File: test_gamma_map.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (144 lines) | stat: -rw-r--r-- 5,401 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Author: Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#
# License: Simplified BSD

import os.path as op

import pytest
import numpy as np
from numpy.testing import assert_array_almost_equal, assert_allclose

import mne
from mne.datasets import testing
from mne import (read_cov, read_forward_solution, read_evokeds,
                 convert_forward_solution)
from mne.cov import regularize
from mne.inverse_sparse import gamma_map
from mne.inverse_sparse.mxne_inverse import make_stc_from_dipoles
from mne import pick_types_forward
from mne.utils import run_tests_if_main
from mne.dipole import Dipole

data_path = testing.data_path(download=False)
fname_evoked = op.join(data_path, 'MEG', 'sample',
                       'sample_audvis-ave.fif')
fname_cov = op.join(data_path, 'MEG', 'sample', 'sample_audvis-cov.fif')
fname_fwd = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif')
subjects_dir = op.join(data_path, 'subjects')


def _check_stc(stc, evoked, idx, ratio=50.):
    """Check correctness."""
    assert_array_almost_equal(stc.times, evoked.times, 5)
    amps = np.sum(stc.data ** 2, axis=1)
    order = np.argsort(amps)[::-1]
    amps = amps[order]
    verts = np.concatenate(stc.vertices)[order]
    assert idx == verts[0], str(list(verts))
    assert amps[0] > ratio * amps[1]


def _check_stcs(stc1, stc2):
    """Check correctness."""
    assert_allclose(stc1.times, stc2.times)
    assert_allclose(stc1.data, stc2.data)
    assert_allclose(stc1.vertices[0], stc2.vertices[0])
    assert_allclose(stc1.vertices[1], stc2.vertices[1])
    assert_allclose(stc1.tmin, stc2.tmin)
    assert_allclose(stc1.tstep, stc2.tstep)


@pytest.mark.slowtest
@testing.requires_testing_data
def test_gamma_map():
    """Test Gamma MAP inverse."""
    forward = read_forward_solution(fname_fwd)
    forward = convert_forward_solution(forward, surf_ori=True)

    forward = pick_types_forward(forward, meg=False, eeg=True)
    evoked = read_evokeds(fname_evoked, condition=0, baseline=(None, 0),
                          proj=False)
    evoked.resample(50, npad=100)
    evoked.crop(tmin=0.1, tmax=0.14)  # crop to window around peak

    cov = read_cov(fname_cov)
    cov = regularize(cov, evoked.info, rank=None)

    alpha = 0.5
    stc = gamma_map(evoked, forward, cov, alpha, tol=1e-4,
                    xyz_same_gamma=True, update_mode=1)
    _check_stc(stc, evoked, 68477)

    stc = gamma_map(evoked, forward, cov, alpha, tol=1e-4,
                    xyz_same_gamma=False, update_mode=1)
    _check_stc(stc, evoked, 82010)

    dips = gamma_map(evoked, forward, cov, alpha, tol=1e-4,
                     xyz_same_gamma=False, update_mode=1,
                     return_as_dipoles=True)
    assert (isinstance(dips[0], Dipole))
    stc_dip = make_stc_from_dipoles(dips, forward['src'])
    _check_stcs(stc, stc_dip)

    # force fixed orientation
    stc = gamma_map(evoked, forward, cov, alpha, tol=1e-4,
                    xyz_same_gamma=False, update_mode=2,
                    loose=0, return_residual=False)
    _check_stc(stc, evoked, 85739, 20)


@pytest.mark.slowtest
@testing.requires_testing_data
def test_gamma_map_vol_sphere():
    """Gamma MAP with a sphere forward and volumic source space."""
    evoked = read_evokeds(fname_evoked, condition=0, baseline=(None, 0),
                          proj=False)
    evoked.resample(50, npad=100)
    evoked.crop(tmin=0.1, tmax=0.16)  # crop to window around peak

    cov = read_cov(fname_cov)
    cov = regularize(cov, evoked.info, rank=None)

    info = evoked.info
    sphere = mne.make_sphere_model(r0=(0., 0., 0.), head_radius=0.080)
    src = mne.setup_volume_source_space(subject=None, pos=30., mri=None,
                                        sphere=(0.0, 0.0, 0.0, 80.0),
                                        bem=None, mindist=5.0,
                                        exclude=2.0)
    fwd = mne.make_forward_solution(info, trans=None, src=src, bem=sphere,
                                    eeg=False, meg=True)

    alpha = 0.5
    pytest.raises(ValueError, gamma_map, evoked, fwd, cov, alpha,
                  loose=0, return_residual=False)

    pytest.raises(ValueError, gamma_map, evoked, fwd, cov, alpha,
                  loose=0.2, return_residual=False)

    stc = gamma_map(evoked, fwd, cov, alpha, tol=1e-4,
                    xyz_same_gamma=False, update_mode=2,
                    return_residual=False)

    assert_array_almost_equal(stc.times, evoked.times, 5)

    # Compare orientation obtained using fit_dipole and gamma_map
    # for a simulated evoked containing a single dipole
    stc = mne.VolSourceEstimate(50e-9 * np.random.RandomState(42).randn(1, 4),
                                vertices=stc.vertices[:1],
                                tmin=stc.tmin,
                                tstep=stc.tstep)
    evoked_dip = mne.simulation.simulate_evoked(fwd, stc, info, cov, nave=1e9,
                                                use_cps=True)

    dip_gmap = gamma_map(evoked_dip, fwd, cov, 0.1, return_as_dipoles=True)

    amp_max = [np.max(d.amplitude) for d in dip_gmap]
    dip_gmap = dip_gmap[np.argmax(amp_max)]
    assert (dip_gmap[0].pos[0] in src[0]['rr'][stc.vertices])

    dip_fit = mne.fit_dipole(evoked_dip, cov, sphere)[0]
    assert (np.abs(np.dot(dip_fit.ori[0], dip_gmap.ori[0])) > 0.99)


run_tests_if_main()