1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
|
"""Populate measurement info."""
# Author: Eric Larson <larson.eric.d<gmail.com>
#
# License: BSD (3-clause)
from time import strptime
from calendar import timegm
import os.path as op
import numpy as np
from ...utils import logger, warn, _clean_names
from ...transforms import (apply_trans, _coord_frame_name, invert_transform,
combine_transforms)
from ...annotations import Annotations
from ..meas_info import _empty_info
from ..write import get_new_file_id
from ..ctf_comp import _add_kind, _calibrate_comp
from ..constants import FIFF
from .constants import CTF
_ctf_to_fiff = {CTF.CTFV_COIL_LPA: FIFF.FIFFV_POINT_LPA,
CTF.CTFV_COIL_RPA: FIFF.FIFFV_POINT_RPA,
CTF.CTFV_COIL_NAS: FIFF.FIFFV_POINT_NASION}
def _pick_isotrak_and_hpi_coils(res4, coils, t):
"""Pick the HPI coil locations given in device coordinates."""
if coils is None:
return list(), list()
dig = list()
hpi_result = dict(dig_points=list())
n_coil_dev = 0
n_coil_head = 0
for p in coils:
if p['valid']:
if p['kind'] in [CTF.CTFV_COIL_LPA, CTF.CTFV_COIL_RPA,
CTF.CTFV_COIL_NAS]:
kind = FIFF.FIFFV_POINT_CARDINAL
ident = _ctf_to_fiff[p['kind']]
else: # CTF.CTFV_COIL_SPARE
kind = FIFF.FIFFV_POINT_HPI
ident = p['kind']
if p['coord_frame'] == FIFF.FIFFV_MNE_COORD_CTF_DEVICE:
if t is None or t['t_ctf_dev_dev'] is None:
raise RuntimeError('No coordinate transformation '
'available for HPI coil locations')
d = dict(kind=kind, ident=ident,
r=apply_trans(t['t_ctf_dev_dev'], p['r']),
coord_frame=FIFF.FIFFV_COORD_UNKNOWN)
hpi_result['dig_points'].append(d)
n_coil_dev += 1
elif p['coord_frame'] == FIFF.FIFFV_MNE_COORD_CTF_HEAD:
if t is None or t['t_ctf_head_head'] is None:
raise RuntimeError('No coordinate transformation '
'available for (virtual) Polhemus data')
d = dict(kind=kind, ident=ident,
r=apply_trans(t['t_ctf_head_head'], p['r']),
coord_frame=FIFF.FIFFV_COORD_HEAD)
dig.append(d)
n_coil_head += 1
if n_coil_head > 0:
logger.info(' Polhemus data for %d HPI coils added' % n_coil_head)
if n_coil_dev > 0:
logger.info(' Device coordinate locations for %d HPI coils added'
% n_coil_dev)
return dig, [hpi_result]
def _convert_time(date_str, time_str):
"""Convert date and time strings to float time."""
for fmt in ("%d/%m/%Y", "%d-%b-%Y", "%a, %b %d, %Y"):
try:
date = strptime(date_str, fmt)
except ValueError:
pass
else:
break
else:
raise RuntimeError(
'Illegal date: %s.\nIf the language of the date does not '
'correspond to your local machine\'s language try to set the '
'locale to the language of the date string:\n'
'locale.setlocale(locale.LC_ALL, "en_US")' % date_str)
for fmt in ('%H:%M:%S', '%H:%M'):
try:
time = strptime(time_str, fmt)
except ValueError:
pass
else:
break
else:
raise RuntimeError('Illegal time: %s' % time_str)
# MNE-C uses mktime which uses local time, but here we instead decouple
# conversion location from the process, and instead assume that the
# acquisiton was in GMT. This will be wrong for most sites, but at least
# the value we obtain here won't depend on the geographical location
# that the file was converted.
res = timegm((date.tm_year, date.tm_mon, date.tm_mday,
time.tm_hour, time.tm_min, time.tm_sec,
date.tm_wday, date.tm_yday, date.tm_isdst))
return res
def _get_plane_vectors(ez):
"""Get two orthogonal vectors orthogonal to ez (ez will be modified)."""
assert ez.shape == (3,)
ez_len = np.sqrt(np.sum(ez * ez))
if ez_len == 0:
raise RuntimeError('Zero length normal. Cannot proceed.')
if np.abs(ez_len - np.abs(ez[2])) < 1e-5: # ez already in z-direction
ex = np.array([1., 0., 0.])
else:
ex = np.zeros(3)
if ez[1] < ez[2]:
ex[0 if ez[0] < ez[1] else 1] = 1.
else:
ex[0 if ez[0] < ez[2] else 2] = 1.
ez /= ez_len
ex -= np.dot(ez, ex) * ez
ex /= np.sqrt(np.sum(ex * ex))
ey = np.cross(ez, ex)
return ex, ey
def _at_origin(x):
"""Determine if a vector is at the origin."""
return (np.sum(x * x) < 1e-8)
def _check_comp_ch(cch, kind, desired=None):
if 'reference' in kind.lower():
if cch['grad_order_no'] != 0:
raise RuntimeError('%s channel with non-zero compensation grade %s'
% (kind, cch['grad_order_no']))
else:
if desired is None:
desired = cch['grad_order_no']
if cch['grad_order_no'] != desired:
raise RuntimeError('%s channel with inconsistent compensation '
'grade %s, should be %s'
% (kind, cch['grad_order_no'], desired))
return desired
def _convert_channel_info(res4, t, use_eeg_pos):
"""Convert CTF channel information to fif format."""
nmeg = neeg = nstim = nmisc = nref = 0
chs = list()
this_comp = None
for k, cch in enumerate(res4['chs']):
cal = float(1. / (cch['proper_gain'] * cch['qgain']))
ch = dict(scanno=k + 1, range=1., cal=cal, loc=np.full(12, np.nan),
unit_mul=FIFF.FIFF_UNITM_NONE, ch_name=cch['ch_name'][:15],
coil_type=FIFF.FIFFV_COIL_NONE)
del k
chs.append(ch)
# Create the channel position information
if cch['sensor_type_index'] in (CTF.CTFV_REF_MAG_CH,
CTF.CTFV_REF_GRAD_CH,
CTF.CTFV_MEG_CH):
# Extra check for a valid MEG channel
if np.sum(cch['coil']['pos'][0] ** 2) < 1e-6 or \
np.sum(cch['coil']['norm'][0] ** 2) < 1e-6:
nmisc += 1
ch.update(logno=nmisc, coord_frame=FIFF.FIFFV_COORD_UNKNOWN,
kind=FIFF.FIFFV_MISC_CH, unit=FIFF.FIFF_UNIT_V)
text = 'MEG'
if cch['sensor_type_index'] != CTF.CTFV_MEG_CH:
text += ' ref'
warn('%s channel %s did not have position assigned, so '
'it was changed to a MISC channel'
% (text, ch['ch_name']))
continue
ch['unit'] = FIFF.FIFF_UNIT_T
# Set up the local coordinate frame
r0 = cch['coil']['pos'][0].copy()
ez = cch['coil']['norm'][0].copy()
# It turns out that positive proper_gain requires swapping
# of the normal direction
if cch['proper_gain'] > 0.0:
ez *= -1
# Check how the other vectors should be defined
off_diag = False
# Default: ex and ey are arbitrary in the plane normal to ez
if cch['sensor_type_index'] == CTF.CTFV_REF_GRAD_CH:
# The off-diagonal gradiometers are an exception:
#
# We use the same convention for ex as for Neuromag planar
# gradiometers: ex pointing in the positive gradient direction
diff = cch['coil']['pos'][0] - cch['coil']['pos'][1]
size = np.sqrt(np.sum(diff * diff))
if size > 0.:
diff /= size
# Is ez normal to the line joining the coils?
if np.abs(np.dot(diff, ez)) < 1e-3:
off_diag = True
# Handle the off-diagonal gradiometer coordinate system
r0 -= size * diff / 2.0
ex = diff
ey = np.cross(ez, ex)
else:
ex, ey = _get_plane_vectors(ez)
else:
ex, ey = _get_plane_vectors(ez)
# Transform into a Neuromag-like device coordinate system
ch['loc'] = np.concatenate([
apply_trans(t['t_ctf_dev_dev'], r0),
apply_trans(t['t_ctf_dev_dev'], ex, move=False),
apply_trans(t['t_ctf_dev_dev'], ey, move=False),
apply_trans(t['t_ctf_dev_dev'], ez, move=False)])
del r0, ex, ey, ez
# Set the coil type
if cch['sensor_type_index'] == CTF.CTFV_REF_MAG_CH:
ch['kind'] = FIFF.FIFFV_REF_MEG_CH
_check_comp_ch(cch, 'Reference magnetometer')
ch['coil_type'] = FIFF.FIFFV_COIL_CTF_REF_MAG
nref += 1
ch['logno'] = nref
elif cch['sensor_type_index'] == CTF.CTFV_REF_GRAD_CH:
ch['kind'] = FIFF.FIFFV_REF_MEG_CH
if off_diag:
_check_comp_ch(cch, 'Reference off-diagonal gradiometer')
ch['coil_type'] = FIFF.FIFFV_COIL_CTF_OFFDIAG_REF_GRAD
else:
_check_comp_ch(cch, 'Reference gradiometer')
ch['coil_type'] = FIFF.FIFFV_COIL_CTF_REF_GRAD
nref += 1
ch['logno'] = nref
else:
this_comp = _check_comp_ch(cch, 'Gradiometer', this_comp)
ch['kind'] = FIFF.FIFFV_MEG_CH
ch['coil_type'] = FIFF.FIFFV_COIL_CTF_GRAD
nmeg += 1
ch['logno'] = nmeg
# Encode the software gradiometer order
ch['coil_type'] = ch['coil_type'] | (cch['grad_order_no'] << 16)
ch['coord_frame'] = FIFF.FIFFV_COORD_DEVICE
elif cch['sensor_type_index'] == CTF.CTFV_EEG_CH:
coord_frame = FIFF.FIFFV_COORD_HEAD
if use_eeg_pos:
# EEG electrode coordinates may be present but in the
# CTF head frame
ch['loc'][:3] = cch['coil']['pos'][0]
if not _at_origin(ch['loc'][:3]):
if t['t_ctf_head_head'] is None:
warn('EEG electrode (%s) location omitted because of '
'missing HPI information' % ch['ch_name'])
ch['loc'].fill(np.nan)
coord_frame = FIFF.FIFFV_COORD_CTF_HEAD
else:
ch['loc'][:3] = apply_trans(
t['t_ctf_head_head'], ch['loc'][:3])
neeg += 1
ch.update(logno=neeg, kind=FIFF.FIFFV_EEG_CH,
unit=FIFF.FIFF_UNIT_V, coord_frame=coord_frame)
elif cch['sensor_type_index'] == CTF.CTFV_STIM_CH:
nstim += 1
ch.update(logno=nstim, coord_frame=FIFF.FIFFV_COORD_UNKNOWN,
kind=FIFF.FIFFV_STIM_CH, unit=FIFF.FIFF_UNIT_V)
else:
nmisc += 1
ch.update(logno=nmisc, coord_frame=FIFF.FIFFV_COORD_UNKNOWN,
kind=FIFF.FIFFV_MISC_CH, unit=FIFF.FIFF_UNIT_V)
return chs
def _comp_sort_keys(c):
"""Sort the compensation data."""
return (int(c['coeff_type']), int(c['scanno']))
def _check_comp(comp):
"""Check that conversion to named matrices is possible."""
ref_sens = None
kind = -1
for k, c_k in enumerate(comp):
if c_k['coeff_type'] != kind:
c_ref = c_k
ref_sens = c_ref['sensors']
kind = c_k['coeff_type']
elif not c_k['sensors'] == ref_sens:
raise RuntimeError('Cannot use an uneven compensation matrix')
def _conv_comp(comp, first, last, chs):
"""Add a new converted compensation data item."""
ch_names = [c['ch_name'] for c in chs]
n_col = comp[first]['ncoeff']
col_names = comp[first]['sensors'][:n_col]
row_names = [comp[p]['sensor_name'] for p in range(first, last + 1)]
mask = np.in1d(col_names, ch_names) # missing channels excluded
col_names = np.array(col_names)[mask]
n_col = len(col_names)
n_row = len(row_names)
ccomp = dict(ctfkind=np.array([comp[first]['coeff_type']]),
save_calibrated=False)
_add_kind(ccomp)
data = np.empty((n_row, n_col))
for ii, coeffs in enumerate(comp[first:last + 1]):
# Pick the elements to the matrix
data[ii, :] = coeffs['coeffs'][mask]
ccomp['data'] = dict(row_names=row_names, col_names=col_names,
data=data, nrow=len(row_names), ncol=len(col_names))
mk = ('proper_gain', 'qgain')
_calibrate_comp(ccomp, chs, row_names, col_names, mult_keys=mk, flip=True)
return ccomp
def _convert_comp_data(res4):
"""Convert the compensation data into named matrices."""
if res4['ncomp'] == 0:
return
# Sort the coefficients in our favorite order
res4['comp'] = sorted(res4['comp'], key=_comp_sort_keys)
# Check that all items for a given compensation type have the correct
# number of channels
_check_comp(res4['comp'])
# Create named matrices
first = 0
kind = -1
comps = list()
for k in range(len(res4['comp'])):
if res4['comp'][k]['coeff_type'] != kind:
if k > 0:
comps.append(_conv_comp(res4['comp'], first, k - 1,
res4['chs']))
kind = res4['comp'][k]['coeff_type']
first = k
comps.append(_conv_comp(res4['comp'], first, k, res4['chs']))
return comps
def _pick_eeg_pos(c):
"""Pick EEG positions."""
eeg = dict(coord_frame=FIFF.FIFFV_COORD_HEAD, assign_to_chs=False,
labels=list(), ids=list(), rr=list(), kinds=list(), np=0)
for ch in c['chs']:
if ch['kind'] == FIFF.FIFFV_EEG_CH and not _at_origin(ch['loc'][:3]):
eeg['labels'].append(ch['ch_name'])
eeg['ids'].append(ch['logno'])
eeg['rr'].append(ch['loc'][:3])
eeg['kinds'].append(FIFF.FIFFV_POINT_EEG)
eeg['np'] += 1
if eeg['np'] == 0:
return None
logger.info('Picked positions of %d EEG channels from channel info'
% eeg['np'])
return eeg
def _add_eeg_pos(eeg, t, c):
"""Pick the (virtual) EEG position data."""
if eeg is None:
return
if t is None or t['t_ctf_head_head'] is None:
raise RuntimeError('No coordinate transformation available for EEG '
'position data')
eeg_assigned = 0
if eeg['assign_to_chs']:
for k in range(eeg['np']):
# Look for a channel name match
for ch in c['chs']:
if ch['ch_name'].lower() == eeg['labels'][k].lower():
r0 = ch['loc'][:3]
r0[:] = eeg['rr'][k]
if eeg['coord_frame'] == FIFF.FIFFV_MNE_COORD_CTF_HEAD:
r0[:] = apply_trans(t['t_ctf_head_head'], r0)
elif eeg['coord_frame'] != FIFF.FIFFV_COORD_HEAD:
raise RuntimeError(
'Illegal coordinate frame for EEG electrode '
'positions : %s'
% _coord_frame_name(eeg['coord_frame']))
# Use the logical channel number as an identifier
eeg['ids'][k] = ch['logno']
eeg['kinds'][k] = FIFF.FIFFV_POINT_EEG
eeg_assigned += 1
break
# Add these to the Polhemus data
fid_count = eeg_count = extra_count = 0
for k in range(eeg['np']):
d = dict(r=eeg['rr'][k].copy(), kind=eeg['kinds'][k],
ident=eeg['ids'][k], coord_frame=FIFF.FIFFV_COORD_HEAD)
c['dig'].append(d)
if eeg['coord_frame'] == FIFF.FIFFV_MNE_COORD_CTF_HEAD:
d['r'] = apply_trans(t['t_ctf_head_head'], d['r'])
elif eeg['coord_frame'] != FIFF.FIFFV_COORD_HEAD:
raise RuntimeError('Illegal coordinate frame for EEG electrode '
'positions: %s'
% _coord_frame_name(eeg['coord_frame']))
if eeg['kinds'][k] == FIFF.FIFFV_POINT_CARDINAL:
fid_count += 1
elif eeg['kinds'][k] == FIFF.FIFFV_POINT_EEG:
eeg_count += 1
else:
extra_count += 1
if eeg_assigned > 0:
logger.info(' %d EEG electrode locations assigned to channel info.'
% eeg_assigned)
for count, kind in zip((fid_count, eeg_count, extra_count),
('fiducials', 'EEG locations', 'extra points')):
if count > 0:
logger.info(' %d %s added to Polhemus data.' % (count, kind))
_filt_map = {CTF.CTFV_FILTER_LOWPASS: 'lowpass',
CTF.CTFV_FILTER_HIGHPASS: 'highpass'}
def _compose_meas_info(res4, coils, trans, eeg):
"""Create meas info from CTF data."""
info = _empty_info(res4['sfreq'])
# Collect all the necessary data from the structures read
info['meas_id'] = get_new_file_id()
info['meas_id']['usecs'] = 0
info['meas_id']['secs'] = _convert_time(res4['data_date'],
res4['data_time'])
info['experimenter'] = res4['nf_operator']
info['subject_info'] = dict(his_id=res4['nf_subject_id'])
for filt in res4['filters']:
if filt['type'] in _filt_map:
info[_filt_map[filt['type']]] = filt['freq']
info['dig'], info['hpi_results'] = _pick_isotrak_and_hpi_coils(
res4, coils, trans)
if trans is not None:
if len(info['hpi_results']) > 0:
info['hpi_results'][0]['coord_trans'] = trans['t_ctf_head_head']
if trans['t_dev_head'] is not None:
info['dev_head_t'] = trans['t_dev_head']
info['dev_ctf_t'] = combine_transforms(
trans['t_dev_head'],
invert_transform(trans['t_ctf_head_head']),
FIFF.FIFFV_COORD_DEVICE, FIFF.FIFFV_MNE_COORD_CTF_HEAD)
if trans['t_ctf_head_head'] is not None:
info['ctf_head_t'] = trans['t_ctf_head_head']
info['chs'] = _convert_channel_info(res4, trans, eeg is None)
info['comps'] = _convert_comp_data(res4)
if eeg is None:
# Pick EEG locations from chan info if not read from a separate file
eeg = _pick_eeg_pos(info)
_add_eeg_pos(eeg, trans, info)
logger.info(' Measurement info composed.')
info._update_redundant()
return info
def _read_bad_chans(directory, info):
"""Read Bad channel list and match to internal names."""
fname = op.join(directory, 'BadChannels')
if not op.exists(fname):
return []
mapping = dict(zip(_clean_names(info['ch_names']), info['ch_names']))
with open(fname, 'r') as fid:
bad_chans = [mapping[f.strip()] for f in fid.readlines()]
return bad_chans
def _annotate_bad_segments(directory, start_time):
fname = op.join(directory, 'bad.segments')
if not op.exists(fname):
return None
# read in bad segment file
onsets = []
durations = []
desc = []
with open(fname, 'r') as fid:
for f in fid.readlines():
tmp = f.strip().split()
desc.append('bad_%s' % tmp[0])
onsets.append(np.float(tmp[1]) - start_time)
durations.append(np.float(tmp[2]) - np.float(tmp[1]))
# return None if there are no bad segments
if len(onsets) == 0:
return None
return Annotations(onsets, durations, desc)
|