File: test_coreg_gui.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (329 lines) | stat: -rw-r--r-- 11,267 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# Author: Christian Brodbeck <christianbrodbeck@nyu.edu>
#
# License: BSD (3-clause)

import os
import os.path as op
import re
import shutil
import sys
from unittest import SkipTest

import numpy as np
from numpy.testing import (assert_allclose, assert_equal,
                           assert_array_almost_equal)
import pytest

import mne
from mne.datasets import testing
from mne.io.kit.tests import data_dir as kit_data_dir
from mne.transforms import invert_transform
from mne.utils import _TempDir, run_tests_if_main, requires_mayavi, traits_test
from mne.externals.six import string_types

# backend needs to be set early
try:
    from traits.etsconfig.api import ETSConfig
except ImportError:
    pass
else:
    ETSConfig.toolkit = 'qt4'


data_path = testing.data_path(download=False)
raw_path = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif')
fname_trans = op.join(data_path, 'MEG', 'sample',
                      'sample_audvis_trunc-trans.fif')
kit_raw_path = op.join(kit_data_dir, 'test_bin_raw.fif')
subjects_dir = op.join(data_path, 'subjects')


@testing.requires_testing_data
@requires_mayavi
@traits_test
def test_coreg_model_decimation():
    """Test CoregModel decimation of high-res to low-res head."""
    from mne.gui._coreg_gui import CoregModel
    tempdir = _TempDir()
    subject_dir = op.join(tempdir, 'sample')
    shutil.copytree(op.join(subjects_dir, 'sample'), subject_dir)
    # This makes the test much faster
    shutil.move(op.join(subject_dir, 'bem', 'outer_skin.surf'),
                op.join(subject_dir, 'surf', 'lh.seghead'))
    for fname in ('sample-head.fif', 'sample-head-dense.fif'):
        os.remove(op.join(subject_dir, 'bem', fname))

    model = CoregModel(guess_mri_subject=False)
    with pytest.warns(RuntimeWarning, match='No low-resolution'):
        model.mri.subjects_dir = tempdir
    assert model.mri.subject == 'sample'  # already set by setting subjects_dir
    assert model.mri.bem_low_res.file == ''
    assert len(model.mri.bem_low_res.surf.rr) == 2562
    assert len(model.mri.bem_high_res.surf.rr) == 2562  # because we moved it


@testing.requires_testing_data
@requires_mayavi
@traits_test
def test_coreg_model():
    """Test CoregModel."""
    from mne.gui._coreg_gui import CoregModel
    tempdir = _TempDir()
    trans_dst = op.join(tempdir, 'test-trans.fif')

    model = CoregModel()
    pytest.raises(RuntimeError, model.save_trans, 'blah.fif')

    model.mri.subjects_dir = subjects_dir
    model.mri.subject = 'sample'

    assert not model.mri.fid_ok
    model.mri.lpa = [[-0.06, 0, 0]]
    model.mri.nasion = [[0, 0.05, 0]]
    model.mri.rpa = [[0.08, 0, 0]]
    assert (model.mri.fid_ok)

    model.hsp.file = raw_path
    assert_allclose(model.hsp.lpa, [[-7.137e-2, 0, 5.122e-9]], 1e-4)
    assert_allclose(model.hsp.rpa, [[+7.527e-2, 0, 5.588e-9]], 1e-4)
    assert_allclose(model.hsp.nasion, [[+3.725e-9, 1.026e-1, 4.191e-9]], 1e-4)
    assert model.has_lpa_data
    assert model.has_nasion_data
    assert model.has_rpa_data
    assert len(model.hsp.eeg_points) > 1

    assert len(model.mri.bem_low_res.surf.rr) == 2562
    assert len(model.mri.bem_high_res.surf.rr) == 267122

    lpa_distance = model.lpa_distance
    nasion_distance = model.nasion_distance
    rpa_distance = model.rpa_distance
    avg_point_distance = np.mean(model.point_distance)

    model.nasion_weight = 1.
    model.fit_fiducials(0)
    old_x = lpa_distance ** 2 + rpa_distance ** 2 + nasion_distance ** 2
    new_x = (model.lpa_distance ** 2 + model.rpa_distance ** 2 +
             model.nasion_distance ** 2)
    assert new_x < old_x

    model.fit_icp(0)
    new_dist = np.mean(model.point_distance)
    assert new_dist < avg_point_distance

    model.save_trans(trans_dst)
    trans = mne.read_trans(trans_dst)
    assert_allclose(trans['trans'], model.head_mri_t)

    # test restoring trans
    x, y, z = 100, 200, 50
    rot_x, rot_y, rot_z = np.rad2deg([1.5, 0.1, -1.2])
    model.trans_x = x
    model.trans_y = y
    model.trans_z = z
    model.rot_x = rot_x
    model.rot_y = rot_y
    model.rot_z = rot_z
    trans = model.mri_head_t
    model.reset_traits(["trans_x", "trans_y", "trans_z", "rot_x", "rot_y",
                        "rot_z"])
    assert_equal(model.trans_x, 0)
    model.set_trans(trans)
    assert_array_almost_equal(model.trans_x, x)
    assert_array_almost_equal(model.trans_y, y)
    assert_array_almost_equal(model.trans_z, z)
    assert_array_almost_equal(model.rot_x, rot_x)
    assert_array_almost_equal(model.rot_y, rot_y)
    assert_array_almost_equal(model.rot_z, rot_z)

    # info
    assert (isinstance(model.fid_eval_str, string_types))
    assert (isinstance(model.points_eval_str, string_types))

    # scaling job
    assert not model.can_prepare_bem_model
    model.n_scale_params = 1
    assert (model.can_prepare_bem_model)
    model.prepare_bem_model = True
    sdir, sfrom, sto, scale, skip_fiducials, labels, annot, bemsol = \
        model.get_scaling_job('sample2', False)
    assert_equal(sdir, subjects_dir)
    assert_equal(sfrom, 'sample')
    assert_equal(sto, 'sample2')
    assert_allclose(scale, model.parameters[6:9])
    assert_equal(skip_fiducials, False)
    # find BEM files
    bems = set()
    for fname in os.listdir(op.join(subjects_dir, 'sample', 'bem')):
        match = re.match(r'sample-(.+-bem)\.fif', fname)
        if match:
            bems.add(match.group(1))
    assert_equal(set(bemsol), bems)
    model.prepare_bem_model = False
    sdir, sfrom, sto, scale, skip_fiducials, labels, annot, bemsol = \
        model.get_scaling_job('sample2', True)
    assert_equal(bemsol, [])
    assert (skip_fiducials)

    model.load_trans(fname_trans)
    model.save_trans(trans_dst)
    trans = mne.read_trans(trans_dst)
    assert_allclose(trans['trans'], model.head_mri_t)
    assert_allclose(invert_transform(trans)['trans'][:3, 3] * 1000.,
                    [model.trans_x, model.trans_y, model.trans_z])


def _check_ci():
    if os.getenv('TRAVIS', 'false').lower() == 'true' and \
            sys.platform == 'darwin':
        raise SkipTest('Skipping GUI tests on Travis OSX')


@testing.requires_testing_data
@requires_mayavi
@traits_test
def test_coreg_gui():
    """Test CoregFrame."""
    _check_ci()
    home_dir = _TempDir()
    os.environ['_MNE_GUI_TESTING_MODE'] = 'true'
    os.environ['_MNE_FAKE_HOME_DIR'] = home_dir
    try:
        pytest.raises(ValueError, mne.gui.coregistration, subject='Elvis',
                      subjects_dir=subjects_dir)

        from pyface.api import GUI
        from tvtk.api import tvtk
        gui = GUI()

        # avoid modal dialog if SUBJECTS_DIR is set to a directory that
        # does not contain valid subjects
        ui, frame = mne.gui.coregistration(subjects_dir='')

        frame.model.mri.subjects_dir = subjects_dir
        frame.model.mri.subject = 'sample'

        assert not frame.model.mri.fid_ok
        frame.model.mri.lpa = [[-0.06, 0, 0]]
        frame.model.mri.nasion = [[0, 0.05, 0]]
        frame.model.mri.rpa = [[0.08, 0, 0]]
        assert (frame.model.mri.fid_ok)
        frame.data_panel.raw_src.file = raw_path
        assert isinstance(frame.eeg_obj.glyph.glyph.glyph_source.glyph_source,
                          tvtk.SphereSource)
        frame.data_panel.view_options_panel.eeg_obj.project_to_surface = True
        assert isinstance(frame.eeg_obj.glyph.glyph.glyph_source.glyph_source,
                          tvtk.CylinderSource)

        # grow hair (faster for low-res)
        assert frame.data_panel.view_options_panel.head_high_res
        frame.data_panel.view_options_panel.head_high_res = False
        frame.model.grow_hair = 40.

        # scale
        frame.coreg_panel.n_scale_params = 3
        frame.coreg_panel.scale_x_inc = True
        assert frame.model.scale_x == 101.
        frame.coreg_panel.scale_y_dec = True
        assert frame.model.scale_y == 99.

        # reset parameters
        frame.coreg_panel.reset_params = True
        assert_equal(frame.model.grow_hair, 0)
        assert not frame.data_panel.view_options_panel.head_high_res

        # configuration persistence
        assert (frame.model.prepare_bem_model)
        frame.model.prepare_bem_model = False
        frame.save_config(home_dir)
        ui.dispose()
        gui.process_events()

        ui, frame = mne.gui.coregistration(subjects_dir=subjects_dir)
        assert not frame.model.prepare_bem_model
        assert not frame.data_panel.view_options_panel.head_high_res
        ui.dispose()
        gui.process_events()
    finally:
        del os.environ['_MNE_GUI_TESTING_MODE']
        del os.environ['_MNE_FAKE_HOME_DIR']


@testing.requires_testing_data
@requires_mayavi
@traits_test
def test_coreg_model_with_fsaverage():
    """Test CoregModel with the fsaverage brain data."""
    tempdir = _TempDir()
    from mne.gui._coreg_gui import CoregModel

    mne.create_default_subject(subjects_dir=tempdir,
                               fs_home=op.join(subjects_dir, '..'))

    model = CoregModel()
    model.mri.subjects_dir = tempdir
    model.mri.subject = 'fsaverage'
    assert (model.mri.fid_ok)

    model.hsp.file = raw_path
    lpa_distance = model.lpa_distance
    nasion_distance = model.nasion_distance
    rpa_distance = model.rpa_distance
    avg_point_distance = np.mean(model.point_distance)

    # test hsp point omission
    model.nasion_weight = 1.
    model.trans_y = -0.008
    model.fit_fiducials(0)
    model.omit_hsp_points(0.02)
    assert model.hsp.n_omitted == 1
    model.omit_hsp_points(np.inf)
    assert model.hsp.n_omitted == 0
    model.omit_hsp_points(0.02)
    assert model.hsp.n_omitted == 1
    model.omit_hsp_points(0.01)
    assert model.hsp.n_omitted == 4
    model.omit_hsp_points(0.005)
    assert model.hsp.n_omitted == 40
    model.omit_hsp_points(0.01)
    assert model.hsp.n_omitted == 4
    model.omit_hsp_points(0.02)
    assert model.hsp.n_omitted == 1

    # scale with 1 parameter
    model.n_scale_params = 1
    model.fit_fiducials(1)
    old_x = lpa_distance ** 2 + rpa_distance ** 2 + nasion_distance ** 2
    new_x = (model.lpa_distance ** 2 + model.rpa_distance ** 2 +
             model.nasion_distance ** 2)
    assert (new_x < old_x)

    model.fit_icp(1)
    avg_point_distance_1param = np.mean(model.point_distance)
    assert (avg_point_distance_1param < avg_point_distance)

    # scaling job
    sdir, sfrom, sto, scale, skip_fiducials, labels, annot, bemsol = \
        model.get_scaling_job('scaled', False)
    assert_equal(sdir, tempdir)
    assert_equal(sfrom, 'fsaverage')
    assert_equal(sto, 'scaled')
    assert_allclose(scale, model.parameters[6:9])
    assert_equal(set(bemsol), set(('inner_skull-bem',)))
    model.prepare_bem_model = False
    sdir, sfrom, sto, scale, skip_fiducials, labels, annot, bemsol = \
        model.get_scaling_job('scaled', False)
    assert_equal(bemsol, [])

    # scale with 3 parameters
    model.n_scale_params = 3
    model.fit_icp(3)
    assert (np.mean(model.point_distance) < avg_point_distance_1param)

    # test switching raw disables point omission
    assert_equal(model.hsp.n_omitted, 1)
    model.hsp.file = kit_raw_path
    assert_equal(model.hsp.n_omitted, 0)


run_tests_if_main()