1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
|
# -*- coding: utf-8 -*-
"""Conversion tool from Brain Vision EEG to FIF."""
# Authors: Teon Brooks <teon.brooks@gmail.com>
# Christian Brodbeck <christianbrodbeck@nyu.edu>
# Eric Larson <larson.eric.d@gmail.com>
# Jona Sassenhagen <jona.sassenhagen@gmail.com>
# Phillip Alday <phillip.alday@unisa.edu.au>
# Okba Bekhelifi <okba.bekhelifi@gmail.com>
# Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#
# License: BSD (3-clause)
import os
import os.path as op
import re
from datetime import datetime
from math import modf
from functools import partial
import numpy as np
from ...utils import verbose, logger, warn
from ..constants import FIFF
from ..meas_info import _empty_info
from ..base import BaseRaw, _check_update_montage
from ..utils import (_read_segments_file, _synthesize_stim_channel,
_mult_cal_one, _deprecate_stim_channel)
from ...annotations import (Annotations, events_from_annotations,
read_annotations)
from ...externals.six import StringIO, string_types
from ...externals.six.moves import configparser
class RawBrainVision(BaseRaw):
"""Raw object from Brain Vision EEG file.
Parameters
----------
vhdr_fname : str
Path to the EEG header file.
montage : str | None | instance of Montage
Path or instance of montage containing electrode positions. If None,
read sensor locations from header file if present, otherwise (0, 0, 0).
See the documentation of :func:`mne.channels.read_montage` for more
information.
eog : list or tuple
Names of channels or list of indices that should be designated
EOG channels. Values should correspond to the vhdr file.
Default is ``('HEOGL', 'HEOGR', 'VEOGb')``.
misc : list or tuple of str | 'auto'
Names of channels or list of indices that should be designated
MISC channels. Values should correspond to the electrodes
in the vhdr file. If 'auto', units in vhdr file are used for inferring
misc channels. Default is ``'auto'``.
scale : float
The scaling factor for EEG data. Unless specified otherwise by
header file, units are in microvolts. Default scale factor is 1.
preload : bool
If True, all data are loaded at initialization.
If False, data are not read until save.
response_trig_shift : int | None
An integer that will be added to all response triggers when reading
events (stimulus triggers will be unaffected). Use
``trig_shift_by_type={'response': ...}`` instead. If None, response
triggers will be ignored. Default is 0 for backwards compatibility,
but typically another value or None will be necessary.
This is deprecated in 0.17 and will be removed in 0.18.
event_id : dict | None
Special events to consider in addition to those that follow the normal
BrainVision trigger format ('###' with an optional single character
prefix, e.g., "111", "S 1", "R128", "S 21"). If dict, the keys will be
mapped to trigger values on the stimulus channel.
Example: {'SyncStatus': 1, 'Pulse Artifact': 3}.
If None or an empty dict (default), only BrainVision format events are
added to the stimulus channel. Keys are case sensitive. "New Segment"
markers are always dropped.
This is deprecated in 0.17 and will be removed in 0.18.
trig_shift_by_type: dict | None
The names of marker types to which an offset should be added.
If dict, the keys specify marker types (case is ignored), so that the
corresponding value (an integer) will be added to the trigger value of
all events of this type. If the value for a key is in the dict is None,
all markers of this type will be ignored. If None (default), no offset
is added, which may lead to different marker types being mapped to the
same event id.
This is deprecated in 0.17 and will be removed in 0.18.
stim_channel : bool (default True)
Add a stim channel from the events.
.. warning:: This defaults to True in 0.17 but will change to False in
0.18 (when no stim channel synthesis will be allowed)
and be removed in 0.19; migrate code to use
:func:`mne.events_from_annotations` instead.
.. versionadded:: 0.17
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
See Also
--------
mne.io.Raw : Documentation of attribute and methods.
"""
@verbose
def __init__(self, vhdr_fname, montage=None,
eog=('HEOGL', 'HEOGR', 'VEOGb'), misc='auto',
scale=1., preload=False, response_trig_shift=0,
event_id=None, trig_shift_by_type=None, stim_channel=None,
verbose=None): # noqa: D107
stim_channel = _deprecate_stim_channel(stim_channel)
if stim_channel and response_trig_shift != 0:
warn(
"'response_trig_shift' was deprecated in version "
"0.17 and will be removed in 0.18. Use "
"trig_shift_by_type={{'response': {} }} instead".format(
response_trig_shift), DeprecationWarning)
if trig_shift_by_type and 'response' in (
key.lower() for key in trig_shift_by_type):
raise ValueError(
'offset for response markers has been specified twice, '
'both using "trig_shift_by_type" and '
'"response_trig_shift"')
else:
if trig_shift_by_type is None:
trig_shift_by_type = dict()
trig_shift_by_type['response'] = response_trig_shift
# Channel info and events
logger.info('Extracting parameters from %s...' % vhdr_fname)
vhdr_fname = op.abspath(vhdr_fname)
(info, data_fname, fmt, order, n_samples, mrk_fname, montage,
orig_units) = _get_vhdr_info(vhdr_fname, eog, misc, scale, montage,
stim_channel)
self._order = order
self._n_samples = n_samples
_check_update_montage(info, montage)
with open(data_fname, 'rb') as f:
if isinstance(fmt, dict): # ASCII, this will be slow :(
if self._order == 'F': # multiplexed, channels in columns
n_skip = 0
for ii in range(int(fmt['skiplines'])):
n_skip += len(f.readline())
offsets = np.cumsum([n_skip] + [len(line) for line in f])
n_samples = len(offsets) - 1
elif self._order == 'C': # vectorized, channels, in rows
raise NotImplementedError()
else:
n_data_ch = int(info['nchan'])
if stim_channel:
n_data_ch -= 1
f.seek(0, os.SEEK_END)
n_samples = f.tell()
dtype_bytes = _fmt_byte_dict[fmt]
offsets = None
n_samples = n_samples // (dtype_bytes * n_data_ch)
# Create a dummy event channel first
if stim_channel:
self._create_event_ch(np.empty((0, 3)), n_samples)
else:
self._event_ch = None
super(RawBrainVision, self).__init__(
info, last_samps=[n_samples - 1], filenames=[data_fname],
orig_format=fmt, preload=preload, verbose=verbose,
raw_extras=[offsets], orig_units=orig_units)
# Get annotations from vmrk file
annots = read_annotations(mrk_fname, info['sfreq'])
self.set_annotations(annots)
if stim_channel:
# Use events_from_annotations to properly set the events
trig_shift_by_type = _check_trig_shift_by_type(trig_shift_by_type)
dropped_desc = [] # use to collect dropped descriptions
event_id = dict() if event_id is None else event_id
event_id = partial(_event_id_func, event_id=event_id,
trig_shift_by_type=trig_shift_by_type,
dropped_desc=dropped_desc)
events, _ = events_from_annotations(self, event_id)
if len(dropped_desc) > 0:
dropped = list(set(dropped_desc))
warn("{0} event(s) will be dropped, such as {1}. "
"Consider using the event_id parameter to parse events "
"that do not follow the BrainVision format. For more "
"information, see the docstring of read_raw_brainvision."
.format(len(dropped), dropped[:5]))
self._create_event_ch(events, n_samples)
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
"""Read a chunk of raw data."""
# read data
n_data_ch = len(self.ch_names)
if self._event_ch is not None:
n_data_ch -= 1
if self._order == 'C':
_read_segments_c(self, data, idx, fi, start, stop, cals, mult)
elif isinstance(self.orig_format, string_types):
dtype = _fmt_dtype_dict[self.orig_format]
_read_segments_file(self, data, idx, fi, start, stop, cals, mult,
dtype=dtype, n_channels=n_data_ch,
trigger_ch=self._event_ch)
else:
offsets = self._raw_extras[fi]
with open(self._filenames[fi], 'rb') as fid:
fid.seek(offsets[start])
block = np.empty((len(self.ch_names), stop - start))
for ii in range(stop - start):
line = fid.readline().decode('ASCII')
line = line.strip().replace(',', '.').split()
block[:n_data_ch, ii] = [float(l) for l in line]
if self._event_ch is not None:
block[-1] = self._event_ch[start:stop]
_mult_cal_one(data, block, idx, cals, mult)
def _get_brainvision_events(self):
"""Retrieve the events associated with the Brain Vision Raw object.
Returns
-------
events : array, shape (n_events, 3)
Events, each row consisting of an (onset, duration, trigger)
sequence.
"""
return self._events.copy()
def _set_brainvision_events(self, events):
"""Set the events and update the synthesized stim channel.
Parameters
----------
events : array, shape (n_events, 3)
Events, each row consisting of an (onset, duration, trigger)
sequence.
"""
self._create_event_ch(events)
def _create_event_ch(self, events, n_samp=None):
"""Create the event channel."""
if n_samp is None:
n_samp = self.last_samp - self.first_samp + 1
events = np.array(events, int)
if events.ndim != 2 or events.shape[1] != 3:
raise ValueError("[n_events x 3] shaped array required")
# update events
self._event_ch = _synthesize_stim_channel(events, n_samp)
self._events = events
if getattr(self, 'preload', False):
self._data[-1] = self._event_ch
def _read_segments_c(raw, data, idx, fi, start, stop, cals, mult):
"""Read chunk of vectorized raw data."""
n_samples = raw._n_samples
dtype = _fmt_dtype_dict[raw.orig_format]
n_bytes = _fmt_byte_dict[raw.orig_format]
n_channels = len(raw.ch_names)
trigger_ch = raw._event_ch
block = np.zeros((n_channels, stop - start))
with open(raw._filenames[fi], 'rb', buffering=0) as fid:
for ch_id in np.arange(n_channels)[idx]:
if trigger_ch is not None and ch_id == n_channels - 1: # stim
block[ch_id] = trigger_ch[start:stop]
continue
fid.seek(start * n_bytes + ch_id * n_bytes * n_samples)
block[ch_id] = np.fromfile(fid, dtype, stop - start)
_mult_cal_one(data, block, idx, cals, mult)
def _read_vmrk(fname):
"""Read annotations from a vmrk file.
Parameters
----------
fname : str
vmrk file to be read.
Returns
-------
onset : array, shape (n_annots,)
The onsets in seconds.
duration : array, shape (n_annots,)
The onsets in seconds.
description : array, shape (n_annots,)
The description of each annotation.
orig_time : str
The origin time as a string.
"""
# read vmrk file
with open(fname, 'rb') as fid:
txt = fid.read()
# we don't actually need to know the coding for the header line.
# the characters in it all belong to ASCII and are thus the
# same in Latin-1 and UTF-8
header = txt.decode('ascii', 'ignore').split('\n')[0].strip()
_check_mrk_version(header)
# although the markers themselves are guaranteed to be ASCII (they
# consist of numbers and a few reserved words), we should still
# decode the file properly here because other (currently unused)
# blocks, such as that the filename are specifying are not
# guaranteed to be ASCII.
try:
# if there is an explicit codepage set, use it
# we pretend like it's ascii when searching for the codepage
cp_setting = re.search('Codepage=(.+)',
txt.decode('ascii', 'ignore'),
re.IGNORECASE & re.MULTILINE)
codepage = 'utf-8'
if cp_setting:
codepage = cp_setting.group(1).strip()
# BrainAmp Recorder also uses ANSI codepage
# an ANSI codepage raises a LookupError exception
# python recognize ANSI decoding as cp1252
if codepage == 'ANSI':
codepage = 'cp1252'
txt = txt.decode(codepage)
except UnicodeDecodeError:
# if UTF-8 (new standard) or explicit codepage setting fails,
# fallback to Latin-1, which is Windows default and implicit
# standard in older recordings
txt = txt.decode('latin-1')
# extract Marker Infos block
m = re.search(r"\[Marker Infos\]", txt, re.IGNORECASE)
if not m:
return np.zeros((0, 3))
mk_txt = txt[m.end():]
m = re.search(r"^\[.*\]$", mk_txt)
if m:
mk_txt = mk_txt[:m.start()]
# extract event information
items = re.findall(r"^Mk\d+=(.*)", mk_txt, re.MULTILINE)
onset, duration, description = list(), list(), list()
date_str = None
for info in items:
mtype, mdesc, this_onset, this_duration = info.split(',')[:4]
if date_str is None and mtype == 'New Segment':
# to handle the origin of time and handle the presence of multiple
# New Segment annotations. We only keep the first one for date_str.
date_str = info.split(',')[-1]
this_duration = (int(this_duration)
if this_duration.isdigit() else 0)
duration.append(this_duration)
onset.append(int(this_onset) - 1) # BV is 1-indexed, not 0-indexed
description.append(mtype + '/' + mdesc)
return np.array(onset), np.array(duration), np.array(description), date_str
def _event_id_func(desc, event_id, trig_shift_by_type, dropped_desc):
"""Get integers from string description.
This function can be passed as event_id to events_from_annotations
function.
Parameters
----------
desc : str
The description of the event.
event_id : dict
The default mapping from desc to integer.
trig_shift_by_type: dict | None
The names of marker types to which an offset should be added.
If dict, the keys specify marker types (case is ignored), so that the
corresponding value (an integer) will be added to the trigger value of
all events of this type. If the value for a key is in the dict is None,
all markers of this type will be ignored. If None (default), no offset
is added, which may lead to different marker types being mapped to the
same event id.
dropped_desc : list
Used to log the dropped descriptions.
Returns
-------
trigger : int | None
The integer corresponding to the specific event. If None,
then a proper integer cannot be found and the event is typically
ignored.
"""
mtype, mdesc = desc.split('/')
found = False
if (mdesc in event_id) or (mtype == "New Segment"):
trigger = event_id.get(mdesc, None)
found = True
else:
try:
# Match any three digit marker value (padded with whitespace).
# In BrainVision Recorder, the markers sometimes have a prefix
# depending on the type, e.g., Stimulus=S, Response=R,
# Optical=O, ... Note that any arbitrary stimulus type can be
# defined. So we match any single character that is not
# forbidden by BrainVision Recorder: [^a-z$%\-@/\\|;,:.\s]
marker_regexp = r'^[^a-z$%\-@/\\|;,:.\s]{0,1}([\s\d]{2}\d{1})$'
trigger = int(re.findall(marker_regexp, mdesc)[0])
except IndexError:
trigger = None
if mtype.lower() in trig_shift_by_type:
cur_shift = trig_shift_by_type[mtype.lower()]
if cur_shift is not None:
trigger += cur_shift
else:
# The trigger has been deliberately shifted to None. Do not
# add this to "dropped" so we do not warn about something
# that was done deliberately. Just continue with next item.
trigger = None
found = True
if trigger is None and not found:
dropped_desc.append(desc)
return trigger
def _check_trig_shift_by_type(trig_shift_by_type):
"""Check the trig_shift_by_type parameter.
trig_shift_by_type is used to offset event numbers depending
of the type of marker (eg. Response, Stimulus).
"""
if trig_shift_by_type is None:
trig_shift_by_type = dict()
elif not isinstance(trig_shift_by_type, dict):
raise TypeError("'trig_shift_by_type' must be None or dict")
for mrk_type in list(trig_shift_by_type.keys()):
cur_shift = trig_shift_by_type[mrk_type]
if not isinstance(cur_shift, int) and cur_shift is not None:
raise TypeError('shift for type {} must be int or None'.format(
mrk_type
))
mrk_type_lc = mrk_type.lower()
if mrk_type_lc != mrk_type:
if mrk_type_lc in trig_shift_by_type:
raise ValueError('marker type {} specified twice with'
'different case'.format(mrk_type_lc))
trig_shift_by_type[mrk_type_lc] = cur_shift
del trig_shift_by_type[mrk_type]
return trig_shift_by_type
def _read_annotations_brainvision(fname, sfreq='auto'):
"""Create Annotations from BrainVision vrmk.
This function reads a .vrmk file and makes an
:class:`mne.Annotations` object.
Parameters
----------
fname : str | object
The path to the .vmrk file.
sfreq : float | 'auto'
The sampling frequency in the file. It's necessary
as Annotations are expressed in seconds and vmrk
files are in samples. If set to 'auto' then
the sfreq is taken from the .vhdr file that
has the same name (without file extension). So
data.vrmk looks for sfreq in data.vhdr.
Returns
-------
annotations : instance of Annotations
The annotations present in the file.
"""
onset, duration, description, date_str = _read_vmrk(fname)
orig_time = _str_to_meas_date(date_str)
if sfreq == 'auto':
vhdr_fname = op.splitext(fname)[0] + '.vhdr'
logger.info("Finding 'sfreq' from header file: %s" % vhdr_fname)
_, _, _, info = _aux_vhdr_info(vhdr_fname)
sfreq = info['sfreq']
onset = np.array(onset, dtype=float) / sfreq
duration = np.array(duration, dtype=float) / sfreq
annotations = Annotations(onset=onset, duration=duration,
description=description,
orig_time=orig_time)
return annotations
def _check_hdr_version(header):
"""Check the header version."""
if header == 'Brain Vision Data Exchange Header File Version 1.0':
return 1
elif header == 'BrainVision Data Exchange Header File Version 1.0':
return 1
elif header == 'Brain Vision Data Exchange Header File Version 2.0':
return 2
elif header == 'BrainVision Data Exchange Header File Version 2.0':
return 2
else:
raise ValueError("Currently only support versions 1.0 and 2.0, not %r "
"Contact MNE-Developers for support." % header)
def _check_mrk_version(header):
"""Check the marker version."""
tags = ['Brain Vision Data Exchange Marker File, Version 1.0',
'BrainVision Data Exchange Marker File, Version 1.0',
'Brain Vision Data Exchange Marker File Version 1.0',
'Brain Vision Data Exchange Marker File, Version 2.0',
'BrainVision Data Exchange Marker File Version 1.0',
'Brain Vision Data Exchange Marker File, Version 2.0',
'BrainVision Data Exchange Marker File, Version 1.0']
if header not in tags:
raise ValueError("Currently only support %r, not %r"
"Contact MNE-Developers for support."
% (str(tags), header))
_orientation_dict = dict(MULTIPLEXED='F', VECTORIZED='C')
_fmt_dict = dict(INT_16='short', INT_32='int', IEEE_FLOAT_32='single')
_fmt_byte_dict = dict(short=2, int=4, single=4)
_fmt_dtype_dict = dict(short='<i2', int='<i4', single='<f4')
_unit_dict = {'V': 1., # V stands for Volt
u'µV': 1e-6,
'uV': 1e-6,
'nV': 1e-9,
'C': 1, # C stands for celsius
u'µS': 1e-6, # S stands for Siemens
u'uS': 1e-6,
u'ARU': 1, # ARU is the unity for the breathing data
'S': 1,
'N': 1} # Newton
def _str_to_meas_date(date_str):
date_str = date_str.strip()
if date_str in ['0', '00000000000000000000']:
return None
meas_date = datetime.strptime(date_str, '%Y%m%d%H%M%S%f')
# We need list of unix time in milliseconds and as second entry
# the additional amount of microseconds
epoch = datetime.utcfromtimestamp(0)
unix_time = (meas_date - epoch).total_seconds()
unix_secs = int(modf(unix_time)[1])
microsecs = int(modf(unix_time)[0] * 1e6)
return unix_secs, microsecs
def _aux_vhdr_info(vhdr_fname):
"""Aux function for _get_vhdr_info."""
with open(vhdr_fname, 'rb') as f:
# extract the first section to resemble a cfg
header = f.readline()
codepage = 'utf-8'
# we don't actually need to know the coding for the header line.
# the characters in it all belong to ASCII and are thus the
# same in Latin-1 and UTF-8
header = header.decode('ascii', 'ignore').strip()
_check_hdr_version(header)
settings = f.read()
try:
# if there is an explicit codepage set, use it
# we pretend like it's ascii when searching for the codepage
cp_setting = re.search('Codepage=(.+)',
settings.decode('ascii', 'ignore'),
re.IGNORECASE & re.MULTILINE)
if cp_setting:
codepage = cp_setting.group(1).strip()
# BrainAmp Recorder also uses ANSI codepage
# an ANSI codepage raises a LookupError exception
# python recognize ANSI decoding as cp1252
if codepage == 'ANSI':
codepage = 'cp1252'
settings = settings.decode(codepage)
except UnicodeDecodeError:
# if UTF-8 (new standard) or explicit codepage setting fails,
# fallback to Latin-1, which is Windows default and implicit
# standard in older recordings
settings = settings.decode('latin-1')
if settings.find('[Comment]') != -1:
params, settings = settings.split('[Comment]')
else:
params, settings = settings, ''
cfg = configparser.ConfigParser()
if hasattr(cfg, 'read_file'): # newer API
cfg.read_file(StringIO(params))
else:
cfg.readfp(StringIO(params))
# get sampling info
# Sampling interval is given in microsec
cinfostr = 'Common Infos'
if not cfg.has_section(cinfostr):
cinfostr = 'Common infos' # NeurOne BrainVision export workaround
# get sampling info
# Sampling interval is given in microsec
sfreq = 1e6 / cfg.getfloat(cinfostr, 'SamplingInterval')
info = _empty_info(sfreq)
return settings, cfg, cinfostr, info
def _get_vhdr_info(vhdr_fname, eog, misc, scale, montage, stim_channel):
"""Extract all the information from the header file.
Parameters
----------
vhdr_fname : str
Raw EEG header to be read.
eog : list of str
Names of channels that should be designated EOG channels. Names should
correspond to the vhdr file.
misc : list or tuple of str | 'auto'
Names of channels or list of indices that should be designated
MISC channels. Values should correspond to the electrodes
in the vhdr file. If 'auto', units in vhdr file are used for inferring
misc channels. Default is ``'auto'``.
scale : float
The scaling factor for EEG data. Unless specified otherwise by
header file, units are in microvolts. Default scale factor is 1.
montage : str | None | instance of Montage
Path or instance of montage containing electrode positions. If None,
read sensor locations from header file if present, otherwise (0, 0, 0).
See the documentation of :func:`mne.channels.read_montage` for more
information.
stim_channel : bool
See reader.
Returns
-------
info : Info
The measurement info.
data_fname : str
Path to the binary data file.
fmt : str
The format of the binary data file.
order : str
Orientation of the binary data.
n_samples : int
Number of data points in the binary data file.
mrk_fname : str
Path to the marker file.
montage : Montage
Coordinates of the channels, if present in the header file.
orig_units : dict
Dictionary mapping channel names to their units as specified in
the header file. Example: {'FC1': 'nV'}
"""
scale = float(scale)
ext = op.splitext(vhdr_fname)[-1]
if ext != '.vhdr':
raise IOError("The header file must be given to read the data, "
"not a file with extension '%s'." % ext)
settings, cfg, cinfostr, info = _aux_vhdr_info(vhdr_fname)
order = cfg.get(cinfostr, 'DataOrientation')
if order not in _orientation_dict:
raise NotImplementedError('Data Orientation %s is not supported'
% order)
order = _orientation_dict[order]
data_format = cfg.get(cinfostr, 'DataFormat')
if data_format == 'BINARY':
fmt = cfg.get('Binary Infos', 'BinaryFormat')
if fmt not in _fmt_dict:
raise NotImplementedError('Datatype %s is not supported' % fmt)
fmt = _fmt_dict[fmt]
else:
if order == 'C': # channels in rows
raise NotImplementedError('BrainVision files with ASCII data in '
'vectorized order (i.e. channels in rows'
') are not supported yet.')
fmt = dict((key, cfg.get('ASCII Infos', key))
for key in cfg.options('ASCII Infos'))
# locate EEG binary file and marker file for the stim channel
path = op.dirname(vhdr_fname)
data_fname = op.join(path, cfg.get(cinfostr, 'DataFile'))
mrk_fname = op.join(path, cfg.get(cinfostr, 'MarkerFile'))
# Try to get measurement date from marker file
# Usually saved with a marker "New Segment", see BrainVision documentation
regexp = r'^Mk\d+=New Segment,.*,\d+,\d+,\d+,(\d{20})$'
with open(mrk_fname, 'r') as tmp_mrk_f:
lines = tmp_mrk_f.readlines()
for line in lines:
match = re.findall(regexp, line.strip())
# Always take first measurement date we find
if match and match[0] != '00000000000000000000':
date_str = match[0]
info['meas_date'] = _str_to_meas_date(date_str)
break
else:
info['meas_date'] = None
# load channel labels
nchan = cfg.getint(cinfostr, 'NumberOfChannels')
n_samples = None
if order == 'C':
try:
n_samples = cfg.getint(cinfostr, 'DataPoints')
except configparser.NoOptionError:
logger.warning('No info on DataPoints found. Inferring number of '
'samples from the data file size.')
with open(data_fname, 'rb') as fid:
fid.seek(0, 2)
n_bytes = fid.tell()
n_samples = n_bytes // _fmt_byte_dict[fmt] // nchan
nchan = nchan + int(stim_channel) # augment with stim channel
ch_names = [''] * nchan
cals = np.empty(nchan)
ranges = np.empty(nchan)
cals.fill(np.nan)
ch_dict = dict()
misc_chs = dict()
orig_units = dict()
for chan, props in cfg.items('Channel Infos'):
n = int(re.findall(r'ch(\d+)', chan)[0]) - 1
props = props.split(',')
# default to microvolts because that's what the older brainvision
# standard explicitly assumed; the unit is only allowed to be
# something else if explicitly stated (cf. EEGLAB export below)
if len(props) < 4:
props += (u'µV',)
name, _, resolution, unit = props[:4]
ch_dict[chan] = name
ch_names[n] = name
if resolution == "":
if not(unit): # For truncated vhdrs (e.g. EEGLAB export)
resolution = 0.000001
else:
resolution = 1. # for files with units specified, but not res
unit = unit.replace(u'\xc2', u'') # Remove unwanted control characters
orig_units[name] = unit # Save the original units to expose later
cals[n] = float(resolution)
ranges[n] = _unit_dict.get(unit, 1) * scale
if unit not in ('V', 'nV', u'µV', 'uV'):
misc_chs[name] = (FIFF.FIFF_UNIT_CEL if unit == 'C'
else FIFF.FIFF_UNIT_NONE)
misc = list(misc_chs.keys()) if misc == 'auto' else misc
# create montage
if cfg.has_section('Coordinates') and montage is None:
from ...transforms import _sph_to_cart
from ...channels.montage import Montage
montage_pos = list()
montage_names = list()
to_misc = list()
for ch in cfg.items('Coordinates'):
ch_name = ch_dict[ch[0]]
montage_names.append(ch_name)
radius, theta, phi = [float(c) for c in ch[1].split(',')]
# 1: radius, 2: theta, 3: phi
pol = np.deg2rad(theta)
az = np.deg2rad(phi)
pos = _sph_to_cart(np.array([[radius * 85., az, pol]]))[0]
if (pos == 0).all() and ch_name not in list(eog) + misc:
to_misc.append(ch_name)
montage_pos.append(pos)
montage_sel = np.arange(len(montage_pos))
montage = Montage(montage_pos, montage_names, 'Brainvision',
montage_sel)
if len(to_misc) > 0:
misc += to_misc
warn('No coordinate information found for channels {}. '
'Setting channel types to misc. To avoid this warning, set '
'channel types explicitly.'.format(to_misc))
if stim_channel:
ch_names[-1] = 'STI 014'
cals[-1] = 1.
ranges[-1] = 1.
if np.isnan(cals).any():
raise RuntimeError('Missing channel units')
# Attempts to extract filtering info from header. If not found, both are
# set to zero.
settings = settings.splitlines()
idx = None
if 'Channels' in settings:
idx = settings.index('Channels')
settings = settings[idx + 1:]
hp_col, lp_col = 4, 5
for idx, setting in enumerate(settings):
if re.match(r'#\s+Name', setting):
break
else:
idx = None
# If software filters are active, then they override the hardware setup
# But we still want to be able to double check the channel names
# for alignment purposes, we keep track of the hardware setting idx
idx_amp = idx
if 'S o f t w a r e F i l t e r s' in settings:
idx = settings.index('S o f t w a r e F i l t e r s')
for idx, setting in enumerate(settings[idx + 1:], idx + 1):
if re.match(r'#\s+Low Cutoff', setting):
hp_col, lp_col = 1, 2
warn('Online software filter detected. Using software '
'filter settings and ignoring hardware values')
break
else:
idx = idx_amp
if idx:
lowpass = []
highpass = []
# for newer BV files, the unit is specified for every channel
# separated by a single space, while for older files, the unit is
# specified in the column headers
divider = r'\s+'
if 'Resolution / Unit' in settings[idx]:
shift = 1 # shift for unit
else:
shift = 0
# Extract filter units and convert from seconds to Hz if necessary.
# this cannot be done as post-processing as the inverse t-f
# relationship means that the min/max comparisons don't make sense
# unless we know the units.
#
# For reasoning about the s to Hz conversion, see this reference:
# `Ebersole, J. S., & Pedley, T. A. (Eds.). (2003).
# Current practice of clinical electroencephalography.
# Lippincott Williams & Wilkins.`, page 40-41
header = re.split(r'\s\s+', settings[idx])
hp_s = '[s]' in header[hp_col]
lp_s = '[s]' in header[lp_col]
for i, ch in enumerate(ch_names[:-1], 1):
line = re.split(divider, settings[idx + i])
# double check alignment with channel by using the hw settings
if idx == idx_amp:
line_amp = line
else:
line_amp = re.split(divider, settings[idx_amp + i])
assert ch in line_amp
highpass.append(line[hp_col + shift])
lowpass.append(line[lp_col + shift])
if len(highpass) == 0:
pass
elif len(set(highpass)) == 1:
if highpass[0] in ('NaN', 'Off'):
pass # Placeholder for future use. Highpass set in _empty_info
elif highpass[0] == 'DC':
info['highpass'] = 0.
else:
info['highpass'] = float(highpass[0])
if hp_s:
# filter time constant t [secs] to Hz conversion: 1/2*pi*t
info['highpass'] = 1. / (2 * np.pi * info['highpass'])
else:
heterogeneous_hp_filter = True
if hp_s:
# We convert channels with disabled filters to having
# highpass relaxed / no filters
highpass = [float(filt) if filt not in ('NaN', 'Off', 'DC')
else np.Inf for filt in highpass]
info['highpass'] = np.max(np.array(highpass, dtype=np.float))
# Coveniently enough 1 / np.Inf = 0.0, so this works for
# DC / no highpass filter
# filter time constant t [secs] to Hz conversion: 1/2*pi*t
info['highpass'] = 1. / (2 * np.pi * info['highpass'])
# not exactly the cleanest use of FP, but this makes us
# more conservative in *not* warning.
if info['highpass'] == 0.0 and len(set(highpass)) == 1:
# not actually heterogeneous in effect
# ... just heterogeneously disabled
heterogeneous_hp_filter = False
else:
highpass = [float(filt) if filt not in ('NaN', 'Off', 'DC')
else 0.0 for filt in highpass]
info['highpass'] = np.min(np.array(highpass, dtype=np.float))
if info['highpass'] == 0.0 and len(set(highpass)) == 1:
# not actually heterogeneous in effect
# ... just heterogeneously disabled
heterogeneous_hp_filter = False
if heterogeneous_hp_filter:
warn('Channels contain different highpass filters. '
'Lowest (weakest) filter setting (%0.2f Hz) '
'will be stored.' % info['highpass'])
if len(lowpass) == 0:
pass
elif len(set(lowpass)) == 1:
if lowpass[0] in ('NaN', 'Off'):
pass # Placeholder for future use. Lowpass set in _empty_info
else:
info['lowpass'] = float(lowpass[0])
if lp_s:
# filter time constant t [secs] to Hz conversion: 1/2*pi*t
info['lowpass'] = 1. / (2 * np.pi * info['lowpass'])
else:
heterogeneous_lp_filter = True
if lp_s:
# We convert channels with disabled filters to having
# infinitely relaxed / no filters
lowpass = [float(filt) if filt not in ('NaN', 'Off')
else 0.0 for filt in lowpass]
info['lowpass'] = np.min(np.array(lowpass, dtype=np.float))
try:
# filter time constant t [secs] to Hz conversion: 1/2*pi*t
info['lowpass'] = 1. / (2 * np.pi * info['lowpass'])
except ZeroDivisionError:
if len(set(lowpass)) == 1:
# No lowpass actually set for the weakest setting
# so we set lowpass to the Nyquist frequency
info['lowpass'] = info['sfreq'] / 2.
# not actually heterogeneous in effect
# ... just heterogeneously disabled
heterogeneous_lp_filter = False
else:
# no lowpass filter is the weakest filter,
# but it wasn't the only filter
pass
else:
# We convert channels with disabled filters to having
# infinitely relaxed / no filters
lowpass = [float(filt) if filt not in ('NaN', 'Off')
else np.Inf for filt in lowpass]
info['lowpass'] = np.max(np.array(lowpass, dtype=np.float))
if np.isinf(info['lowpass']):
# No lowpass actually set for the weakest setting
# so we set lowpass to the Nyquist frequency
info['lowpass'] = info['sfreq'] / 2.
if len(set(lowpass)) == 1:
# not actually heterogeneous in effect
# ... just heterogeneously disabled
heterogeneous_lp_filter = False
if heterogeneous_lp_filter:
# this isn't clean FP, but then again, we only want to provide
# the Nyquist hint when the lowpass filter was actually
# calculated from dividing the sampling frequency by 2, so the
# exact/direct comparison (instead of tolerance) makes sense
if info['lowpass'] == info['sfreq'] / 2.0:
nyquist = ', Nyquist limit'
else:
nyquist = ""
warn('Channels contain different lowpass filters. '
'Highest (weakest) filter setting (%0.2f Hz%s) '
'will be stored.' % (info['lowpass'], nyquist))
# Creates a list of dicts of eeg channels for raw.info
logger.info('Setting channel info structure...')
info['chs'] = []
for idx, ch_name in enumerate(ch_names):
if ch_name in eog or idx in eog or idx - nchan in eog:
kind = FIFF.FIFFV_EOG_CH
coil_type = FIFF.FIFFV_COIL_NONE
unit = FIFF.FIFF_UNIT_V
elif ch_name in misc or idx in misc or idx - nchan in misc:
kind = FIFF.FIFFV_MISC_CH
coil_type = FIFF.FIFFV_COIL_NONE
if ch_name in misc_chs:
unit = misc_chs[ch_name]
else:
unit = FIFF.FIFF_UNIT_NONE
elif ch_name == 'STI 014':
kind = FIFF.FIFFV_STIM_CH
coil_type = FIFF.FIFFV_COIL_NONE
unit = FIFF.FIFF_UNIT_NONE
else:
kind = FIFF.FIFFV_EEG_CH
coil_type = FIFF.FIFFV_COIL_EEG
unit = FIFF.FIFF_UNIT_V
info['chs'].append(dict(
ch_name=ch_name, coil_type=coil_type, kind=kind, logno=idx + 1,
scanno=idx + 1, cal=cals[idx], range=ranges[idx],
loc=np.full(12, np.nan),
unit=unit, unit_mul=0., # always zero- mne manual pg. 273
coord_frame=FIFF.FIFFV_COORD_HEAD))
info._update_redundant()
info._check_consistency()
return (info, data_fname, fmt, order, n_samples, mrk_fname, montage,
orig_units)
def read_raw_brainvision(vhdr_fname, montage=None,
eog=('HEOGL', 'HEOGR', 'VEOGb'), misc='auto',
scale=1., preload=False, response_trig_shift=0,
event_id=None, trig_shift_by_type=None,
stim_channel=None, verbose=None):
"""Reader for Brain Vision EEG file.
Parameters
----------
vhdr_fname : str
Path to the EEG header file.
montage : str | None | instance of Montage
Path or instance of montage containing electrode positions.
If None, sensor locations are (0,0,0). See the documentation of
:func:`mne.channels.read_montage` for more information.
eog : list or tuple of str
Names of channels or list of indices that should be designated
EOG channels. Values should correspond to the vhdr file
Default is ``('HEOGL', 'HEOGR', 'VEOGb')``.
misc : list or tuple of str | 'auto'
Names of channels or list of indices that should be designated
MISC channels. Values should correspond to the electrodes
in the vhdr file. If 'auto', units in vhdr file are used for inferring
misc channels. Default is ``'auto'``.
scale : float
The scaling factor for EEG data. Unless specified otherwise by
header file, units are in microvolts. Default scale factor is 1.
preload : bool
If True, all data are loaded at initialization.
If False, data are not read until save.
response_trig_shift : int | None
An integer that will be added to all response triggers when reading
events (stimulus triggers will be unaffected). Use
``trig_shift_by_type={'response': ...}`` instead. If None, response
triggers will be ignored. Default is 0 for backwards compatibility,
but typically another value or None will be necessary.
This was deprecated in 0.17 and will be removed in 0.18.
event_id : dict | None
Special events to consider in addition to those that follow the normal
BrainVision trigger format ('###' with an optional single character
prefix). If dict, the keys will be mapped to trigger values on the
stimulus channel. Example: {'SyncStatus': 1, 'Pulse Artifact': 3}.
If None or an empty dict (default), only BrainVision format events are
added to the stimulus channel. Keys are case sensitive. "New Segment"
markers are always dropped.
This was deprecated in 0.17 and will be removed in 0.18.
trig_shift_by_type : dict | None
The names of marker types to which an offset should be added.
If dict, the keys specify marker types (case is ignored), so that the
corresponding value (an integer) will be added to the trigger value of
all events of this type. If the value for a key is in the dict is None,
all markers of this type will be ignored. If None (default), no offset
is added, which may lead to different marker types being mapped to the
same event id.
This was deprecated in 0.17 and will be removed in 0.18.
stim_channel : bool (default True)
Add a stim channel from the events.
.. warning:: This defaults to True in 0.17 but will change to False in
0.18 (when no stim channel synthesis will be allowed)
and be removed in 0.19; migrate code to use
:func:`mne.events_from_annotations` instead.
.. versionadded:: 0.17
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
raw : instance of RawBrainVision
A Raw object containing BrainVision data.
See Also
--------
mne.io.Raw : Documentation of attribute and methods.
"""
return RawBrainVision(vhdr_fname=vhdr_fname, montage=montage, eog=eog,
misc=misc, scale=scale, preload=preload,
response_trig_shift=response_trig_shift,
event_id=event_id, verbose=verbose,
trig_shift_by_type=trig_shift_by_type,
stim_channel=stim_channel)
|