1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
# Author: Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD (3-clause)
import os.path as op
import matplotlib
import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_allclose,
assert_equal)
import pytest
from mne import find_events, Epochs, pick_types, channels
from mne.io import read_raw_fif
from mne.io.array import RawArray
from mne.io.tests.test_raw import _test_raw_reader
from mne.io.meas_info import create_info, _kind_dict
from mne.utils import requires_version, run_tests_if_main
matplotlib.use('Agg') # for testing don't use X server
base_dir = op.join(op.dirname(__file__), '..', '..', 'tests', 'data')
fif_fname = op.join(base_dir, 'test_raw.fif')
def test_long_names():
"""Test long name support."""
info = create_info(['a' * 15 + 'b', 'a' * 16], 1000., verbose='error')
data = np.empty((2, 1000))
raw = RawArray(data, info)
assert raw.ch_names == ['a' * 13 + '-0', 'a' * 13 + '-1']
info = create_info(['a' * 16] * 11, 1000., verbose='error')
data = np.empty((11, 1000))
raw = RawArray(data, info)
assert raw.ch_names == ['a' * 12 + '-%s' % ii for ii in range(11)]
@pytest.mark.slowtest
@requires_version('scipy', '0.12')
def test_array_raw():
"""Test creating raw from array."""
import matplotlib.pyplot as plt
# creating
raw = read_raw_fif(fif_fname).crop(2, 5)
data, times = raw[:, :]
sfreq = raw.info['sfreq']
ch_names = [(ch[4:] if 'STI' not in ch else ch)
for ch in raw.info['ch_names']] # change them, why not
types = list()
for ci in range(101):
types.extend(('grad', 'grad', 'mag'))
types.extend(['ecog', 'seeg', 'hbo']) # really 3 meg channels
types.extend(['stim'] * 9)
types.extend(['eeg'] * 60)
picks = np.concatenate([pick_types(raw.info)[::20],
pick_types(raw.info, meg=False, stim=True),
pick_types(raw.info, meg=False, eeg=True)[::20]])
del raw
data = data[picks]
ch_names = np.array(ch_names)[picks].tolist()
types = np.array(types)[picks].tolist()
types.pop(-1)
# wrong length
pytest.raises(ValueError, create_info, ch_names, sfreq, types)
# bad entry
types.append('foo')
pytest.raises(KeyError, create_info, ch_names, sfreq, types)
types[-1] = 'eog'
# default type
info = create_info(ch_names, sfreq)
assert_equal(info['chs'][0]['kind'], _kind_dict['misc'][0])
# use real types
info = create_info(ch_names, sfreq, types)
raw2 = _test_raw_reader(RawArray, test_preloading=False,
data=data, info=info, first_samp=2 * data.shape[1])
data2, times2 = raw2[:, :]
assert_allclose(data, data2)
assert_allclose(times, times2)
assert ('RawArray' in repr(raw2))
pytest.raises(TypeError, RawArray, info, data)
# filtering
picks = pick_types(raw2.info, misc=True, exclude='bads')[:4]
assert_equal(len(picks), 4)
raw_lp = raw2.copy()
kwargs = dict(fir_design='firwin', picks=picks)
raw_lp.filter(None, 4.0, h_trans_bandwidth=4., **kwargs)
raw_hp = raw2.copy()
raw_hp.filter(16.0, None, l_trans_bandwidth=4., **kwargs)
raw_bp = raw2.copy()
raw_bp.filter(8.0, 12.0, l_trans_bandwidth=4., h_trans_bandwidth=4.,
**kwargs)
raw_bs = raw2.copy()
raw_bs.filter(16.0, 4.0, l_trans_bandwidth=4., h_trans_bandwidth=4.,
**kwargs)
data, _ = raw2[picks, :]
lp_data, _ = raw_lp[picks, :]
hp_data, _ = raw_hp[picks, :]
bp_data, _ = raw_bp[picks, :]
bs_data, _ = raw_bs[picks, :]
sig_dec = 15
assert_array_almost_equal(data, lp_data + bp_data + hp_data, sig_dec)
assert_array_almost_equal(data, bp_data + bs_data, sig_dec)
# plotting
raw2.plot()
raw2.plot_psd(tmax=2., average=True, n_fft=1024, spatial_colors=False)
plt.close('all')
# epoching
events = find_events(raw2, stim_channel='STI 014')
events[:, 2] = 1
assert len(events) > 2
epochs = Epochs(raw2, events, 1, -0.2, 0.4, preload=True)
evoked = epochs.average()
assert_equal(evoked.nave, len(events) - 1)
# complex data
rng = np.random.RandomState(0)
data = rng.randn(1, 100) + 1j * rng.randn(1, 100)
raw = RawArray(data, create_info(1, 1000., 'eeg'))
assert_allclose(raw._data, data)
# Using digital montage to give MNI electrode coordinates
n_elec = 10
ts_size = 10000
Fs = 512.
elec_labels = [str(i) for i in range(n_elec)]
elec_coords = np.random.randint(60, size=(n_elec, 3)).tolist()
electrode = np.random.rand(n_elec, ts_size)
dig_ch_pos = dict(zip(elec_labels, elec_coords))
mon = channels.DigMontage(dig_ch_pos=dig_ch_pos)
info = create_info(elec_labels, Fs, 'ecog', montage=mon)
raw = RawArray(electrode, info)
raw.plot_psd(average=False) # looking for inexistent layout
raw.plot_psd_topo()
run_tests_if_main()
|