1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
|
from __future__ import print_function
# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Daniel Strohmeier <daniel.strohmeier@gmail.com>
#
# License: Simplified BSD
from math import sqrt
import numpy as np
from scipy import linalg
from .mxne_debiasing import compute_bias
from ..utils import logger, verbose, sum_squared, warn
from ..time_frequency.stft import stft_norm1, stft_norm2, stft, istft
from ..externals.six.moves import xrange as range
def groups_norm2(A, n_orient):
"""Compute squared L2 norms of groups inplace."""
n_positions = A.shape[0] // n_orient
return np.sum(np.power(A, 2, A).reshape(n_positions, -1), axis=1)
def norm_l2inf(A, n_orient, copy=True):
"""L2-inf norm."""
if A.size == 0:
return 0.0
if copy:
A = A.copy()
return sqrt(np.max(groups_norm2(A, n_orient)))
def norm_l21(A, n_orient, copy=True):
"""L21 norm."""
if A.size == 0:
return 0.0
if copy:
A = A.copy()
return np.sum(np.sqrt(groups_norm2(A, n_orient)))
def prox_l21(Y, alpha, n_orient, shape=None, is_stft=False):
"""Proximity operator for l21 norm.
L2 over columns and L1 over rows => groups contain n_orient rows.
It can eventually take into account the negative frequencies
when a complex value is passed and is_stft=True.
Parameters
----------
Y : array, shape (n_sources, n_coefs)
The input data.
alpha : float
The regularization parameter.
n_orient : int
Number of dipoles per locations (typically 1 or 3).
shape : None | tuple
Shape of TF coefficients matrix.
is_stft : bool
If True, Y contains TF coefficients.
Returns
-------
Y : array, shape (n_sources, n_coefs)
The output data.
active_set : array of bool, shape (n_sources, )
Mask of active sources
Example
-------
>>> Y = np.tile(np.array([0, 4, 3, 0, 0], dtype=np.float), (2, 1))
>>> Y = np.r_[Y, np.zeros_like(Y)]
>>> print(Y) # doctest:+SKIP
[[ 0. 4. 3. 0. 0.]
[ 0. 4. 3. 0. 0.]
[ 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0.]]
>>> Yp, active_set = prox_l21(Y, 2, 2)
>>> print(Yp) # doctest:+SKIP
[[0. 2.86862915 2.15147186 0. 0. ]
[0. 2.86862915 2.15147186 0. 0. ]]
>>> print(active_set)
[ True True False False]
"""
if len(Y) == 0:
return np.zeros_like(Y), np.zeros((0,), dtype=np.bool)
if shape is not None:
shape_init = Y.shape
Y = Y.reshape(*shape)
n_positions = Y.shape[0] // n_orient
if is_stft:
rows_norm = np.sqrt(stft_norm2(Y).reshape(n_positions, -1).sum(axis=1))
else:
rows_norm = np.sqrt((Y * Y.conj()).real.reshape(n_positions,
-1).sum(axis=1))
# Ensure shrink is >= 0 while avoiding any division by zero
shrink = np.maximum(1.0 - alpha / np.maximum(rows_norm, alpha), 0.0)
active_set = shrink > 0.0
if n_orient > 1:
active_set = np.tile(active_set[:, None], [1, n_orient]).ravel()
shrink = np.tile(shrink[:, None], [1, n_orient]).ravel()
Y = Y[active_set]
if shape is None:
Y *= shrink[active_set][:, np.newaxis]
else:
Y *= shrink[active_set][:, np.newaxis, np.newaxis]
Y = Y.reshape(-1, *shape_init[1:])
return Y, active_set
def prox_l1(Y, alpha, n_orient):
"""Proximity operator for l1 norm with multiple orientation support.
Please note that this function computes a soft-thresholding if
n_orient == 1 and a block soft-thresholding (L2 over orientation and
L1 over position (space + time)) if n_orient == 3. See also [1]_.
Parameters
----------
Y : array, shape (n_sources, n_coefs)
The input data.
alpha : float
The regularization parameter.
n_orient : int
Number of dipoles per locations (typically 1 or 3).
Returns
-------
Y : array, shape (n_sources, n_coefs)
The output data.
active_set : array of bool, shape (n_sources, )
Mask of active sources.
References
----------
.. [1] A. Gramfort, D. Strohmeier, J. Haueisen, M. Hamalainen, M. Kowalski
"Time-Frequency Mixed-Norm Estimates: Sparse M/EEG imaging with
non-stationary source activations",
Neuroimage, Volume 70, pp. 410-422, 15 April 2013.
DOI: 10.1016/j.neuroimage.2012.12.051
Example
-------
>>> Y = np.tile(np.array([1, 2, 3, 2, 0], dtype=np.float), (2, 1))
>>> Y = np.r_[Y, np.zeros_like(Y)]
>>> print(Y) # doctest:+SKIP
[[ 1. 2. 3. 2. 0.]
[ 1. 2. 3. 2. 0.]
[ 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0.]]
>>> Yp, active_set = prox_l1(Y, 2, 2)
>>> print(Yp) # doctest:+SKIP
[[0. 0.58578644 1.58578644 0.58578644 0. ]
[0. 0.58578644 1.58578644 0.58578644 0. ]]
>>> print(active_set)
[ True True False False]
"""
n_positions = Y.shape[0] // n_orient
norms = np.sqrt((Y * Y.conj()).real.T.reshape(-1, n_orient).sum(axis=1))
# Ensure shrink is >= 0 while avoiding any division by zero
shrink = np.maximum(1.0 - alpha / np.maximum(norms, alpha), 0.0)
shrink = shrink.reshape(-1, n_positions).T
active_set = np.any(shrink > 0.0, axis=1)
shrink = shrink[active_set]
if n_orient > 1:
active_set = np.tile(active_set[:, None], [1, n_orient]).ravel()
Y = Y[active_set]
if len(Y) > 0:
for o in range(n_orient):
Y[o::n_orient] *= shrink
return Y, active_set
def dgap_l21(M, G, X, active_set, alpha, n_orient):
"""Duality gap for the mixed norm inverse problem.
Parameters
----------
M : array, shape (n_sensors, n_times)
The data.
G : array, shape (n_sensors, n_active)
The gain matrix a.k.a. lead field.
X : array, shape (n_active, n_times)
Sources.
active_set : array of bool, shape (n_sources, )
Mask of active sources.
alpha : float
The regularization parameter.
n_orient : int
Number of dipoles per locations (typically 1 or 3).
Returns
-------
gap : float
Dual gap.
p_obj : float
Primal objective.
d_obj : float
Dual objective. gap = p_obj - d_obj.
R : array, shape (n_sensors, n_times)
Current residual (M - G * X).
References
----------
.. [1] A. Gramfort, M. Kowalski, M. Hamalainen,
"Mixed-norm estimates for the M/EEG inverse problem using accelerated
gradient methods", Physics in Medicine and Biology, 2012.
https://doi.org/10.1088/0031-9155/57/7/1937
"""
GX = np.dot(G[:, active_set], X)
R = M - GX
penalty = norm_l21(X, n_orient, copy=True)
nR2 = sum_squared(R)
p_obj = 0.5 * nR2 + alpha * penalty
dual_norm = norm_l2inf(np.dot(G.T, R), n_orient, copy=False)
scaling = alpha / dual_norm
scaling = min(scaling, 1.0)
d_obj = (scaling - 0.5 * (scaling ** 2)) * nR2 + scaling * np.sum(R * GX)
gap = p_obj - d_obj
return gap, p_obj, d_obj, R
@verbose
def _mixed_norm_solver_prox(M, G, alpha, lipschitz_constant, maxit=200,
tol=1e-8, verbose=None, init=None, n_orient=1,
dgap_freq=10):
"""Solve L21 inverse problem with proximal iterations and FISTA."""
n_sensors, n_times = M.shape
n_sensors, n_sources = G.shape
if n_sources < n_sensors:
gram = np.dot(G.T, G)
GTM = np.dot(G.T, M)
else:
gram = None
if init is None:
X = 0.0
R = M.copy()
if gram is not None:
R = np.dot(G.T, R)
else:
X = init
if gram is None:
R = M - np.dot(G, X)
else:
R = GTM - np.dot(gram, X)
t = 1.0
Y = np.zeros((n_sources, n_times)) # FISTA aux variable
E = [] # track primal objective function
highest_d_obj = - np.inf
active_set = np.ones(n_sources, dtype=np.bool) # start with full AS
for i in range(maxit):
X0, active_set_0 = X, active_set # store previous values
if gram is None:
Y += np.dot(G.T, R) / lipschitz_constant # ISTA step
else:
Y += R / lipschitz_constant # ISTA step
X, active_set = prox_l21(Y, alpha / lipschitz_constant, n_orient)
t0 = t
t = 0.5 * (1.0 + sqrt(1.0 + 4.0 * t ** 2))
Y.fill(0.0)
dt = ((t0 - 1.0) / t)
Y[active_set] = (1.0 + dt) * X
Y[active_set_0] -= dt * X0
Y_as = active_set_0 | active_set
if gram is None:
R = M - np.dot(G[:, Y_as], Y[Y_as])
else:
R = GTM - np.dot(gram[:, Y_as], Y[Y_as])
if (i + 1) % dgap_freq == 0:
_, p_obj, d_obj, _ = dgap_l21(M, G, X, active_set, alpha,
n_orient)
highest_d_obj = max(d_obj, highest_d_obj)
gap = p_obj - highest_d_obj
E.append(p_obj)
logger.debug("p_obj : %s -- gap : %s" % (p_obj, gap))
if gap < tol:
logger.debug('Convergence reached ! (gap: %s < %s)' % (gap,
tol))
break
return X, active_set, E
@verbose
def _mixed_norm_solver_cd(M, G, alpha, lipschitz_constant, maxit=10000,
tol=1e-8, verbose=None, init=None, n_orient=1,
dgap_freq=10):
"""Solve L21 inverse problem with coordinate descent."""
from sklearn.linear_model.coordinate_descent import MultiTaskLasso
n_sensors, n_times = M.shape
n_sensors, n_sources = G.shape
if init is not None:
init = init.T
clf = MultiTaskLasso(alpha=alpha / len(M), tol=tol / sum_squared(M),
normalize=False, fit_intercept=False, max_iter=maxit,
warm_start=True)
clf.coef_ = init
clf.fit(G, M)
X = clf.coef_.T
active_set = np.any(X, axis=1)
X = X[active_set]
gap, p_obj, d_obj, _ = dgap_l21(M, G, X, active_set, alpha, n_orient)
return X, active_set, p_obj
@verbose
def _mixed_norm_solver_bcd(M, G, alpha, lipschitz_constant, maxit=200,
tol=1e-8, verbose=None, init=None, n_orient=1,
dgap_freq=10):
"""Solve L21 inverse problem with block coordinate descent."""
# First make G fortran for faster access to blocks of columns
G = np.asfortranarray(G)
n_sensors, n_times = M.shape
n_sensors, n_sources = G.shape
n_positions = n_sources // n_orient
if init is None:
X = np.zeros((n_sources, n_times))
R = M.copy()
else:
X = init
R = M - np.dot(G, X)
E = [] # track primal objective function
highest_d_obj = - np.inf
active_set = np.zeros(n_sources, dtype=np.bool) # start with full AS
alpha_lc = alpha / lipschitz_constant
for i in range(maxit):
for j in range(n_positions):
idx = slice(j * n_orient, (j + 1) * n_orient)
G_j = G[:, idx]
X_j = X[idx]
X_j_new = np.dot(G_j.T, R) / lipschitz_constant[j]
was_non_zero = np.any(X_j)
if was_non_zero:
R += np.dot(G_j, X_j)
X_j_new += X_j
block_norm = linalg.norm(X_j_new, 'fro')
if block_norm <= alpha_lc[j]:
X_j.fill(0.)
active_set[idx] = False
else:
shrink = np.maximum(1.0 - alpha_lc[j] / block_norm, 0.0)
X_j_new *= shrink
R -= np.dot(G_j, X_j_new)
X_j[:] = X_j_new
active_set[idx] = True
if (i + 1) % dgap_freq == 0:
_, p_obj, d_obj, _ = dgap_l21(M, G, X[active_set], active_set,
alpha, n_orient)
highest_d_obj = max(d_obj, highest_d_obj)
gap = p_obj - highest_d_obj
E.append(p_obj)
logger.debug("Iteration %d :: p_obj %f :: dgap %f :: n_active %d" %
(i + 1, p_obj, gap, np.sum(active_set) / n_orient))
if gap < tol:
logger.debug('Convergence reached ! (gap: %s < %s)' % (gap,
tol))
break
X = X[active_set]
return X, active_set, E
@verbose
def mixed_norm_solver(M, G, alpha, maxit=3000, tol=1e-8, verbose=None,
active_set_size=50, debias=True, n_orient=1,
solver='auto', return_gap=False, dgap_freq=10):
"""Solve L1/L2 mixed-norm inverse problem with active set strategy.
Parameters
----------
M : array, shape (n_sensors, n_times)
The data.
G : array, shape (n_sensors, n_dipoles)
The gain matrix a.k.a. lead field.
alpha : float
The regularization parameter. It should be between 0 and 100.
A value of 100 will lead to an empty active set (no active source).
maxit : int
The number of iterations.
tol : float
Tolerance on dual gap for convergence checking.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
active_set_size : int
Size of active set increase at each iteration.
debias : bool
Debias source estimates.
n_orient : int
The number of orientation (1 : fixed or 3 : free or loose).
solver : 'prox' | 'cd' | 'bcd' | 'auto'
The algorithm to use for the optimization.
return_gap : bool
Return final duality gap.
dgap_freq : int
The duality gap is computed every dgap_freq iterations of the solver on
the active set.
Returns
-------
X : array, shape (n_active, n_times)
The source estimates.
active_set : array
The mask of active sources.
E : list
The value of the objective function over the iterations.
gap : float
Final duality gap. Returned only if return_gap is True.
References
----------
.. [1] A. Gramfort, M. Kowalski, M. Hamalainen,
"Mixed-norm estimates for the M/EEG inverse problem using accelerated
gradient methods", Physics in Medicine and Biology, 2012.
https://doi.org/10.1088/0031-9155/57/7/1937
.. [2] D. Strohmeier, Y. Bekhti, J. Haueisen, A. Gramfort,
"The Iterative Reweighted Mixed-Norm Estimate for Spatio-Temporal
MEG/EEG Source Reconstruction", IEEE Transactions of Medical Imaging,
Volume 35 (10), pp. 2218-2228, 15 April 2013.
"""
n_dipoles = G.shape[1]
n_positions = n_dipoles // n_orient
n_sensors, n_times = M.shape
alpha_max = norm_l2inf(np.dot(G.T, M), n_orient, copy=False)
logger.info("-- ALPHA MAX : %s" % alpha_max)
alpha = float(alpha)
has_sklearn = True
try:
from sklearn.linear_model.coordinate_descent import MultiTaskLasso # noqa: F401,E501
except ImportError:
has_sklearn = False
if solver == 'auto':
if has_sklearn and (n_orient == 1):
solver = 'cd'
else:
solver = 'bcd'
if solver == 'cd':
if n_orient == 1 and not has_sklearn:
warn('Scikit-learn >= 0.12 cannot be found. Using block coordinate'
' descent instead of coordinate descent.')
solver = 'bcd'
if n_orient > 1:
warn('Coordinate descent is only available for fixed orientation. '
'Using block coordinate descent instead of coordinate '
'descent')
solver = 'bcd'
if solver == 'cd':
logger.info("Using coordinate descent")
l21_solver = _mixed_norm_solver_cd
lc = None
elif solver == 'bcd':
logger.info("Using block coordinate descent")
l21_solver = _mixed_norm_solver_bcd
G = np.asfortranarray(G)
if n_orient == 1:
lc = np.sum(G * G, axis=0)
else:
lc = np.empty(n_positions)
for j in range(n_positions):
G_tmp = G[:, (j * n_orient):((j + 1) * n_orient)]
lc[j] = linalg.norm(np.dot(G_tmp.T, G_tmp), ord=2)
else:
logger.info("Using proximal iterations")
l21_solver = _mixed_norm_solver_prox
lc = 1.01 * linalg.norm(G, ord=2) ** 2
if active_set_size is not None:
E = list()
highest_d_obj = - np.inf
X_init = None
active_set = np.zeros(n_dipoles, dtype=np.bool)
idx_large_corr = np.argsort(groups_norm2(np.dot(G.T, M), n_orient))
new_active_idx = idx_large_corr[-active_set_size:]
if n_orient > 1:
new_active_idx = (n_orient * new_active_idx[:, None] +
np.arange(n_orient)[None, :]).ravel()
active_set[new_active_idx] = True
as_size = np.sum(active_set)
for k in range(maxit):
if solver == 'bcd':
lc_tmp = lc[active_set[::n_orient]]
elif solver == 'cd':
lc_tmp = None
else:
lc_tmp = 1.01 * linalg.norm(G[:, active_set], ord=2) ** 2
X, as_, _ = l21_solver(M, G[:, active_set], alpha, lc_tmp,
maxit=maxit, tol=tol, init=X_init,
n_orient=n_orient, dgap_freq=dgap_freq)
active_set[active_set] = as_.copy()
idx_old_active_set = np.where(active_set)[0]
_, p_obj, d_obj, R = dgap_l21(M, G, X, active_set, alpha,
n_orient)
highest_d_obj = max(d_obj, highest_d_obj)
gap = p_obj - highest_d_obj
E.append(p_obj)
logger.info("Iteration %d :: p_obj %f :: dgap %f ::"
"n_active_start %d :: n_active_end %d" % (
k + 1, p_obj, gap, as_size // n_orient,
np.sum(active_set) // n_orient))
if gap < tol:
logger.info('Convergence reached ! (gap: %s < %s)'
% (gap, tol))
break
# add sources if not last iteration
if k < (maxit - 1):
idx_large_corr = np.argsort(groups_norm2(np.dot(G.T, R),
n_orient))
new_active_idx = idx_large_corr[-active_set_size:]
if n_orient > 1:
new_active_idx = (n_orient * new_active_idx[:, None] +
np.arange(n_orient)[None, :])
new_active_idx = new_active_idx.ravel()
active_set[new_active_idx] = True
idx_active_set = np.where(active_set)[0]
as_size = np.sum(active_set)
X_init = np.zeros((as_size, n_times), dtype=X.dtype)
idx = np.searchsorted(idx_active_set, idx_old_active_set)
X_init[idx] = X
else:
warn('Did NOT converge ! (gap: %s > %s)' % (gap, tol))
else:
X, active_set, E = l21_solver(M, G, alpha, lc, maxit=maxit,
tol=tol, n_orient=n_orient, init=None)
if return_gap:
gap = dgap_l21(M, G, X, active_set, alpha, n_orient)[0]
if np.any(active_set) and debias:
bias = compute_bias(M, G[:, active_set], X, n_orient=n_orient)
X *= bias[:, np.newaxis]
logger.info('Final active set size: %s' % (np.sum(active_set) // n_orient))
if return_gap:
return X, active_set, E, gap
else:
return X, active_set, E
@verbose
def iterative_mixed_norm_solver(M, G, alpha, n_mxne_iter, maxit=3000,
tol=1e-8, verbose=None, active_set_size=50,
debias=True, n_orient=1, dgap_freq=10,
solver='auto'):
"""Solve L0.5/L2 mixed-norm inverse problem with active set strategy.
Parameters
----------
M : array, shape (n_sensors, n_times)
The data.
G : array, shape (n_sensors, n_dipoles)
The gain matrix a.k.a. lead field.
alpha : float
The regularization parameter. It should be between 0 and 100.
A value of 100 will lead to an empty active set (no active source).
n_mxne_iter : int
The number of MxNE iterations. If > 1, iterative reweighting
is applied.
maxit : int
The number of iterations.
tol : float
Tolerance on dual gap for convergence checking.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
active_set_size : int
Size of active set increase at each iteration.
debias : bool
Debias source estimates.
n_orient : int
The number of orientation (1 : fixed or 3 : free or loose).
dgap_freq : int or np.inf
The duality gap is evaluated every dgap_freq iterations.
solver : 'prox' | 'cd' | 'bcd' | 'auto'
The algorithm to use for the optimization.
Returns
-------
X : array, shape (n_active, n_times)
The source estimates.
active_set : array
The mask of active sources.
E : list
The value of the objective function over the iterations.
References
----------
.. [1] D. Strohmeier, Y. Bekhti, J. Haueisen, A. Gramfort,
"The Iterative Reweighted Mixed-Norm Estimate for Spatio-Temporal
MEG/EEG Source Reconstruction", IEEE Transactions of Medical Imaging,
Volume 35 (10), pp. 2218-2228, 2016.
"""
def g(w):
return np.sqrt(np.sqrt(groups_norm2(w.copy(), n_orient)))
def gprime(w):
return 2. * np.repeat(g(w), n_orient).ravel()
E = list()
active_set = np.ones(G.shape[1], dtype=np.bool)
weights = np.ones(G.shape[1])
X = np.zeros((G.shape[1], M.shape[1]))
for k in range(n_mxne_iter):
X0 = X.copy()
active_set_0 = active_set.copy()
G_tmp = G[:, active_set] * weights[np.newaxis, :]
if active_set_size is not None:
if np.sum(active_set) > (active_set_size * n_orient):
X, _active_set, _ = mixed_norm_solver(
M, G_tmp, alpha, debias=False, n_orient=n_orient,
maxit=maxit, tol=tol, active_set_size=active_set_size,
dgap_freq=dgap_freq, solver=solver, verbose=verbose)
else:
X, _active_set, _ = mixed_norm_solver(
M, G_tmp, alpha, debias=False, n_orient=n_orient,
maxit=maxit, tol=tol, active_set_size=None,
dgap_freq=dgap_freq, solver=solver, verbose=verbose)
else:
X, _active_set, _ = mixed_norm_solver(
M, G_tmp, alpha, debias=False, n_orient=n_orient,
maxit=maxit, tol=tol, active_set_size=None,
dgap_freq=dgap_freq, solver=solver, verbose=verbose)
logger.info('active set size %d' % (_active_set.sum() / n_orient))
if _active_set.sum() > 0:
active_set[active_set] = _active_set
# Reapply weights to have correct unit
X *= weights[_active_set][:, np.newaxis]
weights = gprime(X)
p_obj = 0.5 * linalg.norm(M - np.dot(G[:, active_set], X),
'fro') ** 2. + alpha * np.sum(g(X))
E.append(p_obj)
# Check convergence
if ((k >= 1) and np.all(active_set == active_set_0) and
np.all(np.abs(X - X0) < tol)):
print('Convergence reached after %d reweightings!' % k)
break
else:
active_set = np.zeros_like(active_set)
p_obj = 0.5 * linalg.norm(M) ** 2.
E.append(p_obj)
break
if np.any(active_set) and debias:
bias = compute_bias(M, G[:, active_set], X, n_orient=n_orient)
X *= bias[:, np.newaxis]
return X, active_set, E
###############################################################################
# TF-MxNE
@verbose
def tf_lipschitz_constant(M, G, phi, phiT, tol=1e-3, verbose=None):
"""Compute lipschitz constant for FISTA.
It uses a power iteration method.
"""
n_times = M.shape[1]
n_points = G.shape[1]
iv = np.ones((n_points, n_times), dtype=np.float)
v = phi(iv)
L = 1e100
for it in range(100):
L_old = L
logger.info('Lipschitz estimation: iteration = %d' % it)
iv = np.real(phiT(v))
Gv = np.dot(G, iv)
GtGv = np.dot(G.T, Gv)
w = phi(GtGv)
L = np.max(np.abs(w)) # l_inf norm
v = w / L
if abs((L - L_old) / L_old) < tol:
break
return L
def safe_max_abs(A, ia):
"""Compute np.max(np.abs(A[ia])) possible with empty A."""
if np.sum(ia): # ia is not empty
return np.max(np.abs(A[ia]))
else:
return 0.
def safe_max_abs_diff(A, ia, B, ib):
"""Compute np.max(np.abs(A)) possible with empty A."""
A = A[ia] if np.sum(ia) else 0.0
B = B[ib] if np.sum(ia) else 0.0
return np.max(np.abs(A - B))
class _Phi(object):
"""Have phi stft as callable w/o using a lambda that does not pickle."""
def __init__(self, wsize, tstep, n_coefs): # noqa: D102
self.wsize = np.atleast_1d(wsize)
self.tstep = np.atleast_1d(tstep)
self.n_coefs = np.atleast_1d(n_coefs)
self.n_dicts = len(tstep)
self.n_freqs = wsize // 2 + 1
self.n_steps = self.n_coefs // self.n_freqs
def __call__(self, x): # noqa: D105
if self.n_dicts == 1:
return stft(x, self.wsize[0], self.tstep[0],
verbose=False).reshape(-1, self.n_coefs[0])
else:
return np.hstack(
[stft(x, self.wsize[i], self.tstep[i], verbose=False).reshape(
-1, self.n_coefs[i]) for i in range(self.n_dicts)]) / np.sqrt(
self.n_dicts)
def norm(self, z, ord=2):
"""Squared L2 norm if ord == 2 and L1 norm if order == 1."""
if ord not in (1, 2):
raise ValueError('Only supported norm order are 1 and 2. '
'Got ord = %s' % ord)
stft_norm = stft_norm1 if ord == 1 else stft_norm2
norm = 0.
if len(self.n_coefs) > 1:
z_ = np.array_split(np.atleast_2d(z), np.cumsum(self.n_coefs)[:-1],
axis=1)
else:
z_ = [np.atleast_2d(z)]
for i in range(len(z_)):
norm += stft_norm(
z_[i].reshape(-1, self.n_freqs[i], self.n_steps[i]))
return norm
class _PhiT(object):
"""Have phi.T istft as callable w/o using a lambda that does not pickle."""
def __init__(self, tstep, n_freqs, n_steps, n_times): # noqa: D102
self.tstep = tstep
self.n_freqs = n_freqs
self.n_steps = n_steps
self.n_times = n_times
self.n_dicts = len(tstep) if isinstance(tstep, np.ndarray) else 1
self.n_coefs = self.n_freqs * self.n_steps
def __call__(self, z): # noqa: D105
if self.n_dicts == 1:
return istft(z.reshape(-1, self.n_freqs[0], self.n_steps[0]),
self.tstep[0], self.n_times)
else:
x_out = np.zeros((z.shape[0], self.n_times))
z_ = np.array_split(z, np.cumsum(self.n_coefs)[:-1], axis=1)
for i in range(self.n_dicts):
x_out += istft(z_[i].reshape(-1, self.n_freqs[i],
self.n_steps[i]), self.tstep[i],
self.n_times)
return x_out / np.sqrt(self.n_dicts)
def norm_l21_tf(Z, phi, n_orient):
"""L21 norm for TF."""
if Z.shape[0]:
l21_norm = np.sqrt(phi.norm(Z, ord=2).reshape(-1,
n_orient).sum(axis=1))
l21_norm = l21_norm.sum()
else:
l21_norm = 0.
return l21_norm
def norm_l1_tf(Z, phi, n_orient):
"""L1 norm for TF."""
if Z.shape[0]:
n_positions = Z.shape[0] // n_orient
Z_ = np.sqrt(np.sum((np.abs(Z) ** 2.).reshape((n_orient, -1),
order='F'), axis=0))
Z_ = Z_.reshape((n_positions, -1), order='F')
l1_norm = phi.norm(Z_, ord=1).sum()
else:
l1_norm = 0.
return l1_norm
def norm_epsilon(Y, l1_ratio, phi):
"""Dual norm of (1. - l1_ratio) * L2 norm + l1_ratio * L1 norm, at Y.
This is the unique solution in nu of
norm(prox_l1(Y, nu * l1_ratio), ord=2) = (1. - l1_ratio) * nu.
Warning: it takes into account the fact that Y only contains coefficients
corresponding to the positive frequencies (see `stft_norm2()`).
Parameters
----------
Y : array, shape (n_freqs * n_steps,)
The input data.
l1_ratio : float between 0 and 1
Tradeoff between L2 and L1 regularization. When it is 0, no temporal
regularization is applied.
phi : Instance of _Phi
The TF operator.
Returns
-------
nu : float
The value of the dual norm evaluated at Y.
References
----------
.. [1] E. Ndiaye, O. Fercoq, A. Gramfort, J. Salmon,
"GAP Safe Screening Rules for Sparse-Group Lasso", Advances in Neural
Information Processing Systems (NIPS), 2016.
"""
# since the solution is invariant to flipped signs in Y, all entries
# of Y are assumed positive
norm_inf_Y = np.max(Y)
if l1_ratio == 1.:
# dual norm of L1 is Linf
return norm_inf_Y
elif l1_ratio == 0.:
# dual norm of L2 is L2
return np.sqrt(phi.norm(Y[None, :], ord=2).sum())
if norm_inf_Y == 0.:
return 0.
# get K largest values of Y:
idx = Y > l1_ratio * norm_inf_Y
K = idx.sum()
if K == 1:
return norm_inf_Y
# Add negative freqs: count all freqs twice except first and last:
weights = np.empty(len(Y), dtype=int)
weights.fill(2)
for i, w in enumerate(np.array_split(weights,
np.cumsum(phi.n_coefs)[:-1])):
w[:phi.n_steps[i]] = 1
w[-phi.n_steps[i]:] = 1
# sort both Y and weights at the same time
idx_sort = np.argsort(Y[idx])[::-1]
Y = Y[idx][idx_sort]
weights = weights[idx][idx_sort]
Y = np.repeat(Y, weights)
K = Y.shape[0]
p_sum = np.cumsum(Y[:(K - 1)])
p_sum_2 = np.cumsum(Y[:(K - 1)] ** 2)
upper = p_sum_2 / Y[1:] ** 2 - 2. * p_sum / Y[1:] + np.arange(1, K)
in_lower_upper = np.where(upper > (1. - l1_ratio) ** 2 / l1_ratio ** 2)[0]
if in_lower_upper.size > 0:
j = in_lower_upper[0] + 1
p_sum = p_sum[in_lower_upper[0]]
p_sum_2 = p_sum_2[in_lower_upper[0]]
else:
j = K
p_sum = p_sum[-1] + Y[K - 1]
p_sum_2 = p_sum_2[-1] + Y[K - 1] ** 2
denom = l1_ratio ** 2 * j - (1. - l1_ratio) ** 2
if np.abs(denom) < 1e-10:
return p_sum_2 / (2. * l1_ratio * p_sum)
else:
delta = (l1_ratio * p_sum) ** 2 - p_sum_2 * denom
return (l1_ratio * p_sum - np.sqrt(delta)) / denom
def norm_epsilon_inf(G, R, phi, l1_ratio, n_orient):
"""epsilon-inf norm of phi(np.dot(G.T, R)).
Parameters
----------
G : array, shape (n_sensors, n_sources)
Gain matrix a.k.a. lead field.
R : array, shape (n_sensors, n_times)
Residual.
phi : instance of _Phi
The TF operator.
l1_ratio : float between 0 and 1
Parameter controlling the tradeoff between L21 and L1 regularization.
0 corresponds to an absence of temporal regularization, ie MxNE.
n_orient : int
Number of dipoles per location (typically 1 or 3).
Returns
-------
nu : float
The maximum value of the epsilon norms over groups of n_orient dipoles
(consecutive rows of phi(np.dot(G.T, R))).
"""
n_positions = G.shape[1] // n_orient
GTRPhi = np.abs(phi(np.dot(G.T, R))) ** 2
# norm over orientations:
GTRPhi = np.sqrt(np.sum(GTRPhi.reshape((n_orient, -1), order='F'),
axis=0)).reshape((n_positions, -1), order='F')
nu = 0.
for idx in range(n_positions):
GTRPhi_ = GTRPhi[idx]
norm_eps = norm_epsilon(GTRPhi_, l1_ratio, phi)
if norm_eps > nu:
nu = norm_eps
return nu
def dgap_l21l1(M, G, Z, active_set, alpha_space, alpha_time, phi, phiT,
n_orient, highest_d_obj):
"""Duality gap for the time-frequency mixed norm inverse problem.
Parameters
----------
M : array, shape (n_sensors, n_times)
The data.
G : array, shape (n_sensors, n_sources)
Gain matrix a.k.a. lead field.
Z : array, shape (n_active, n_coefs)
Sources in TF domain.
active_set : array of bool, shape (n_sources, )
Mask of active sources.
alpha_space : float
The spatial regularization parameter.
alpha_time : float
The temporal regularization parameter. The higher it is the smoother
will be the estimated time series.
phi : instance of _Phi
The TF operator.
phiT : instance of _PhiT
The transpose of the TF operator.
n_orient : int
Number of dipoles per locations (typically 1 or 3).
highest_d_obj : float
The highest value of the dual objective so far.
Returns
-------
gap : float
Dual gap
p_obj : float
Primal objective
d_obj : float
Dual objective. gap = p_obj - d_obj
R : array, shape (n_sensors, n_times)
Current residual (M - G * X)
References
----------
.. [1] A. Gramfort, M. Kowalski, M. Hamalainen,
"Mixed-norm estimates for the M/EEG inverse problem using accelerated
gradient methods", Physics in Medicine and Biology, 2012.
https://doi.org/10.1088/0031-9155/57/7/1937
.. [2] E. Ndiaye, O. Fercoq, A. Gramfort, J. Salmon,
"GAP Safe Screening Rules for Sparse-Group Lasso", Advances in Neural
Information Processing Systems (NIPS), 2016.
"""
X = phiT(Z)
GX = np.dot(G[:, active_set], X)
R = M - GX
penaltyl1 = norm_l1_tf(Z, phi, n_orient)
penaltyl21 = norm_l21_tf(Z, phi, n_orient)
nR2 = sum_squared(R)
p_obj = 0.5 * nR2 + alpha_space * penaltyl21 + alpha_time * penaltyl1
l1_ratio = alpha_time / (alpha_space + alpha_time)
dual_norm = norm_epsilon_inf(G, R, phi, l1_ratio, n_orient)
scaling = min(1., (alpha_space + alpha_time) / dual_norm)
d_obj = (scaling - 0.5 * (scaling ** 2)) * nR2 + scaling * np.sum(R * GX)
d_obj = max(d_obj, highest_d_obj)
gap = p_obj - d_obj
return gap, p_obj, d_obj, R
def _tf_mixed_norm_solver_bcd_(M, G, Z, active_set, candidates, alpha_space,
alpha_time, lipschitz_constant, phi, phiT,
n_orient=1, maxit=200, tol=1e-8, dgap_freq=10,
perc=None, timeit=True, verbose=None):
# First make G fortran for faster access to blocks of columns
G = np.asfortranarray(G)
n_sensors, n_times = M.shape
n_sources = G.shape[1]
n_positions = n_sources // n_orient
Gd = G.copy()
G = dict(zip(np.arange(n_positions), np.hsplit(G, n_positions)))
R = M.copy() # residual
active = np.where(active_set[::n_orient])[0]
for idx in active:
R -= np.dot(G[idx], phiT(Z[idx]))
E = [] # track primal objective function
alpha_time_lc = alpha_time / lipschitz_constant
alpha_space_lc = alpha_space / lipschitz_constant
converged = False
d_obj = -np.Inf
ii = -1
while True:
ii += 1
for jj in candidates:
ids = jj * n_orient
ide = ids + n_orient
G_j = G[jj]
Z_j = Z[jj]
active_set_j = active_set[ids:ide]
was_active = np.any(active_set_j)
# gradient step
GTR = np.dot(G_j.T, R) / lipschitz_constant[jj]
X_j_new = GTR.copy()
if was_active:
X_j = phiT(Z_j)
R += np.dot(G_j, X_j)
X_j_new += X_j
rows_norm = linalg.norm(X_j_new, 'fro')
if rows_norm <= alpha_space_lc[jj]:
if was_active:
Z[jj] = 0.0
active_set_j[:] = False
else:
if was_active:
Z_j_new = Z_j + phi(GTR)
else:
Z_j_new = phi(GTR)
col_norm = np.sqrt(np.sum(np.abs(Z_j_new) ** 2, axis=0))
if np.all(col_norm <= alpha_time_lc[jj]):
Z[jj] = 0.0
active_set_j[:] = False
else:
# l1
shrink = np.maximum(1.0 - alpha_time_lc[jj] / np.maximum(
col_norm, alpha_time_lc[jj]), 0.0)
Z_j_new *= shrink[np.newaxis, :]
# l21
shape_init = Z_j_new.shape
row_norm = np.sqrt(phi.norm(Z_j_new, ord=2).sum())
if row_norm <= alpha_space_lc[jj]:
Z[jj] = 0.0
active_set_j[:] = False
else:
shrink = np.maximum(1.0 - alpha_space_lc[jj] /
np.maximum(row_norm,
alpha_space_lc[jj]), 0.0)
Z_j_new *= shrink
Z[jj] = Z_j_new.reshape(-1, *shape_init[1:]).copy()
active_set_j[:] = True
R -= np.dot(G_j, phiT(Z[jj]))
if (ii + 1) % dgap_freq == 0:
Zd = np.vstack([Z[pos] for pos in range(n_positions)
if np.any(Z[pos])])
gap, p_obj, d_obj, _ = dgap_l21l1(
M, Gd, Zd, active_set, alpha_space, alpha_time, phi, phiT,
n_orient, d_obj)
converged = (gap < tol)
E.append(p_obj)
logger.info("\n Iteration %d :: n_active %d" % (
ii + 1, np.sum(active_set) / n_orient))
logger.info(" dgap %.2e :: p_obj %f :: d_obj %f" % (
gap, p_obj, d_obj))
if converged:
break
if (ii == maxit - 1):
converged = False
break
if perc is not None:
if np.sum(active_set) / float(n_orient) <= perc * n_positions:
break
return Z, active_set, E, converged
@verbose
def _tf_mixed_norm_solver_bcd_active_set(M, G, alpha_space, alpha_time,
lipschitz_constant, phi, phiT,
Z_init=None, n_orient=1, maxit=200,
tol=1e-8, dgap_freq=10,
verbose=None):
n_sensors, n_times = M.shape
n_sources = G.shape[1]
n_positions = n_sources // n_orient
Z = dict.fromkeys(np.arange(n_positions), 0.0)
active_set = np.zeros(n_sources, dtype=np.bool)
active = []
if Z_init is not None:
if Z_init.shape != (n_sources, phi.n_coefs.sum()):
raise Exception('Z_init must be None or an array with shape '
'(n_sources, n_coefs).')
for ii in range(n_positions):
if np.any(Z_init[ii * n_orient:(ii + 1) * n_orient]):
active_set[ii * n_orient:(ii + 1) * n_orient] = True
active.append(ii)
if len(active):
Z.update(dict(zip(active, np.vsplit(Z_init[active_set],
len(active)))))
E = []
candidates = range(n_positions)
d_obj = -np.inf
while True:
Z_init = dict.fromkeys(np.arange(n_positions), 0.0)
Z_init.update(dict(zip(active, Z.values())))
Z, active_set, E_tmp, _ = _tf_mixed_norm_solver_bcd_(
M, G, Z_init, active_set, candidates, alpha_space, alpha_time,
lipschitz_constant, phi, phiT, n_orient=n_orient, maxit=1, tol=tol,
perc=None, verbose=verbose)
E += E_tmp
active = np.where(active_set[::n_orient])[0]
Z_init = dict(zip(range(len(active)), [Z[idx] for idx in active]))
candidates_ = range(len(active))
Z, as_, E_tmp, converged = _tf_mixed_norm_solver_bcd_(
M, G[:, active_set], Z_init,
np.ones(len(active) * n_orient, dtype=np.bool),
candidates_, alpha_space, alpha_time,
lipschitz_constant[active_set[::n_orient]], phi, phiT,
n_orient=n_orient, maxit=maxit, tol=tol,
dgap_freq=dgap_freq, perc=0.5,
verbose=verbose)
active = np.where(active_set[::n_orient])[0]
active_set[active_set] = as_.copy()
E += E_tmp
converged = True
if converged:
Zd = np.vstack([Z[pos] for pos in range(len(Z)) if np.any(Z[pos])])
gap, p_obj, d_obj, _ = dgap_l21l1(
M, G, Zd, active_set, alpha_space, alpha_time,
phi, phiT, n_orient, d_obj)
logger.info("\ndgap %.2e :: p_obj %f :: d_obj %f :: n_active %d"
% (gap, p_obj, d_obj, np.sum(active_set) / n_orient))
if gap < tol:
logger.info("\nConvergence reached!\n")
break
if active_set.sum():
Z = np.vstack([Z[pos] for pos in range(len(Z)) if np.any(Z[pos])])
X = phiT(Z)
else:
Z = np.zeros((0, phi.n_coefs.sum()), dtype=np.complex)
X = np.zeros((0, n_times))
return X, Z, active_set, E, gap
@verbose
def tf_mixed_norm_solver(M, G, alpha_space, alpha_time, wsize=64, tstep=4,
n_orient=1, maxit=200, tol=1e-8,
active_set_size=None, debias=True, return_gap=False,
dgap_freq=10, verbose=None):
"""Solve TF L21+L1 inverse solver with BCD and active set approach.
Parameters
----------
M : array, shape (n_sensors, n_times)
The data.
G : array, shape (n_sensors, n_dipoles)
The gain matrix a.k.a. lead field.
alpha_space : float
The spatial regularization parameter.
alpha_time : float
The temporal regularization parameter. The higher it is the smoother
will be the estimated time series.
wsize: int or array-like
Length of the STFT window in samples (must be a multiple of 4).
If an array is passed, multiple TF dictionaries are used (each having
its own wsize and tstep) and each entry of wsize must be a multiple
of 4.
tstep: int or array-like
Step between successive windows in samples (must be a multiple of 2,
a divider of wsize and smaller than wsize/2) (default: wsize/2).
If an array is passed, multiple TF dictionaries are used (each having
its own wsize and tstep), and each entry of tstep must be a multiple
of 2 and divide the corresponding entry of wsize.
n_orient : int
The number of orientation (1 : fixed or 3 : free or loose).
maxit : int
The number of iterations.
tol : float
If absolute difference between estimates at 2 successive iterations
is lower than tol, the convergence is reached.
debias : bool
Debias source estimates.
return_gap : bool
Return final duality gap.
dgap_freq : int or np.inf
The duality gap is evaluated every dgap_freq iterations.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
X : array, shape (n_active, n_times)
The source estimates.
active_set : array
The mask of active sources.
E : list
The value of the objective function every dgap_freq iteration. If
log_objective is False or dgap_freq is np.inf, it will be empty.
gap : float
Final duality gap. Returned only if return_gap is True.
References
----------
.. [1] A. Gramfort, D. Strohmeier, J. Haueisen, M. Hamalainen, M. Kowalski
"Time-Frequency Mixed-Norm Estimates: Sparse M/EEG imaging with
non-stationary source activations",
Neuroimage, Volume 70, pp. 410-422, 15 April 2013.
DOI: 10.1016/j.neuroimage.2012.12.051
.. [2] A. Gramfort, D. Strohmeier, J. Haueisen, M. Hamalainen, M. Kowalski
"Functional Brain Imaging with M/EEG Using Structured Sparsity in
Time-Frequency Dictionaries",
Proceedings Information Processing in Medical Imaging
Lecture Notes in Computer Science, Volume 6801/2011, pp. 600-611, 2011.
DOI: 10.1007/978-3-642-22092-0_49
.. [3] Y. Bekhti, D. Strohmeier, M. Jas, R. Badeau, A. Gramfort.
"M/EEG source localization with multiscale time-frequency dictionaries",
6th International Workshop on Pattern Recognition in Neuroimaging
(PRNI), 2016.
DOI: 10.1109/PRNI.2016.7552337
"""
n_sensors, n_times = M.shape
n_sensors, n_sources = G.shape
n_positions = n_sources // n_orient
tstep = np.atleast_1d(tstep)
wsize = np.atleast_1d(wsize)
if len(tstep) != len(wsize):
raise ValueError('The same number of window sizes and steps must be '
'passed. Got tstep = %s and wsize = %s' %
(tstep, wsize))
n_steps = np.ceil(M.shape[1] / tstep.astype(float)).astype(int)
n_freqs = wsize // 2 + 1
n_coefs = n_steps * n_freqs
phi = _Phi(wsize, tstep, n_coefs)
phiT = _PhiT(tstep, n_freqs, n_steps, n_times)
if n_orient == 1:
lc = np.sum(G * G, axis=0)
else:
lc = np.empty(n_positions)
for j in range(n_positions):
G_tmp = G[:, (j * n_orient):((j + 1) * n_orient)]
lc[j] = linalg.norm(np.dot(G_tmp.T, G_tmp), ord=2)
logger.info("Using block coordinate descent with active set approach")
X, Z, active_set, E, gap = _tf_mixed_norm_solver_bcd_active_set(
M, G, alpha_space, alpha_time, lc, phi, phiT,
Z_init=None, n_orient=n_orient, maxit=maxit, tol=tol,
dgap_freq=dgap_freq, verbose=None)
if np.any(active_set) and debias:
bias = compute_bias(M, G[:, active_set], X, n_orient=n_orient)
X *= bias[:, np.newaxis]
if return_gap:
return X, active_set, E, gap
else:
return X, active_set, E
|