1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Daniel Strohmeier <daniel.strohmeier@gmail.com>
#
# License: Simplified BSD
import pytest
import numpy as np
from numpy.testing import (assert_array_equal, assert_array_almost_equal,
assert_allclose, assert_array_less)
from mne.inverse_sparse.mxne_optim import (mixed_norm_solver,
tf_mixed_norm_solver,
iterative_mixed_norm_solver,
norm_epsilon_inf, norm_epsilon,
_Phi, _PhiT, dgap_l21l1)
from mne.time_frequency.stft import stft_norm2
def _generate_tf_data():
n, p, t = 30, 40, 64
rng = np.random.RandomState(0)
G = rng.randn(n, p)
G /= np.std(G, axis=0)[None, :]
X = np.zeros((p, t))
active_set = [0, 4]
times = np.linspace(0, 2 * np.pi, t)
X[0] = np.sin(times)
X[4] = -2 * np.sin(4 * times)
X[4, times <= np.pi / 2] = 0
X[4, times >= np.pi] = 0
M = np.dot(G, X)
M += 1 * rng.randn(*M.shape)
return M, G, active_set
def test_l21_mxne():
"""Test convergence of MxNE solver."""
n, p, t, alpha = 30, 40, 20, 1.
rng = np.random.RandomState(0)
G = rng.randn(n, p)
G /= np.std(G, axis=0)[None, :]
X = np.zeros((p, t))
X[0] = 3
X[4] = -2
M = np.dot(G, X)
args = (M, G, alpha, 1000, 1e-8)
with pytest.warns(None): # CD
X_hat_prox, active_set, _ = mixed_norm_solver(
*args, active_set_size=None,
debias=True, solver='prox')
assert_array_equal(np.where(active_set)[0], [0, 4])
with pytest.warns(None): # CD
X_hat_cd, active_set, _, gap_cd = mixed_norm_solver(
*args, active_set_size=None,
debias=True, solver='cd', return_gap=True)
assert_array_less(gap_cd, 1e-8)
assert_array_equal(np.where(active_set)[0], [0, 4])
with pytest.warns(None): # CD
X_hat_bcd, active_set, E, gap_bcd = mixed_norm_solver(
M, G, alpha, maxit=1000, tol=1e-8, active_set_size=None,
debias=True, solver='bcd', return_gap=True)
assert_array_less(gap_bcd, 9.6e-9)
assert_array_equal(np.where(active_set)[0], [0, 4])
assert_allclose(X_hat_prox, X_hat_cd, rtol=1e-2)
assert_allclose(X_hat_prox, X_hat_bcd, rtol=1e-2)
assert_allclose(X_hat_bcd, X_hat_cd, rtol=1e-2)
with pytest.warns(None): # CD
X_hat_prox, active_set, _ = mixed_norm_solver(
*args, active_set_size=2, debias=True, solver='prox')
assert_array_equal(np.where(active_set)[0], [0, 4])
with pytest.warns(None): # CD
X_hat_cd, active_set, _ = mixed_norm_solver(
*args, active_set_size=2, debias=True, solver='cd')
assert_array_equal(np.where(active_set)[0], [0, 4])
with pytest.warns(None): # CD
X_hat_bcd, active_set, _ = mixed_norm_solver(
*args, active_set_size=2, debias=True, solver='bcd')
assert_array_equal(np.where(active_set)[0], [0, 4])
assert_allclose(X_hat_bcd, X_hat_cd, rtol=1e-2)
assert_allclose(X_hat_bcd, X_hat_prox, rtol=1e-2)
with pytest.warns(None): # CD
X_hat_prox, active_set, _ = mixed_norm_solver(
*args, active_set_size=2, debias=True, n_orient=2, solver='prox')
assert_array_equal(np.where(active_set)[0], [0, 1, 4, 5])
with pytest.warns(None): # CD
X_hat_bcd, active_set, _ = mixed_norm_solver(
*args, active_set_size=2, debias=True, n_orient=2, solver='bcd')
assert_array_equal(np.where(active_set)[0], [0, 1, 4, 5])
# suppress a coordinate-descent warning here
with pytest.warns(RuntimeWarning, match='descent'):
X_hat_cd, active_set, _ = mixed_norm_solver(
*args, active_set_size=2, debias=True, n_orient=2, solver='cd')
assert_array_equal(np.where(active_set)[0], [0, 1, 4, 5])
assert_allclose(X_hat_bcd, X_hat_prox, rtol=1e-2)
assert_allclose(X_hat_bcd, X_hat_cd, rtol=1e-2)
with pytest.warns(None): # CD
X_hat_bcd, active_set, _ = mixed_norm_solver(
*args, active_set_size=2, debias=True, n_orient=5, solver='bcd')
assert_array_equal(np.where(active_set)[0], [0, 1, 2, 3, 4])
with pytest.warns(None): # CD
X_hat_prox, active_set, _ = mixed_norm_solver(
*args, active_set_size=2, debias=True, n_orient=5, solver='prox')
assert_array_equal(np.where(active_set)[0], [0, 1, 2, 3, 4])
with pytest.warns(RuntimeWarning, match='descent'):
X_hat_cd, active_set, _ = mixed_norm_solver(
*args, active_set_size=2, debias=True, n_orient=5, solver='cd')
assert_array_equal(np.where(active_set)[0], [0, 1, 2, 3, 4])
assert_array_equal(X_hat_bcd, X_hat_cd)
assert_allclose(X_hat_bcd, X_hat_prox, rtol=1e-2)
def test_tf_mxne():
"""Test convergence of TF-MxNE solver."""
alpha_space = 10.
alpha_time = 5.
M, G, active_set = _generate_tf_data()
with pytest.warns(None): # CD
X_hat_tf, active_set_hat_tf, E, gap_tfmxne = tf_mixed_norm_solver(
M, G, alpha_space, alpha_time, maxit=200, tol=1e-8, verbose=True,
n_orient=1, tstep=4, wsize=32, return_gap=True)
assert_array_less(gap_tfmxne, 1e-8)
assert_array_equal(np.where(active_set_hat_tf)[0], active_set)
def test_norm_epsilon():
"""Test computation of espilon norm on TF coefficients."""
tstep = np.array([2])
wsize = np.array([4])
n_times = 10
n_steps = np.ceil(n_times / tstep.astype(float)).astype(int)
n_freqs = wsize // 2 + 1
n_coefs = n_steps * n_freqs
phi = _Phi(wsize, tstep, n_coefs)
Y = np.zeros(n_steps * n_freqs)
l1_ratio = 0.5
assert_allclose(norm_epsilon(Y, l1_ratio, phi), 0.)
Y[0] = 2.
assert_allclose(norm_epsilon(Y, l1_ratio, phi), np.max(Y))
l1_ratio = 1.
assert_allclose(norm_epsilon(Y, l1_ratio, phi), np.max(Y))
# dummy value without random:
Y = np.arange(n_steps * n_freqs).reshape(-1, )
l1_ratio = 0.
assert_allclose(norm_epsilon(Y, l1_ratio, phi) ** 2,
stft_norm2(Y.reshape(-1, n_freqs[0], n_steps[0])))
def test_dgapl21l1():
"""Test duality gap for L21 + L1 regularization."""
n_orient = 2
M, G, active_set = _generate_tf_data()
n_times = M.shape[1]
n_sources = G.shape[1]
tstep, wsize = np.array([4, 2]), np.array([64, 16])
n_steps = np.ceil(n_times / tstep.astype(float)).astype(int)
n_freqs = wsize // 2 + 1
n_coefs = n_steps * n_freqs
phi = _Phi(wsize, tstep, n_coefs)
phiT = _PhiT(tstep, n_freqs, n_steps, n_times)
for l1_ratio in [0.05, 0.1]:
alpha_max = norm_epsilon_inf(G, M, phi, l1_ratio, n_orient)
alpha_space = (1. - l1_ratio) * alpha_max
alpha_time = l1_ratio * alpha_max
Z = np.zeros([n_sources, phi.n_coefs.sum()])
# for alpha = alpha_max, Z = 0 is the solution so the dgap is 0
gap = dgap_l21l1(M, G, Z, np.ones(n_sources, dtype=bool),
alpha_space, alpha_time, phi, phiT,
n_orient, -np.inf)[0]
assert_allclose(0., gap)
# check that solution for alpha smaller than alpha_max is non 0:
X_hat_tf, active_set_hat_tf, E, gap = tf_mixed_norm_solver(
M, G, alpha_space / 1.01, alpha_time / 1.01, maxit=200, tol=1e-8,
verbose=True, debias=False, n_orient=n_orient, tstep=tstep,
wsize=wsize, return_gap=True)
# allow possible small numerical errors (negative gap)
assert_array_less(-1e-10, gap)
assert_array_less(gap, 1e-8)
assert_array_less(1, len(active_set_hat_tf))
X_hat_tf, active_set_hat_tf, E, gap = tf_mixed_norm_solver(
M, G, alpha_space / 5., alpha_time / 5., maxit=200, tol=1e-8,
verbose=True, debias=False, n_orient=n_orient, tstep=tstep,
wsize=wsize, return_gap=True)
assert_array_less(-1e-10, gap)
assert_array_less(gap, 1e-8)
assert_array_less(1, len(active_set_hat_tf))
def test_tf_mxne_vs_mxne():
"""Test equivalence of TF-MxNE (with alpha_time=0) and MxNE."""
alpha_space = 60.
alpha_time = 0.
M, G, active_set = _generate_tf_data()
X_hat_tf, active_set_hat_tf, E = tf_mixed_norm_solver(
M, G, alpha_space, alpha_time, maxit=200, tol=1e-8,
verbose=True, debias=False, n_orient=1, tstep=4, wsize=32)
# Also run L21 and check that we get the same
X_hat_l21, _, _ = mixed_norm_solver(
M, G, alpha_space, maxit=200, tol=1e-8, verbose=False, n_orient=1,
active_set_size=None, debias=False)
assert_allclose(X_hat_tf, X_hat_l21, rtol=1e-1)
def test_iterative_reweighted_mxne():
"""Test convergence of irMxNE solver."""
n, p, t, alpha = 30, 40, 20, 1
rng = np.random.RandomState(0)
G = rng.randn(n, p)
G /= np.std(G, axis=0)[None, :]
X = np.zeros((p, t))
X[0] = 3
X[4] = -2
M = np.dot(G, X)
with pytest.warns(None): # CD
X_hat_l21, _, _ = mixed_norm_solver(
M, G, alpha, maxit=1000, tol=1e-8, verbose=False, n_orient=1,
active_set_size=None, debias=False, solver='bcd')
with pytest.warns(None): # CD
X_hat_bcd, active_set, _ = iterative_mixed_norm_solver(
M, G, alpha, 1, maxit=1000, tol=1e-8, active_set_size=None,
debias=False, solver='bcd')
with pytest.warns(None): # CD
X_hat_prox, active_set, _ = iterative_mixed_norm_solver(
M, G, alpha, 1, maxit=1000, tol=1e-8, active_set_size=None,
debias=False, solver='prox')
assert_allclose(X_hat_bcd, X_hat_l21, rtol=1e-3)
assert_allclose(X_hat_prox, X_hat_l21, rtol=1e-3)
with pytest.warns(None): # CD
X_hat_prox, active_set, _ = iterative_mixed_norm_solver(
M, G, alpha, 5, maxit=1000, tol=1e-8, active_set_size=None,
debias=True, solver='prox')
assert_array_equal(np.where(active_set)[0], [0, 4])
with pytest.warns(None): # CD
X_hat_bcd, active_set, _ = iterative_mixed_norm_solver(
M, G, alpha, 5, maxit=1000, tol=1e-8, active_set_size=2,
debias=True, solver='bcd')
assert_array_equal(np.where(active_set)[0], [0, 4])
with pytest.warns(None): # CD
X_hat_cd, active_set, _ = iterative_mixed_norm_solver(
M, G, alpha, 5, maxit=1000, tol=1e-8, active_set_size=None,
debias=True, solver='cd')
assert_array_equal(np.where(active_set)[0], [0, 4])
assert_array_almost_equal(X_hat_prox, X_hat_cd, 5)
assert_array_almost_equal(X_hat_bcd, X_hat_cd, 5)
with pytest.warns(None): # CD
X_hat_bcd, active_set, _ = iterative_mixed_norm_solver(
M, G, alpha, 5, maxit=1000, tol=1e-8, active_set_size=2,
debias=True, n_orient=2, solver='bcd')
assert_array_equal(np.where(active_set)[0], [0, 1, 4, 5])
# suppress a coordinate-descent warning here
with pytest.warns(RuntimeWarning, match='descent'):
X_hat_cd, active_set, _ = iterative_mixed_norm_solver(
M, G, alpha, 5, maxit=1000, tol=1e-8, active_set_size=2,
debias=True, n_orient=2, solver='cd')
assert_array_equal(np.where(active_set)[0], [0, 1, 4, 5])
assert_array_equal(X_hat_bcd, X_hat_cd, 5)
X_hat_bcd, active_set, _ = iterative_mixed_norm_solver(
M, G, alpha, 5, maxit=1000, tol=1e-8, active_set_size=2, debias=True,
n_orient=5)
assert_array_equal(np.where(active_set)[0], [0, 1, 2, 3, 4])
with pytest.warns(RuntimeWarning, match='descent'):
X_hat_cd, active_set, _ = iterative_mixed_norm_solver(
M, G, alpha, 5, maxit=1000, tol=1e-8, active_set_size=2,
debias=True, n_orient=5, solver='cd')
assert_array_equal(np.where(active_set)[0], [0, 1, 2, 3, 4])
assert_array_equal(X_hat_bcd, X_hat_cd, 5)
|