1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# License: Simplified BSD
import numpy as np
from scipy import linalg
from ..forward import is_fixed_orient, convert_forward_solution
from ..minimum_norm.inverse import _check_reference
from ..utils import logger, verbose, warn
from ..externals.six.moves import xrange as range
from .mxne_inverse import (_make_sparse_stc, _prepare_gain,
_reapply_source_weighting, _compute_residual,
_make_dipoles_sparse, _check_loose_forward)
@verbose
def _gamma_map_opt(M, G, alpha, maxit=10000, tol=1e-6, update_mode=1,
group_size=1, gammas=None, verbose=None):
"""Hierarchical Bayes (Gamma-MAP).
Parameters
----------
M : array, shape=(n_sensors, n_times)
Observation.
G : array, shape=(n_sensors, n_sources)
Forward operator.
alpha : float
Regularization parameter (noise variance).
maxit : int
Maximum number of iterations.
tol : float
Tolerance parameter for convergence.
group_size : int
Number of consecutive sources which use the same gamma.
update_mode : int
Update mode, 1: MacKay update (default), 3: Modified MacKay update.
gammas : array, shape=(n_sources,)
Initial values for posterior variances (gammas). If None, a
variance of 1.0 is used.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
X : array, shape=(n_active, n_times)
Estimated source time courses.
active_set : array, shape=(n_active,)
Indices of active sources.
"""
G = G.copy()
M = M.copy()
if gammas is None:
gammas = np.ones(G.shape[1], dtype=np.float)
eps = np.finfo(float).eps
n_sources = G.shape[1]
n_sensors, n_times = M.shape
# apply normalization so the numerical values are sane
M_normalize_constant = linalg.norm(np.dot(M, M.T), ord='fro')
M /= np.sqrt(M_normalize_constant)
alpha /= M_normalize_constant
G_normalize_constant = linalg.norm(G, ord=np.inf)
G /= G_normalize_constant
if n_sources % group_size != 0:
raise ValueError('Number of sources has to be evenly dividable by the '
'group size')
n_active = n_sources
active_set = np.arange(n_sources)
gammas_full_old = gammas.copy()
if update_mode == 2:
denom_fun = np.sqrt
else:
# do nothing
def denom_fun(x):
return x
last_size = -1
for itno in range(maxit):
gammas[np.isnan(gammas)] = 0.0
gidx = (np.abs(gammas) > eps)
active_set = active_set[gidx]
gammas = gammas[gidx]
# update only active gammas (once set to zero it stays at zero)
if n_active > len(active_set):
n_active = active_set.size
G = G[:, gidx]
CM = np.dot(G * gammas[np.newaxis, :], G.T)
CM.flat[::n_sensors + 1] += alpha
# Invert CM keeping symmetry
U, S, V = linalg.svd(CM, full_matrices=False)
S = S[np.newaxis, :]
CM = np.dot(U * S, U.T)
CMinv = np.dot(U / (S + eps), U.T)
CMinvG = np.dot(CMinv, G)
A = np.dot(CMinvG.T, M) # mult. w. Diag(gamma) in gamma update
if update_mode == 1:
# MacKay fixed point update (10) in [1]
numer = gammas ** 2 * np.mean((A * A.conj()).real, axis=1)
denom = gammas * np.sum(G * CMinvG, axis=0)
elif update_mode == 2:
# modified MacKay fixed point update (11) in [1]
numer = gammas * np.sqrt(np.mean((A * A.conj()).real, axis=1))
denom = np.sum(G * CMinvG, axis=0) # sqrt is applied below
else:
raise ValueError('Invalid value for update_mode')
if group_size == 1:
if denom is None:
gammas = numer
else:
gammas = numer / np.maximum(denom_fun(denom),
np.finfo('float').eps)
else:
numer_comb = np.sum(numer.reshape(-1, group_size), axis=1)
if denom is None:
gammas_comb = numer_comb
else:
denom_comb = np.sum(denom.reshape(-1, group_size), axis=1)
gammas_comb = numer_comb / denom_fun(denom_comb)
gammas = np.repeat(gammas_comb / group_size, group_size)
# compute convergence criterion
gammas_full = np.zeros(n_sources, dtype=np.float)
gammas_full[active_set] = gammas
err = (np.sum(np.abs(gammas_full - gammas_full_old)) /
np.sum(np.abs(gammas_full_old)))
gammas_full_old = gammas_full
breaking = (err < tol or n_active == 0)
if len(gammas) != last_size or breaking:
logger.info('Iteration: %d\t active set size: %d\t convergence: '
'%0.3e' % (itno, len(gammas), err))
last_size = len(gammas)
if breaking:
break
if itno < maxit - 1:
logger.info('\nConvergence reached !\n')
else:
warn('\nConvergence NOT reached !\n')
# undo normalization and compute final posterior mean
n_const = np.sqrt(M_normalize_constant) / G_normalize_constant
x_active = n_const * gammas[:, None] * A
return x_active, active_set
@verbose
def gamma_map(evoked, forward, noise_cov, alpha, loose="auto", depth=0.8,
xyz_same_gamma=True, maxit=10000, tol=1e-6, update_mode=1,
gammas=None, pca=True, return_residual=False,
return_as_dipoles=False, verbose=None):
"""Hierarchical Bayes (Gamma-MAP) sparse source localization method.
Models each source time course using a zero-mean Gaussian prior with an
unknown variance (gamma) parameter. During estimation, most gammas are
driven to zero, resulting in a sparse source estimate, as in
[1]_ and [2]_.
For fixed-orientation forward operators, a separate gamma is used for each
source time course, while for free-orientation forward operators, the same
gamma is used for the three source time courses at each source space point
(separate gammas can be used in this case by using xyz_same_gamma=False).
Parameters
----------
evoked : instance of Evoked
Evoked data to invert.
forward : dict
Forward operator.
noise_cov : instance of Covariance
Noise covariance to compute whitener.
alpha : float
Regularization parameter (noise variance).
loose : float in [0, 1] | 'auto'
Value that weights the source variances of the dipole components
that are parallel (tangential) to the cortical surface. If loose
is 0 then the solution is computed with fixed orientation.
If loose is 1, it corresponds to free orientations.
The default value ('auto') is set to 0.2 for surface-oriented source
space and set to 1.0 for volumic or discrete source space.
depth: None | float in [0, 1]
Depth weighting coefficients. If None, no depth weighting is performed.
xyz_same_gamma : bool
Use same gamma for xyz current components at each source space point.
Recommended for free-orientation forward solutions.
maxit : int
Maximum number of iterations.
tol : float
Tolerance parameter for convergence.
update_mode : int
Update mode, 1: MacKay update (default), 2: Modified MacKay update.
gammas : array, shape=(n_sources,)
Initial values for posterior variances (gammas). If None, a
variance of 1.0 is used.
pca : bool
If True the rank of the data is reduced to the true dimension.
return_residual : bool
If True, the residual is returned as an Evoked instance.
return_as_dipoles : bool
If True, the sources are returned as a list of Dipole instances.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
stc : instance of SourceEstimate
Source time courses.
residual : instance of Evoked
The residual a.k.a. data not explained by the sources.
Only returned if return_residual is True.
References
----------
.. [1] Wipf et al. Analysis of Empirical Bayesian Methods for
Neuroelectromagnetic Source Localization, Advances in Neural
Information Process. Systems (2007)
.. [2] D. Wipf, S. Nagarajan
"A unified Bayesian framework for MEG/EEG source imaging",
Neuroimage, Volume 44, Number 3, pp. 947-966, Feb. 2009.
DOI: 10.1016/j.neuroimage.2008.02.059
"""
_check_reference(evoked)
loose, forward = _check_loose_forward(loose, forward)
# make forward solution in fixed orientation if necessary
if loose == 0. and not is_fixed_orient(forward):
forward = convert_forward_solution(
forward, surf_ori=True, force_fixed=True, copy=True, use_cps=True)
if is_fixed_orient(forward) or not xyz_same_gamma:
group_size = 1
else:
group_size = 3
gain, gain_info, whitener, source_weighting, mask = _prepare_gain(
forward, evoked.info, noise_cov, pca, depth, loose, None, None)
# get the data
sel = [evoked.ch_names.index(name) for name in gain_info['ch_names']]
M = evoked.data[sel]
# whiten the data
logger.info('Whitening data matrix.')
M = np.dot(whitener, M)
# run the optimization
X, active_set = _gamma_map_opt(M, gain, alpha, maxit=maxit, tol=tol,
update_mode=update_mode, gammas=gammas,
group_size=group_size, verbose=verbose)
if len(active_set) == 0:
raise Exception("No active dipoles found. alpha is too big.")
# Compute estimated whitened sensor data
M_estimated = np.dot(gain[:, active_set], X)
# Reapply weights to have correct unit
X = _reapply_source_weighting(X, source_weighting, active_set)
if return_residual:
residual = _compute_residual(forward, evoked, X, active_set,
gain_info)
if group_size == 1 and not is_fixed_orient(forward):
# make sure each source has 3 components
active_src = np.unique(active_set // 3)
in_pos = 0
if len(X) < 3 * len(active_src):
X_xyz = np.zeros((3 * len(active_src), X.shape[1]), dtype=X.dtype)
for ii in range(len(active_src)):
for jj in range(3):
if in_pos >= len(active_set):
break
if (active_set[in_pos] + jj) % 3 == 0:
X_xyz[3 * ii + jj] = X[in_pos]
in_pos += 1
X = X_xyz
tmin = evoked.times[0]
tstep = 1.0 / evoked.info['sfreq']
if return_as_dipoles:
out = _make_dipoles_sparse(X, active_set, forward, tmin, tstep, M,
M_estimated, active_is_idx=True)
else:
out = _make_sparse_stc(X, active_set, forward, tmin, tstep,
active_is_idx=True, verbose=verbose)
logger.info('[done]')
if return_residual:
out = out, residual
return out
|