.hsp.rpa)

    @cached_property
    def _get_transformed_hsp_eeg_points(self):
        return apply_trans(self.hsp_trans, self.hsp.eeg_points)

    @cached_property
    def _get_transformed_hsp_hpi(self):
        return apply_trans(self.hsp_trans, self.hsp.hpi_points)

    # Distances, etc.
    @cached_property
    def _get_lpa_distance(self):
        d = np.ravel(self.transformed_mri_lpa - self.transformed_hsp_lpa)
        return np.linalg.norm(d)

    @cached_property
    def _get_nasion_distance(self):
        d = np.ravel(self.transformed_mri_nasion - self.transformed_hsp_nasion)
        return np.linalg.norm(d)

    @cached_property
    def _get_rpa_distance(self):
        d = np.ravel(self.transformed_mri_rpa - self.transformed_hsp_rpa)
        return np.linalg.norm(d)

    @cached_property
    def _get_point_distance(self):
        mri_points = list()
        hsp_points = list()
        if self.hsp_weight > 0 and self.has_hsp_data:
            mri_points.append(self.transformed_high_res_mri_points[
                self.nearest_transformed_high_res_mri_idx_hsp])
            hsp_points.append(self.transformed_hsp_points)
        if self.eeg_weight > 0 and self.has_eeg_data:
            mri_points.append(self.transformed_high_res_mri_points[
                self.nearest_transformed_high_res_mri_idx_eeg])
            hsp_points.append(self.transformed_hsp_eeg_points)
        if self.hpi_weight > 0 and self.has_hpi_data:
            mri_points.append(self.transformed_high_res_mri_points[
                self.nearest_transformed_high_res_mri_idx_hpi])
            hsp_points.append(self.transformed_hsp_hpi)
        if all(len(h) == 0 for h in hsp_points):
            return None
        mri_points = np.concatenate(mri_points)
        hsp_points = np.concatenate(hsp_points)
        return np.linalg.norm(mri_points - hsp_points, axis=-1)

    @cached_property
    def _get_orig_hsp_point_distance(self):
        mri_points = self.transformed_high_res_mri_points[
            self.nearest_transformed_high_res_mri_idx_orig_hsp]
        hsp_points = self.transformed_orig_hsp_points
        return np.linalg.norm(mri_points - hsp_points, axis=-1)

    @cached_property
    def _get_fid_eval_str(self):
        d = (self.lpa_distance * 1000, self.nasion_distance * 1000,
             self.rpa_distance * 1000)
        return u'Fiducials: %.1f, %.1f, %.1f mm' % d

    @cached_property
    def _get_points_eval_str(self):
        if self.point_distance is None:
            return ""
        dists = 1000 * self.point_distance
        av_dist = np.mean(dists)
        std_dist = np.std(dists)
        kinds = [kind for kind, check in
                 (('HSP', self.hsp_weight > 0 and self.has_hsp_data),
                  ('EEG', self.eeg_weight > 0 and self.has_eeg_data),
                  ('HPI', self.hpi_weight > 0 and self.has_hpi_data))
                 if check]
        return (u"%s %s: %.1f ± %.1f mm"
                % (len(dists), '+'.join(kinds), av_dist, std_dist))

    def _get_raw_subject(self):
        # subject name guessed based on the inst file name
        if '_' in self.hsp.inst_fname:
            subject, _ = self.hsp.inst_fname.split('_', 1)
            if subject:
                return subject

    @on_trait_change('raw_subject')
    def _on_raw_subject_change(self, subject):
        if self.guess_mri_subject:
            if subject in self.mri.subject_source.subjects:
                self.mri.subject = subject
            elif 'fsaverage' in self.mri.subject_source.subjects:
                self.mri.subject = 'fsaverage'

    def omit_hsp_points(self, distance):
        """Exclude head shape points that are far away from the MRI head.

        Parameters
        ----------
        distance : float
            Exclude all points that are further away from the MRI head than
            this distance. Previously excluded points are still excluded unless
            reset=True is specified. A value of distance <= 0 excludes nothing.
        reset : bool
            Reset the filter before calculating new omission (default is
            False).
        """
        distance = float(distance)
        if distance <= 0:
            return

        # find the new filter
        mask = self.orig_hsp_point_distance <= distance
        n_excluded = np.sum(~mask)
        logger.info("Coregistration: Excluding %i head shape points with "
                    "distance >= %.3f m.", n_excluded, distance)
        # set the filter
        with warnings.catch_warnings(record=True):  # comp to None in Traits
            self.hsp.points_filter = mask

    def fit_fiducials(self, n_scale_params=None):
        """Find rotation and translation to fit all 3 fiducials."""
        if n_scale_params is None:
            n_scale_params = self.n_scale_params
        head_pts = np.vstack((self.hsp.lpa, self.hsp.nasion, self.hsp.rpa))
        mri_pts = np.vstack((self.mri.lpa, self.mri.nasion, self.mri.rpa))
        weights = [self.lpa_weight, self.nasion_weight, self.rpa_weight]
        assert n_scale_params in (0, 1)  # guaranteed by GUI
        if n_scale_params == 0:
            mri_pts *= self.parameters[6:9]  # not done in fit_matched_points
        x0 = np.array(self.parameters[:6 + n_scale_params])
        est = fit_matched_points(mri_pts, head_pts, x0=x0, out='params',
                                 scale=n_scale_params, weights=weights)
        if n_scale_params == 0:
            self.parameters[:6] = est
        else:
            self.parameters[:] = np.concatenate([est, [est[-1]] * 2])

    def _setup_icp(self, n_scale_params):
        """Get parameters for an ICP iteration."""
        head_pts = list()
        mri_pts = list()
        weights = list()
        if self.has_hsp_data and self.hsp_weight > 0:  # should be true
            head_pts.append(self.hsp.points)
            mri_pts.append(self.processed_high_res_mri_points[
                self.nearest_transformed_high_res_mri_idx_hsp])
            weights.append(np.full(len(head_pts[-1]), self.hsp_weight))
        for key in ('lpa', 'nasion', 'rpa'):
            if getattr(self, 'has_%s_data' % key):
                head_pts.append(getattr(self.hsp, key))
                if self.icp_fid_match == 'matched':
                    mri_pts.append(getattr(self.mri, key))
                else:
                    assert self.icp_fid_match == 'nearest'
                    mri_pts.append(self.processed_high_res_mri_points[
                        getattr(self, 'nearest_transformed_high_res_mri_idx_%s'
                                % (key,))])
                weights.append(np.full(len(mri_pts[-1]),
                                       getattr(self, '%s_weight' % key)))
        if self.has_eeg_data and self.eeg_weight > 0:
            head_pts.append(self.hsp.eeg_points)
            mri_pts.append(self.processed_high_res_mri_points[
                self.nearest_transformed_high_res_mri_idx_eeg])
            weights.append(np.full(len(mri_pts[-1]), self.eeg_weight))
        if self.has_hpi_data and self.hpi_weight > 0:
            head_pts.append(self.hsp.hpi_points)
            mri_pts.append(self.processed_high_res_mri_points[
                self.nearest_transformed_high_res_mri_idx_hpi])
            weights.append(np.full(len(mri_pts[-1]), self.hpi_weight))
        head_pts = np.concatenate(head_pts)
        mri_pts = np.concatenate(mri_pts)
        weights = np.concatenate(weights)
        if n_scale_params == 0:
            mri_pts *= self.parameters[6:9]  # not done in fit_matched_points
        return head_pts, mri_pts, weights

    def fit_icp(self, n_scale_params=None):
        """Find MRI scaling, translation, and rotation to match HSP."""
        if n_scale_params is None:
            n_scale_params = self.n_scale_params

        # Initial guess (current state)
        assert n_scale_params in (0, 1, 3)
        est = self.parameters[:[6, 7, None, 9][n_scale_params]]

        # Do the fits, assigning and evaluating at each step
        attr = 'fit_icp_running' if n_scale_params == 0 else 'fits_icp_running'
        setattr(self, attr, True)
        GUI.process_events()  # update the cancel button
        for self.iteration in range(self.icp_iterations):
            head_pts, mri_pts, weights = self._setup_icp(n_scale_params)
            est = fit_matched_points(mri_pts, head_pts, scale=n_scale_params,
                                     x0=est, out='params', weights=weights)
            if n_scale_params == 0:
                self.parameters[:6] = est
            elif n_scale_params == 1:
                self.parameters[:] = list(est) + [est[-1]] * 2
            else:
                self.parameters[:] = est
            angle, move, scale = self.changes
            if angle <= self.icp_angle and move <= self.icp_distance and \
                    all(scale <= self.icp_scale):
                self.status_text = self.status_text[:-1] + '; converged)'
                break
            if not getattr(self, attr):  # canceled by user
                self.status_text = self.status_text[:-1] + '; cancelled)'
                break
            GUI.process_events()  # this will update the head view
        else:
            self.status_text = self.status_text[:-1] + '; did not converge)'
        setattr(self, attr, False)
        self.iteration = -1

    def get_scaling_job(self, subject_to, skip_fiducials):
        """Find all arguments needed for the scaling worker."""
        subjects_dir = self.mri.subjects_dir
        subject_from = self.mri.subject
        bem_names = []
        if self.can_prepare_bem_model and self.prepare_bem_model:
            pattern = bem_fname.format(subjects_dir=subjects_dir,
                                       subject=subject_from, name='(.+-bem)')
            bem_dir, pattern = os.path.split(pattern)
            for filename in os.listdir(bem_dir):
                match = re.match(pattern, filename)
                if match:
                    bem_names.append(match.group(1))

        return (subjects_dir, subject_from, subject_to, self.parameters[6:9],
                skip_fiducials, self.scale_labels, self.copy_annot, bem_names)

    def load_trans(self, fname):
        """Load the head-mri transform from a fif file.

        Parameters
        ----------
        fname : str
            File path.
        """
        self.set_trans(_ensure_trans(read_trans(fname, return_all=True),
                                     'mri', 'head')['trans'])

    def reset(self):
        """Reset all the parameters affecting the coregistration."""
        with busy():
            self.reset_traits(('grow_hair', 'n_scaling_params'))
            self.parameters[:] = _DEFAULT_PARAMETERS
            self.omit_hsp_points(np.inf)

    def set_trans(self, mri_head_t):
        """Set rotation and translation params from a transformation matrix.

        Parameters
        ----------
        mri_head_t : array, shape (4, 4)
            Transformation matrix from MRI to head space.
        """
        with busy():
            rot_x, rot_y, rot_z = rotation_angles(mri_head_t)
            x, y, z = mri_head_t[:3, 3]
            self.parameters[:6] = [rot_x, rot_y, rot_z, x, y, z]

    def save_trans(self, fname):
        """Save the head-mri transform as a fif file.

        Parameters
        ----------
        fname : str
            Target file path.
        """
        if not self.can_save:
            raise RuntimeError("Not enough information for saving transform")
        write_trans(fname, Transform('head', 'mri', self.head_mri_t))

    def _parameters_items_changed(self):
        # Update GUI as necessary
        n_scale = self.n_scale_params
        for ii, key in enumerate(('rot_x', 'rot_y', 'rot_z')):
            val = np.rad2deg(self.parameters[ii])
            if val != getattr(self, key):  # prevent circular
                setattr(self, key, val)
        for ii, key in enumerate(('trans_x', 'trans_y', 'trans_z')):
            val = self.parameters[ii + 3] * 1e3
            if val != getattr(self, key):  # prevent circular
                setattr(self, key, val)
        for ii, key in enumerate(('scale_x', 'scale_y', 'scale_z')):
            val = self.parameters[ii + 6] * 1e2
            if val != getattr(self, key):  # prevent circular
                setattr(self, key, val)
        # Update the status text
        move, angle, percs = self.changes
        text = u'Change:  Δ=%0.1f mm  ∠=%0.2f°' % (move, angle)
        if n_scale:
            text += '  Scale ' if n_scale == 1 else '  Sx/y/z '
            text += '/'.join(['%+0.1f%%' % p for p in percs[:n_scale]])
        if self.iteration >= 0:
            text += u' (iteration %d/%d)' % (self.iteration + 1,
                                             self.icp_iterations)
        self.last_parameters[:] = self.parameters[:]
        self.status_text = text

    def _rot_x_changed(self):
        self.parameters[0] = np.deg2rad(self.rot_x)

    def _rot_y_changed(self):
        self.parameters[1] = np.deg2rad(self.rot_y)

    def _rot_z_changed(self):
        self.parameters[2] = np.deg2rad(self.rot_z)

    def _trans_x_changed(self):
        self.parameters[3] = self.trans_x * 1e-3

    def _trans_y_changed(self):
        self.parameters[4] = self.trans_y * 1e-3

    def _trans_z_changed(self):
        self.parameters[5] = self.trans_z * 1e-3

    def _scale_x_changed(self):
        if self.n_scale_params == 1:
            self.parameters[6:9] = [self.scale_x * 1e-2] * 3
        else:
            self.parameters[6] = self.scale_x * 1e-2

    def _scale_y_changed(self):
        self.parameters[7] = self.scale_y * 1e-2

    def _scale_z_changed(self):
        self.parameters[8] = self.scale_z * 1e-2


class CoregFrameHandler(Handler):
    """Check for unfinished processes before closing its window."""

    def object_title_changed(self, info):
        """Set the title when it gets changed."""
        info.ui.title = info.object.title

    def close(self, info, is_ok):
        """Handle the close event."""
        if info.object.queue.unfinished_tasks:
            information(None, "Can not close the window while saving is still "
                        "in progress. Please wait until all MRIs are "
                        "processed.", "Saving Still in Progress")
            return False
        else:
            try:  # works on Qt only for now
                size = (info.ui.control.width(), info.ui.control.height())
            except AttributeError:
                size = None
            # store configuration, but don't prevent from closing on error
            try:
                info.object.save_config(size=size)
            except Exception as exc:
                warnings.warn("Error saving GUI configuration:\n%s" % (exc,))
            return True


class CoregPanelHandler(Handler):
    """Open other windows with proper parenting."""

    info = Instance(UIInfo)

    def object_fitting_options_panel_changed(self, info):  # noqa: D102
        self.info = info

    def object_fitting_options_changed(self, info):  # noqa: D102
        self.info.object.fitting_options_panel.edit_traits(
            parent=self.info.ui.control)

    def object_load_trans_changed(self, info):  # noqa: D102
        # find trans file destination
        model = self.info.object.model
        raw_dir = os.path.dirname(model.hsp.file)
        subject = model.mri.subject
        trans_file = trans_fname.format(raw_dir=raw_dir, subject=subject)
        dlg = FileDialog(action="open", wildcard=trans_wildcard,
                         default_path=trans_file, parent=self.info.ui.control)
        if dlg.open() != OK:
            return
        trans_file = dlg.path
        try:
            model.load_trans(trans_file)
        except Exception as e:
            error(None, "Error loading trans file %s: %s (See terminal "
                  "for details)" % (trans_file, e), "Error Loading Trans File")
            raise

    def object_save_changed(self, info):  # noqa: D102
        obj = self.info.object
        subjects_dir = obj.model.mri.subjects_dir
        subject_from = obj.model.mri.subject

        # check that fiducials are saved
        skip_fiducials = False
        if obj.n_scale_params and not _find_fiducials_files(subject_from,
                                                            subjects_dir):
            msg = ("No fiducials file has been found for {src}. If fiducials "
                   "are not saved, they will not be available in the scaled "
                   "MRI. Should the current fiducials be saved now? "
                   "Select Yes to save the fiducials at "
                   "{src}/bem/{src}-fiducials.fif. "
                   "Select No to proceed scaling the MRI without fiducials.".
                   format(src=subject_from))
            title = "Save Fiducials for %s?" % subject_from
            rc = confirm(self.info.ui.control, msg, title, cancel=True,
                         default=CANCEL)
            if rc == CANCEL:
                return
            elif rc == YES:
                obj.model.mri.save(obj.model.mri.default_fid_fname)
            elif rc == NO:
                skip_fiducials = True
            else:
                raise RuntimeError("rc=%s" % repr(rc))

        # find target subject
        if obj.n_scale_params:
            subject_to = obj.model.raw_subject or subject_from
            mridlg = NewMriDialog(subjects_dir=subjects_dir,
                                  subject_from=subject_from,
                                  subject_to=subject_to)
            ui = mridlg.edit_traits(kind='modal',
                                    parent=self.info.ui.control)
            if not ui.result:  # i.e., user pressed cancel
                return
            subject_to = mridlg.subject_to
        else:
            subject_to = subject_from

        # find trans file destination
        raw_dir = os.path.dirname(obj.model.hsp.file)
        trans_file = trans_fname.format(raw_dir=raw_dir, subject=subject_to)
        dlg = FileDialog(action="save as", wildcard=trans_wildcard,
                         default_path=trans_file,
                         parent=self.info.ui.control)
        dlg.open()
        if dlg.return_code != OK:
            return
        trans_file = dlg.path
        if not trans_file.endswith('.fif'):
            trans_file += '.fif'
            if os.path.exists(trans_file):
                answer = confirm(None, "The file %r already exists. Should it "
                                 "be replaced?", "Overwrite File?")
                if answer != YES:
                    return

        # save the trans file
        try:
            obj.model.save_trans(trans_file)
        except Exception as e:
            error(None, "Error saving -trans.fif file: %s (See terminal for "
                  "details)" % (e,), "Error Saving Trans File")
            raise

        # save the scaled MRI
        if obj.n_scale_params:
            job = obj.model.get_scaling_job(subject_to, skip_fiducials)
            obj.queue.put(job)
            obj.queue_len += 1


def _make_view_data_panel(scrollable=False):
    view = View(VGroup(
        VGroup(Item('subject_panel', style='custom'), label="MRI Subject",
               show_border=_SHOW_BORDER, show_labels=False),
        VGroup(Item('lock_fiducials', style='custom',
                    editor=EnumEditor(cols=2, values={False: '2:Edit',
                                                      True: '1:Lock'}),
                    enabled_when='fid_ok'),
               HGroup(Item('hsp_always_visible',
                           label='Show head shape points', show_label=True,
                           enabled_when='not lock_fiducials', width=-1),
                      show_left=False),
               Item('fid_panel', style='custom'), label="MRI Fiducials",
               show_border=_SHOW_BORDER, show_labels=False),
        VGroup(Item('raw_src', style="custom"),
               HGroup('guess_mri_subject',
                      Label('Guess subject from name'), show_labels=False),
               VGrid(Item('grow_hair', editor=laggy_float_editor_mm,
                          width=_MM_WIDTH),
                     Label(u'ΔHair', show_label=True, width=-1), '0',
                     Item('distance', show_label=False, width=_MM_WIDTH,
                          editor=laggy_float_editor_mm),
                     Item('omit_points', width=_BUTTON_WIDTH),
                     Item('reset_omit_points', width=_RESET_WIDTH),
                     columns=3, show_labels=False),
               Item('omitted_info', style='readonly',
                    width=_REDUCED_TEXT_WIDTH), label='Digitization source',
               show_border=_SHOW_BORDER, show_labels=False),
        VGroup(HGroup(Item('headview', style='custom'), Spring(),
                      show_labels=False),
               Item('view_options', width=_REDUCED_TEXT_WIDTH),
               label='View', show_border=_SHOW_BORDER, show_labels=False),
        Spring(),
        show_labels=False), kind='panel', buttons=[UndoButton],
        scrollable=scrollable, handler=DataPanelHandler())
    return view


def _make_view_coreg_panel(scrollable=False):
    """Generate View for CoregPanel."""
    view = View(VGroup(
        # Scaling
        HGroup(Item('n_scale_params', label='Scaling mode',
                    editor=EnumEditor(values={0: '1:None',
                                              1: '2:Uniform',
                                              3: '3:3-axis'})), Spring()),
        VGrid(Item('scale_x', editor=laggy_float_editor_scale,
                   show_label=True, tooltip="Scale along right-left axis (%)",
                   enabled_when='n_scale_params > 0', width=_SCALE_WIDTH),
              Item('scale_x_dec', enabled_when='n_scale_params > 0',
                   width=_INC_BUTTON_WIDTH),
              Item('scale_x_inc', enabled_when='n_scale_params > 0',
                   width=_INC_BUTTON_WIDTH),
              Item('scale_step', tooltip="Scaling step (%)",
                   enabled_when='n_scale_params > 0', width=_SCALE_STEP_WIDTH),
              Spring(),

              Item('scale_y', editor=laggy_float_editor_scale, show_label=True,
                   enabled_when='n_scale_params > 1',
                   tooltip="Scale along anterior-posterior axis (%)",
                   width=_SCALE_WIDTH),
              Item('scale_y_dec', enabled_when='n_scale_params > 1',
                   width=_INC_BUTTON_WIDTH),
              Item('scale_y_inc', enabled_when='n_scale_params > 1',
                   width=_INC_BUTTON_WIDTH),
              Label('(Step)', width=_SCALE_WIDTH),
              Spring(),

              Item('scale_z', editor=laggy_float_editor_scale, show_label=True,
                   enabled_when='n_scale_params > 1', width=_SCALE_WIDTH,
                   tooltip="Scale along anterior-posterior axis (%)"),
              Item('scale_z_dec', enabled_when='n_scale_params > 1',
                   width=_INC_BUTTON_WIDTH),
              Item('scale_z_inc', enabled_when='n_scale_params > 1',
                   width=_INC_BUTTON_WIDTH),
              '0',
              Spring(),

              label='Scaling parameters', show_labels=False, columns=5,
              show_border=_SHOW_BORDER),
        VGrid(Item('fits_icp', enabled_when='n_scale_params > 0 and '
                   'n_icp_points >= 10',
                   tooltip="Rotate, translate, and scale the MRI to minimize "
                   "the distance from each digitizer point to the closest MRI "
                   "point (one ICP iteration)", width=_BUTTON_WIDTH),
              Item('fits_fid', enabled_when='n_scale_params == 1 and '
                   'has_fid_data',
                   tooltip="Rotate, translate, and scale the MRI to minimize "
                   "the distance of the three fiducials.",
                   width=_BUTTON_WIDTH),
              Item('cancels_icp', enabled_when="fits_icp_running",
                   tooltip='Stop ICP fitting', width=_RESET_WIDTH),
              Item('reset_scale', enabled_when='n_scale_params',
                   tooltip="Reset scaling parameters", width=_RESET_WIDTH),
              show_labels=False, columns=4),
        # Translation and rotation
        VGrid(Item('trans_x', editor=laggy_float_editor_mm, show_label=True,
                   tooltip="Move along right-left axis", width=_MM_WIDTH),
              Item('trans_x_dec', width=_INC_BUTTON_WIDTH),
              Item('trans_x_inc', width=_INC_BUTTON_WIDTH),
              Item('trans_step', tooltip="Movement step (mm)",
                   width=_MM_STEP_WIDTH),
              Spring(),

              Item('trans_y', editor=laggy_float_editor_mm, show_label=True,
                   tooltip="Move along anterior-posterior axis",
                   width=_MM_WIDTH),
              Item('trans_y_dec', width=_INC_BUTTON_WIDTH),
              Item('trans_y_inc', width=_INC_BUTTON_WIDTH),
              Label('(Step)', width=_MM_WIDTH),
              Spring(),

              Item('trans_z', editor=laggy_float_editor_mm, show_label=True,
                   tooltip="Move along anterior-posterior axis",
                   width=_MM_WIDTH),
              Item('trans_z_dec', width=_INC_BUTTON_WIDTH),
              Item('trans_z_inc', width=_INC_BUTTON_WIDTH),
              '0',
              Spring(),

              Item('rot_x', editor=laggy_float_editor_deg, show_label=True,
                   tooltip="Tilt the digitization backward (-) or forward (+)",
                   width=_DEG_WIDTH),
              Item('rot_x_dec', width=_INC_BUTTON_WIDTH),
              Item('rot_x_inc', width=_INC_BUTTON_WIDTH),
              Item('rot_step', tooltip=u"Rotation step (°)",
                   width=_DEG_STEP_WIDTH),
              Spring(),

              Item('rot_y', editor=laggy_float_editor_deg, show_label=True,
                   tooltip="Tilt the digitization rightward (-) or "
                   "leftward (+)", width=_DEG_WIDTH),
              Item('rot_y_dec', width=_INC_BUTTON_WIDTH),
              Item('rot_y_inc', width=_INC_BUTTON_WIDTH),
              Label('(Step)', width=_DEG_WIDTH),
              Spring(),

              Item('rot_z', editor=laggy_float_editor_deg, show_label=True,
                   tooltip="Turn the digitization leftward (-) or "
                   "rightward (+)", width=_DEG_WIDTH),
              Item('rot_z_dec', width=_INC_BUTTON_WIDTH),
              Item('rot_z_inc', width=_INC_BUTTON_WIDTH),
              '0',
              Spring(),

              columns=5, show_labels=False, show_border=_SHOW_BORDER,
              label=u'Translation (Δ) and Rotation (∠)'),
        VGroup(Item('fit_icp', enabled_when='n_icp_points >= 10',
                    tooltip="Rotate and translate the MRI to minimize the "
                    "distance from each digitizer point to the closest MRI "
                    "point (one ICP iteration)", width=_BUTTON_WIDTH),
               Item('fit_fid', enabled_when="has_fid_data",
                    tooltip="Rotate and translate the MRI to minimize the "
                    "distance of the three fiducials.", width=_BUTTON_WIDTH),
               Item('cancel_icp', enabled_when="fit_icp_running",
                    tooltip='Stop ICP iterations', width=_RESET_WIDTH),
               Item('reset_tr', tooltip="Reset translation and rotation.",
                    width=_RESET_WIDTH),
               show_labels=False, columns=4),
        # Fitting weights
        Item('fid_eval_str', style='readonly', tooltip='Fiducial differences',
             width=_REDUCED_TEXT_WIDTH),
        Item('points_eval_str', style='readonly',
             tooltip='Point error (μ ± σ)', width=_REDUCED_TEXT_WIDTH),
        Item('fitting_options', width=_REDUCED_TEXT_WIDTH, show_label=False),
        VGrid(Item('scale_labels', label="Scale label files",
                   enabled_when='n_scale_params > 0'),
              Item('copy_annot', label="Copy annotation files",
                   enabled_when='n_scale_params > 0'),
              Item('prepare_bem_model', label="Prepare BEM",
                   enabled_when='can_prepare_bem_model'),
              show_left=False, label='Subject-saving options', columns=1,
              show_border=_SHOW_BORDER),
        VGrid(Item('save', enabled_when='can_save',
                   tooltip="Save the trans file and (if scaling is enabled) "
                   "the scaled MRI", width=_BUTTON_WIDTH),
              Item('load_trans', width=_BUTTON_WIDTH,
                   tooltip="Load Head<->MRI trans file"),
              Item('reset_params', tooltip="Reset all coregistration "
                   "parameters", width=_RESET_WIDTH),
              show_labels=False, columns=3),
        Spring(),
        show_labels=False), kind='panel', buttons=[UndoButton],
        scrollable=scrollable, handler=CoregPanelHandler())
    return view


class FittingOptionsPanel(HasTraits):
    """View options panel."""

    model = Instance(CoregModel)
    lpa_weight = DelegatesTo('model')
    nasion_weight = DelegatesTo('model')
    rpa_weight = DelegatesTo('model')
    hsp_weight = DelegatesTo('model')
    eeg_weight = DelegatesTo('model')
    hpi_weight = DelegatesTo('model')
    has_lpa_data = DelegatesTo('model')
    has_nasion_data = DelegatesTo('model')
    has_rpa_data = DelegatesTo('model')
    has_hsp_data = DelegatesTo('model')
    has_eeg_data = DelegatesTo('model')
    has_hpi_data = DelegatesTo('model')
    icp_iterations = DelegatesTo('model')
    icp_angle = DelegatesTo('model')
    icp_distance = DelegatesTo('model')
    icp_scale = DelegatesTo('model')
    icp_fid_match = DelegatesTo('model')
    n_scale_params = DelegatesTo('model')

    view = View(VGroup(
        VGrid(HGroup(Item('icp_iterations', label='Iterations',
                          width=_MM_WIDTH, tooltip='Maximum ICP iterations to '
                          'perform (per click)'),
                     Spring(), show_labels=True), label='ICP iterations (max)',
              show_border=_SHOW_BORDER),
        VGrid(Item('icp_angle', label=u'Angle (°)', width=_MM_WIDTH,
                   tooltip='Angle convergence threshold'),
              Item('icp_distance', label='Distance (mm)', width=_MM_WIDTH,
                   tooltip='Distance convergence threshold'),
              Item('icp_scale', label='Scale (%)',
                   tooltip='Scaling convergence threshold', width=_MM_WIDTH,
                   enabled_when='n_scale_params > 0'),
              show_labels=True, label='ICP convergence limits', columns=3,
              show_border=_SHOW_BORDER),
        VGrid(Item('icp_fid_match', width=-1, show_label=False,
                   editor=EnumEditor(values=dict(
                       nearest='1:Closest to surface',
                       matched='2:MRI fiducials'), cols=2,
                       format_func=lambda x: x),
                   tooltip='Match digitization fiducials to MRI fiducials or '
                   'the closest surface point', style='custom'),
              label='Fiducial point matching', show_border=_SHOW_BORDER),
        VGrid(
            VGrid(Item('lpa_weight', editor=laggy_float_editor_weight,
                       tooltip="Relative weight for LPA", width=_WEIGHT_WIDTH,
                       enabled_when='has_lpa_data', label='LPA'),
                  Item('nasion_weight', editor=laggy_float_editor_weight,
                       tooltip="Relative weight for nasion", label='Nasion',
                       width=_WEIGHT_WIDTH, enabled_when='has_nasion_data'),
                  Item('rpa_weight', editor=laggy_float_editor_weight,
                       tooltip="Relative weight for RPA", width=_WEIGHT_WIDTH,
                       enabled_when='has_rpa_data', label='RPA'),
                  columns=3, show_labels=True, show_border=_SHOW_BORDER,
                  label='Fiducials'),
            VGrid(Item('hsp_weight', editor=laggy_float_editor_weight,
                       tooltip="Relative weight for head shape points",
                       enabled_when='has_hsp_data',
                       label='HSP', width=_WEIGHT_WIDTH,),
                  Item('eeg_weight', editor=laggy_float_editor_weight,
                       tooltip="Relative weight for EEG points", label='EEG',
                       enabled_when='has_eeg_data', width=_WEIGHT_WIDTH),
                  Item('hpi_weight', editor=laggy_float_editor_weight,
                       tooltip="Relative weight for HPI points", label='HPI',
                       enabled_when='has_hpi_data', width=_WEIGHT_WIDTH),
                  columns=3, show_labels=True, show_border=_SHOW_BORDER,
                  label='Other points (closest-point matched)'),
            show_labels=False, label='Point weights', columns=2,
            show_border=_SHOW_BORDER),
    ), title="Fitting options")


_DEFAULT_PARAMETERS = (0., 0., 0., 0., 0., 0., 1., 1., 1.)


class CoregPanel(HasPrivateTraits):
    """Coregistration panel for Head<->MRI with scaling."""

    model = Instance(CoregModel)

    # parameters
    reset_params = Button(label=_RESET_LABEL)
    n_scale_params = DelegatesTo('model')
    parameters = DelegatesTo('model')
    scale_step = Float(1.)
    scale_x = DelegatesTo('model')
    scale_x_dec = Button('-')
    scale_x_inc = Button('+')
    scale_y = DelegatesTo('model')
    scale_y_dec = Button('-')
    scale_y_inc = Button('+')
    scale_z = DelegatesTo('model')
    scale_z_dec = Button('-')
    scale_z_inc = Button('+')
    rot_step = Float(1.)
    rot_x = DelegatesTo('model')
    rot_x_dec = Button('-')
    rot_x_inc = Button('+')
    rot_y = DelegatesTo('model')
    rot_y_dec = Button('-')
    rot_y_inc = Button('+')
    rot_z = DelegatesTo('model')
    rot_z_dec = Button('-')
    rot_z_inc = Button('+')
    trans_step = Float(1.)
    trans_x = DelegatesTo('model')
    trans_x_dec = Button('-')
    trans_x_inc = Button('+')
    trans_y = DelegatesTo('model')
    trans_y_dec = Button('-')
    trans_y_inc = Button('+')
    trans_z = DelegatesTo('model')
    trans_z_dec = Button('-')
    trans_z_inc = Button('+')

    # fitting
    has_lpa_data = DelegatesTo('model')
    has_nasion_data = DelegatesTo('model')
    has_rpa_data = DelegatesTo('model')
    has_fid_data = DelegatesTo('model')
    has_hsp_data = DelegatesTo('model')
    has_eeg_data = DelegatesTo('model')
    has_hpi_data = DelegatesTo('model')
    n_icp_points = DelegatesTo('model')
    # fitting with scaling
    fits_icp = Button(label='Fit (ICP)')
    fits_fid = Button(label='Fit Fid.')
    cancels_icp = Button(u'â– ')
    reset_scale = Button(label=_RESET_LABEL)
    fits_icp_running = DelegatesTo('model')
    # fitting without scaling
    fit_icp = Button(label='Fit (ICP)')
    fit_fid = Button(label='Fit Fid.')
    cancel_icp = Button(label=u'â– ')
    reset_tr = Button(label=_RESET_LABEL)
    fit_icp_running = DelegatesTo('model')

    # fit info
    fid_eval_str = DelegatesTo('model')
    points_eval_str = DelegatesTo('model')

    # saving
    can_prepare_bem_model = DelegatesTo('model')
    can_save = DelegatesTo('model')
    scale_labels = DelegatesTo('model')
    copy_annot = DelegatesTo('model')
    prepare_bem_model = DelegatesTo('model')
    save = Button(label="Save...")
    load_trans = Button(label='Load...')
    queue = Instance(queue.Queue, ())
    queue_feedback = Str('')
    queue_current = Str('')
    queue_len = Int(0)
    queue_status_text = Property(
        Str, depends_on=['queue_feedback', 'queue_current', 'queue_len'])

    fitting_options_panel = Instance(FittingOptionsPanel)
    fitting_options = Button('Fitting options...')

    def _fitting_options_panel_default(self):
        return FittingOptionsPanel(model=self.model)

    view = _make_view_coreg_panel()

    def __init__(self, *args, **kwargs):  # noqa: D102
        super(CoregPanel, self).__init__(*args, **kwargs)

        # Setup scaling worker
        def worker():
            while True:
                (subjects_dir, subject_from, subject_to, scale, skip_fiducials,
                 include_labels, include_annot, bem_names) = self.queue.get()
                self.queue_len -= 1

                # Scale MRI files
                self.queue_current = 'Scaling %s...' % subject_to
                try:
                    scale_mri(subject_from, subject_to, scale, True,
                              subjects_dir, skip_fiducials, include_labels,
                              include_annot)
                except Exception:
                    logger.error('Error scaling %s:\n' % subject_to +
                                 traceback.format_exc())
                    self.queue_feedback = ('Error scaling %s (see Terminal)' %
                                           subject_to)
                    bem_names = ()  # skip bem solutions
                else:
                    self.queue_feedback = 'Done scaling %s' % subject_to

                # Precompute BEM solutions
                for bem_name in bem_names:
                    self.queue_current = ('Computing %s solution...' %
                                          bem_name)
                    try:
                        bem_file = bem_fname.format(subjects_dir=subjects_dir,
                                                    subject=subject_to,
                                                    name=bem_name)
                        bemsol = make_bem_solution(bem_file)
                        write_bem_solution(bem_file[:-4] + '-sol.fif', bemsol)
                    except Exception:
                        logger.error('Error computing %s solution:\n' %
                                     bem_name + traceback.format_exc())
                        self.queue_feedback = ('Error computing %s solution '
                                               '(see Terminal)' % bem_name)
                    else:
                        self.queue_feedback = ('Done computing %s solution' %
                                               bem_name)

                # Finalize
                self.queue_current = ''
                self.queue.task_done()

        t = Thread(target=worker)
        t.daemon = True
        t.start()

    @cached_property
    def _get_queue_status_text(self):
        items = []
        if self.queue_current:
            items.append(self.queue_current)
        if self.queue_feedback:
            items.append(self.queue_feedback)
        if self.queue_len:
            items.append("%i queued" % self.queue_len)
        return '    |    '.join(items)

    @cached_property
    def _get_rotation(self):
        rot = np.array([self.rot_x, self.rot_y, self.rot_z])
        return rot

    @cached_property
    def _get_translation(self):
        trans = np.array([self.trans_x, self.trans_y, self.trans_z])
        return trans

    def _n_scale_params_fired(self):
        if self.n_scale_params == 0:
            use = [1] * 3
        elif self.n_scale_params == 1:
            use = [np.mean([self.scale_x, self.scale_y, self.scale_z]) /
                   100.] * 3
        else:
            use = self.parameters[6:9]
        self.parameters[6:9] = use

    def _fit_fid_fired(self):
        with busy():
            self.model.fit_fiducials(0)

    def _fit_icp_fired(self):
        with busy():
            self.model.fit_icp(0)

    def _fits_fid_fired(self):
        with busy():
            self.model.fit_fiducials()

    def _fits_icp_fired(self):
        with busy():
            self.model.fit_icp()

    def _cancel_icp_fired(self):
        self.fit_icp_running = False

    def _cancels_icp_fired(self):
        self.fits_icp_running = False

    def _reset_scale_fired(self):
        self.reset_traits(('scale_x', 'scale_y', 'scale_z'))

    def _reset_tr_fired(self):
        self.reset_traits(('trans_x', 'trans_y', 'trans_z',
                           'rot_x', 'rot_y', 'rot_z'))

    def _reset_params_fired(self):
        self.model.reset()

    def _rot_x_dec_fired(self):
        self.rot_x -= self.rot_step

    def _rot_x_inc_fired(self):
        self.rot_x += self.rot_step

    def _rot_y_dec_fired(self):
        self.rot_y -= self.rot_step

    def _rot_y_inc_fired(self):
        self.rot_y += self.rot_step

    def _rot_z_dec_fired(self):
        self.rot_z -= self.rot_step

    def _rot_z_inc_fired(self):
        self.rot_z += self.rot_step

    def _scale_x_dec_fired(self):
        self.scale_x -= self.scale_step

    def _scale_x_inc_fired(self):
        self.scale_x += self.scale_step

    def _scale_y_dec_fired(self):
        self.scale_y -= self.scale_step

    def _scale_y_inc_fired(self):
        self.scale_y += self.scale_step

    def _scale_z_dec_fired(self):
        self.scale_z -= self.scale_step

    def _scale_z_inc_fired(self):
        self.scale_z += self.scale_step

    def _trans_x_dec_fired(self):
        self.trans_x -= self.trans_step

    def _trans_x_inc_fired(self):
        self.trans_x += self.trans_step

    def _trans_y_dec_fired(self):
        self.trans_y -= self.trans_step

    def _trans_y_inc_fired(self):
        self.trans_y += self.trans_step

    def _trans_z_dec_fired(self):
        self.trans_z -= self.trans_step

    def _trans_z_inc_fired(self):
        self.trans_z += self.trans_step


class NewMriDialog(HasPrivateTraits):
    """New MRI dialog."""

    # Dialog to determine target subject name for a scaled MRI
    subjects_dir = Directory
    subject_to = Str
    subject_from = Str
    subject_to_dir = Property(depends_on=['subjects_dir', 'subject_to'])
    subject_to_exists = Property(Bool, depends_on='subject_to_dir')

    feedback = Str(' ' * 100)
    can_overwrite = Bool
    overwrite = Bool
    can_save = Bool

    view = View(Item('subject_to', label='New MRI Subject Name', tooltip="A "
                     "new folder with this name will be created in the "
                     "current subjects_dir for the scaled MRI files"),
                Item('feedback', show_label=False, style='readonly'),
                Item('overwrite', enabled_when='can_overwrite', tooltip="If a "
                     "subject with the chosen name exists, delete the old "
                     "subject"),
                buttons=[CancelButton,
                         Action(name='OK', enabled_when='can_save')])

    def _can_overwrite_changed(self, new):
        if not new:
            self.overwrite = False

    @cached_property
    def _get_subject_to_dir(self):
        return os.path.join(self.subjects_dir, self.subject_to)

    @cached_property
    def _get_subject_to_exists(self):
        if not self.subject_to:
            return False
        elif os.path.exists(self.subject_to_dir):
            return True
        else:
            return False

    @on_trait_change('subject_to_dir,overwrite')
    def update_dialog(self):
        if not self.subject_from:
            # weird trait state that occurs even when subject_from is set
            return
        elif not self.subject_to:
            self.feedback = "No subject specified..."
            self.can_save = False
            self.can_overwrite = False
        elif self.subject_to == self.subject_from:
            self.feedback = "Must be different from MRI source subject..."
            self.can_save = False
            self.can_overwrite = False
        elif self.subject_to_exists:
            if self.overwrite:
                self.feedback = "%s will be overwritten." % self.subject_to
                self.can_save = True
                self.can_overwrite = True
            else:
                self.feedback = "Subject already exists..."
                self.can_save = False
                self.can_overwrite = True
        else:
            self.feedback = "Name ok."
            self.can_save = True
            self.can_overwrite = False


def _make_view(tabbed=False, split=False, width=800, height=600,
               scrollable=True):
    """Create a view for the CoregFrame."""
    # Set the width to 0.99 to "push out" as much as possible, use
    # scene_width in the View below
    scene = Item('scene', show_label=False, width=0.99,
                 editor=SceneEditor(scene_class=MayaviScene))

    data_panel = VGroup(
        Item('data_panel', style='custom',
             width=_COREG_WIDTH if scrollable else 1,
             editor=InstanceEditor(view=_make_view_data_panel(scrollable))),
        label='Data', show_border=not scrollable, show_labels=False)

    # Setting `scrollable=True` for a Group does not seem to have any effect
    # (macOS), in order to be effective the parameter has to be set for a View
    # object; hence we use a special InstanceEditor to set the parameter
    # programmatically:
    coreg_panel = VGroup(
        Item('coreg_panel', style='custom',
             width=_COREG_WIDTH if scrollable else 1,
             editor=InstanceEditor(view=_make_view_coreg_panel(scrollable))),
        label="Coregistration", show_border=not scrollable, show_labels=False,
        enabled_when="data_panel.fid_panel.locked")

    main_layout = 'split' if split else 'normal'

    if tabbed:
        main = HGroup(scene,
                      Group(data_panel, coreg_panel, show_labels=False,
                            layout='tabbed'),
                      layout=main_layout)
    else:
        main = HGroup(data_panel, scene, coreg_panel, show_labels=False,
                      layout=main_layout)

    # Here we set the width and height to impossibly small numbers to force the
    # window to be as tight as possible
    view = View(main, resizable=True, handler=CoregFrameHandler(),
                buttons=NoButtons, width=width, height=height,
                statusbar=[StatusItem('status_text', width=0.55),
                           StatusItem('queue_status_text', width=0.45)])
    return view


class ViewOptionsPanel(HasTraits):
    """View options panel."""

    mri_obj = Instance(SurfaceObject)
    hsp_obj = Instance(PointObject)
    eeg_obj = Instance(PointObject)
    hpi_obj = Instance(PointObject)
    hsp_cf_obj = Instance(PointObject)
    mri_cf_obj = Instance(PointObject)
    bgcolor = RGBColor()
    coord_frame = Enum('mri', 'head', label='Display coordinate frame')
    head_high_res = Bool(True, label='Show high-resolution head')

    view = View(
        VGroup(
            Item('mri_obj', style='custom', label="MRI"),
            Item('hsp_obj', style='custom', label="Head shape"),
            Item('eeg_obj', style='custom', label='EEG'),
            Item('hpi_obj', style='custom', label='HPI'),
            VGrid(Item('coord_frame', style='custom',
                       editor=EnumEditor(values={'mri': '1:MRI',
                                                 'head': '2:Head'}, cols=2,
                                         format_func=_pass)),
                  Spring(),
                  Item('head_high_res'),
                  Spring(), columns=2, show_labels=True),
            Item('hsp_cf_obj', style='custom', label='Head axes'),
            Item('mri_cf_obj', style='custom', label='MRI axes'),
            HGroup(Item('bgcolor', label='Background'), Spring()),
        ), title="Display options")


class DataPanelHandler(Handler):
    """Open other windows with proper parenting."""

    info = Instance(UIInfo)

    def object_view_options_panel_changed(self, info):  # noqa: D102
        self.info = info

    def object_view_options_changed(self, info):  # noqa: D102
        self.info.object.view_options_panel.edit_traits(
            parent=self.info.ui.control)


class DataPanel(HasTraits):
    """Data loading panel."""

    # Set by CoregPanel
    model = Instance(CoregModel)
    scene = Instance(MlabSceneModel, ())
    lock_fiducials = DelegatesTo('model')
    guess_mri_subject = DelegatesTo('model')
    raw_src = DelegatesTo('model', 'hsp')
    # Set internally
    subject_panel = Instance(SubjectSelectorPanel)
    fid_panel = Instance(FiducialsPanel)
    headview = Instance(HeadViewController)
    view_options_panel = Instance(ViewOptionsPanel)
    hsp_always_visible = Bool(False, label="Always Show Head Shape")
    view_options = Button(label="Display options...")

    # Omit Points
    distance = Float(10., desc="maximal distance for head shape points from "
                     "the surface (mm)")
    omit_points = Button(label='Omit', desc="to omit head shape points "
                         "for the purpose of the automatic coregistration "
                         "procedure (mm).")
    grow_hair = DelegatesTo('model')
    reset_omit_points = Button(label=_RESET_LABEL, desc="to reset the "
                               "omission of head shape points to include all.")
    omitted_info = Str('No points omitted')

    def _subject_panel_default(self):
        return SubjectSelectorPanel(model=self.model.mri.subject_source)

    def _fid_panel_default(self):
        return FiducialsPanel(model=self.model.mri, headview=self.headview)

    def _headview_default(self):
        return HeadViewController(system='RAS', scene=self.scene)

    def _omit_points_fired(self):
        distance = self.distance / 1000.
        self.model.omit_hsp_points(distance)
        n_omitted = self.model.hsp.n_omitted
        self.omitted_info = (
            "%s pt%s omitted (%0.1f mm)"
            % (n_omitted if n_omitted > 0 else 'No', _pl(n_omitted),
               self.distance))

    @on_trait_change('model:hsp:file')
    def _file_change(self):
        self._reset_omit_points_fired()

    def _reset_omit_points_fired(self):
        self.model.omit_hsp_points(np.inf)
        self.omitted_info = 'No points omitted (reset)'


class CoregFrame(HasTraits):
    """GUI for head-MRI coregistration."""

    model = Instance(CoregModel)

    scene = Instance(MlabSceneModel, ())
    head_high_res = Bool(True)

    data_panel = Instance(DataPanel)
    coreg_panel = Instance(CoregPanel)  # right panel

    project_to_surface = DelegatesTo('eeg_obj')
    orient_to_surface = DelegatesTo('hsp_obj')
    scale_by_distance = DelegatesTo('hsp_obj')
    mark_inside = DelegatesTo('hsp_obj')
    status_text = DelegatesTo('model')
    queue_status_text = DelegatesTo('coreg_panel')

    fid_ok = DelegatesTo('model', 'mri.fid_ok')
    lock_fiducials = DelegatesTo('model')
    title = Str('MNE Coreg')

    # visualization (MRI)
    mri_obj = Instance(SurfaceObject)
    mri_lpa_obj = Instance(PointObject)
    mri_nasion_obj = Instance(PointObject)
    mri_rpa_obj = Instance(PointObject)
    bgcolor = RGBColor((0.5, 0.5, 0.5))
    # visualization (Digitization)
    hsp_obj = Instance(PointObject)
    eeg_obj = Instance(PointObject)
    hpi_obj = Instance(PointObject)
    hsp_lpa_obj = Instance(PointObject)
    hsp_nasion_obj = Instance(PointObject)
    hsp_rpa_obj = Instance(PointObject)
    hsp_visible = Property(depends_on=['data_panel:hsp_always_visible',
                                       'lock_fiducials'])
    # Coordinate frame axes
    hsp_cf_obj = Instance(PointObject)
    mri_cf_obj = Instance(PointObject)

    picker = Instance(object)

    # Processing
    queue = DelegatesTo('coreg_panel')

    view = _make_view()

    def _model_default(self):
        return CoregModel(
            scale_labels=self._config.get(
                'MNE_COREG_SCALE_LABELS', 'true') == 'true',
            copy_annot=self._config.get(
                'MNE_COREG_COPY_ANNOT', 'true') == 'true',
            prepare_bem_model=self._config.get(
                'MNE_COREG_PREPARE_BEM', 'true') == 'true')

    def _data_panel_default(self):
        return DataPanel(model=self.model, scene=self.scene)

    def _coreg_panel_default(self):
        return CoregPanel(model=self.model)

    def __init__(self, raw=None, subject=None, subjects_dir=None,
                 guess_mri_subject=True, head_opacity=1.,
                 head_high_res=True, trans=None, config=None,
                 project_eeg=False, orient_to_surface=False,
                 scale_by_distance=False, mark_inside=False,
                 interaction='trackball', scale=0.16):  # noqa: D102
        self._config = config or {}
        super(CoregFrame, self).__init__(guess_mri_subject=guess_mri_subject,
                                         head_high_res=head_high_res)
        self._initial_kwargs = dict(project_eeg=project_eeg,
                                    orient_to_surface=orient_to_surface,
                                    scale_by_distance=scale_by_distance,
                                    mark_inside=mark_inside,
                                    head_opacity=head_opacity,
                                    interaction=interaction,
                                    scale=scale)
        self._locked_opacity = self._initial_kwargs['head_opacity']
        if not 0 <= head_opacity <= 1:
            raise ValueError(
                "head_opacity needs to be a floating point number between 0 "
                "and 1, got %r" % (head_opacity,))

        if (subjects_dir is not None) and os.path.isdir(subjects_dir):
            self.model.mri.subjects_dir = subjects_dir

        if raw is not None:
            self.model.hsp.file = raw

        if subject is not None:
            if subject not in self.model.mri.subject_source.subjects:
                msg = "%s is not a valid subject. " % subject
                # no subjects -> ['']
                if any(self.model.mri.subject_source.subjects):
                    ss = ', '.join(self.model.mri.subject_source.subjects)
                    msg += ("The following subjects have been found: %s "
                            "(subjects_dir=%s). " %
                            (ss, self.model.mri.subjects_dir))
                else:
                    msg += ("No subjects were found in subjects_dir=%s. " %
                            self.model.mri.subjects_dir)
                msg += ("Make sure all MRI subjects have head shape files "
                        "(run $ mne make_scalp_surfaces).")
                raise ValueError(msg)
            self.model.mri.subject = subject
        if trans is not None:
            try:
                self.model.load_trans(trans)
            except Exception as e:
                error(None, "Error loading trans file %s: %s (See terminal "
                      "for details)" % (trans, e), "Error Loading Trans File")

    @on_trait_change('subject_panel:subject')
    def _set_title(self):
        self.title = '%s - MNE Coreg' % self.model.mri.subject

    @on_trait_change('scene:activated')
    def _init_plot(self):
        _toggle_mlab_render(self, False)
        if hasattr(getattr(self.scene, 'renderer', None), 'use_fxaa'):
            self.scene.renderer.use_fxaa = True

        lpa_color = defaults['lpa_color']
        nasion_color = defaults['nasion_color']
        rpa_color = defaults['rpa_color']

        # MRI scalp
        #
        # Due to MESA rendering / z-order bugs, this should be added and
        # rendered first (see gh-5375).
        color = defaults['head_color']
        self.mri_obj = SurfaceObject(
            points=np.empty((0, 3)), color=color, tris=np.empty((0, 3)),
            scene=self.scene, name="MRI Scalp", block_behind=True,
            # opacity=self._initial_kwargs['head_opacity'],
            # setting opacity here causes points to be
            # [[0, 0, 0]] -- why??
        )
        self.mri_obj.opacity = self._initial_kwargs['head_opacity']
        self.data_panel.fid_panel.hsp_obj = self.mri_obj
        self._update_mri_obj()
        self.mri_obj.plot()
        # Do not do sync_trait here, instead use notifiers elsewhere

        # MRI Fiducials
        point_scale = defaults['mri_fid_scale']
        self.mri_lpa_obj = PointObject(scene=self.scene, color=lpa_color,
                                       has_norm=True, point_scale=point_scale,
                                       name='LPA')
        self.model.sync_trait('transformed_mri_lpa',
                              self.mri_lpa_obj, 'points', mutual=False)
        self.mri_nasion_obj = PointObject(scene=self.scene, color=nasion_color,
                                          has_norm=True,
                                          point_scale=point_scale,
                                          name='Nasion')
        self.model.sync_trait('transformed_mri_nasion',
                              self.mri_nasion_obj, 'points', mutual=False)
        self.mri_rpa_obj = PointObject(scene=self.scene, color=rpa_color,
                                       has_norm=True, point_scale=point_scale,
                                       name='RPA')
        self.model.sync_trait('transformed_mri_rpa',
                              self.mri_rpa_obj, 'points', mutual=False)

        # Digitizer Head Shape
        kwargs = dict(
            view='cloud', scene=self.scene, resolution=20,
            orient_to_surface=self._initial_kwargs['orient_to_surface'],
            scale_by_distance=self._initial_kwargs['scale_by_distance'],
            mark_inside=self._initial_kwargs['mark_inside'])
        self.hsp_obj = PointObject(
            color=defaults['extra_color'], name='Extra', has_norm=True,
            point_scale=defaults['extra_scale'], **kwargs)
        self.model.sync_trait('transformed_hsp_points',
                              self.hsp_obj, 'points', mutual=False)

        # Digitizer EEG
        self.eeg_obj = PointObject(
            color=defaults['eeg_color'], point_scale=defaults['eeg_scale'],
            name='EEG', projectable=True, has_norm=True,
            project_to_surface=self._initial_kwargs['project_eeg'], **kwargs)
        self.model.sync_trait('transformed_hsp_eeg_points',
                              self.eeg_obj, 'points', mutual=False)

        # Digitizer HPI
        self.hpi_obj = PointObject(
            color=defaults['hpi_color'], name='HPI', has_norm=True,
            point_scale=defaults['hpi_scale'], **kwargs)
        self.model.sync_trait('transformed_hsp_hpi',
                              self.hpi_obj, 'points', mutual=False)
        for p in (self.hsp_obj, self.eeg_obj, self.hpi_obj):
            p.inside_color = self.mri_obj.color
            self.mri_obj.sync_trait('color', p, 'inside_color',
                                    mutual=False)

        # Digitizer Fiducials
        point_scale = defaults['dig_fid_scale']
        opacity = defaults['dig_fid_opacity']
        self.hsp_lpa_obj = PointObject(
            scene=self.scene, color=lpa_color, opacity=opacity,
            has_norm=True, point_scale=point_scale, name='HSP-LPA')
        self.model.sync_trait('transformed_hsp_lpa',
                              self.hsp_lpa_obj, 'points', mutual=False)
        self.hsp_nasion_obj = PointObject(
            scene=self.scene, color=nasion_color, opacity=opacity,
            has_norm=True, point_scale=point_scale, name='HSP-Nasion')
        self.model.sync_trait('transformed_hsp_nasion',
                              self.hsp_nasion_obj, 'points', mutual=False)
        self.hsp_rpa_obj = PointObject(
            scene=self.scene, color=rpa_color, opacity=opacity,
            has_norm=True, point_scale=point_scale, name='HSP-RPA')
        self.model.sync_trait('transformed_hsp_rpa',
                              self.hsp_rpa_obj, 'points', mutual=False)

        # All points share these
        for p in (self.hsp_obj, self.eeg_obj, self.hpi_obj,
                  self.hsp_lpa_obj, self.hsp_nasion_obj, self.hsp_rpa_obj):
            self.sync_trait('hsp_visible', p, 'visible', mutual=False)

        on_pick = self.scene.mayavi_scene.on_mouse_pick
        self.picker = on_pick(self.data_panel.fid_panel._on_pick, type='cell')

        # Coordinate frame axes
        self.mri_cf_obj = PointObject(
            scene=self.scene, color=self.mri_obj.color,
            opacity=self.mri_obj.opacity, label_scale=5e-3,
            point_scale=0.02, name='MRI', view='arrow')
        self.mri_obj.sync_trait('color', self.mri_cf_obj, mutual=False)
        self._update_mri_axes()
        self.hsp_cf_obj = PointObject(
            scene=self.scene, color=self.hsp_obj.color,
            opacity=self.mri_obj.opacity, label_scale=5e-3,
            point_scale=0.02, name='Head', view='arrow')
        self.hsp_cf_obj.sync_trait('color', self.hsp_cf_obj, mutual=False)
        self._update_hsp_axes()

        self.sync_trait('bgcolor', self.scene, 'background')

        self._update_projections()

        _toggle_mlab_render(self, True)
        self.scene.render()
        self.scene.camera.focal_point = (0., 0., 0.)
        self.data_panel.view_options_panel = ViewOptionsPanel(
            mri_obj=self.mri_obj, hsp_obj=self.hsp_obj,
            eeg_obj=self.eeg_obj, hpi_obj=self.hpi_obj,
            hsp_cf_obj=self.hsp_cf_obj, mri_cf_obj=self.mri_cf_obj,
            head_high_res=self.head_high_res,
            bgcolor=self.bgcolor)
        self.data_panel.headview.scale = self._initial_kwargs['scale']
        self.data_panel.headview.interaction = \
            self._initial_kwargs['interaction']
        self.data_panel.headview.left = True
        self.data_panel.view_options_panel.sync_trait(
            'coord_frame', self.model)
        self.data_panel.view_options_panel.sync_trait('head_high_res', self)
        self.data_panel.view_options_panel.sync_trait('bgcolor', self)

    @on_trait_change('lock_fiducials')
    def _on_lock_change(self):
        if not self.lock_fiducials:
            if self.mri_obj is None:
                self._initial_kwargs['head_opacity'] = 1.
            else:
                self._locked_opacity = self.mri_obj.opacity
                self.mri_obj.opacity = 1.
        else:
            if self.mri_obj is not None:
                self.mri_obj.opacity = self._locked_opacity

    @cached_property
    def _get_hsp_visible(self):
        return self.data_panel.hsp_always_visible or self.lock_fiducials

    @on_trait_change('model:mri_trans')
    def _update_mri_axes(self):
        if self.mri_cf_obj is None:
            return
        nn = apply_trans(self.model.mri_trans, np.eye(3), move=False)
        pts = apply_trans(self.model.mri_trans, np.zeros((3, 3)))
        self.mri_cf_obj.nn = nn
        self.mri_cf_obj.points = pts

    @on_trait_change('model:hsp_trans')
    def _update_hsp_axes(self):
        if self.hsp_cf_obj is None:
            return
        nn = apply_trans(self.model.hsp_trans, np.eye(3), move=False)
        pts = apply_trans(self.model.hsp_trans, np.zeros((3, 3)))
        self.hsp_cf_obj.nn = nn
        self.hsp_cf_obj.points = pts

    @on_trait_change('model:mri:bem_low_res:surf,'
                     'model:transformed_low_res_mri_points')
    def _update_projections(self):
        for p in (self.eeg_obj, self.hsp_obj, self.hpi_obj):
            if p is not None:
                p.project_to_tris = self.model.mri.bem_low_res.surf.tris
                p.project_to_points = self.model.transformed_low_res_mri_points

    @on_trait_change('model:mri:bem_low_res:surf,head_high_res,'
                     'model:transformed_high_res_mri_points')
    def _update_mri_obj(self):
        if self.mri_obj is None:
            return
        self.mri_obj.tris = getattr(
            self.model.mri, 'bem_%s_res'
            % ('high' if self.head_high_res else 'low',)).surf.tris
        self.mri_obj.points = getattr(
            self.model, 'transformed_%s_res_mri_points'
            % ('high' if self.head_high_res else 'low',))

    # automatically lock fiducials if a good fiducials file is loaded
    @on_trait_change('model:mri:fid_file')
    def _on_fid_file_loaded(self):
        self.data_panel.fid_panel.locked = bool(self.model.mri.fid_file)

    def save_config(self, home_dir=None, size=None):
        """Write configuration values."""
        def s_c(key, value, lower=True):
            value = str(value)
            if lower:
                value = value.lower()
            set_config(key, str(value).lower(), home_dir=home_dir,
                       set_env=False)

        s_c('MNE_COREG_GUESS_MRI_SUBJECT', self.model.guess_mri_subject)
        s_c('MNE_COREG_HEAD_HIGH_RES', self.head_high_res)
        if self.lock_fiducials:
            opacity = self.mri_obj.opacity
        else:
            opacity = self._locked_opacity
        s_c('MNE_COREG_HEAD_OPACITY', opacity)
        if size is not None:
            s_c('MNE_COREG_WINDOW_WIDTH', size[0])
            s_c('MNE_COREG_WINDOW_HEIGHT', size[1])
        s_c('MNE_COREG_SCENE_SCALE', self.data_panel.headview.scale)
        s_c('MNE_COREG_SCALE_LABELS', self.model.scale_labels)
        s_c('MNE_COREG_COPY_ANNOT', self.model.copy_annot)
        s_c('MNE_COREG_PREPARE_BEM', self.model.prepare_bem_model)
        if self.model.mri.subjects_dir:
            s_c('MNE_COREG_SUBJECTS_DIR', self.model.mri.subjects_dir, False)
        s_c('MNE_COREG_PROJECT_EEG', self.project_to_surface)
        s_c('MNE_COREG_ORIENT_TO_SURFACE', self.orient_to_surface)
        s_c('MNE_COREG_SCALE_BY_DISTANCE', self.scale_by_distance)
        s_c('MNE_COREG_MARK_INSIDE', self.mark_inside)
        s_c('MNE_COREG_INTERACTION', self.data_panel.headview.interaction)