1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
|
# -*- coding: utf-8 -*-
"""Conversion tool from EDF, EDF+, BDF to FIF."""
# Authors: Teon Brooks <teon.brooks@gmail.com>
# Martin Billinger <martin.billinger@tugraz.at>
# Nicolas Barascud <nicolas.barascud@ens.fr>
# Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#
# License: BSD (3-clause)
import calendar
import datetime
import os
import re
import numpy as np
from io import open as io_open # python 2 backward compatible open
from ...utils import verbose, logger, warn
from ..utils import _blk_read_lims, _synthesize_stim_channel
from ..base import BaseRaw, _check_update_montage
from ..meas_info import _empty_info, DATE_NONE
from ..constants import FIFF
from ...filter import resample
from ...externals.six.moves import zip
from ...utils import copy_function_doc_to_method_doc
from ...annotations import Annotations, events_from_annotations
def find_edf_events(raw):
"""Get original EDF events as read from the header.
For GDF, the values are returned in form
[n_events, pos, typ, chn, dur]
where:
======== =================================== =======
name description type
======== =================================== =======
n_events The number of all events integer
pos Beginnning of the events in samples array
typ The event identifiers array
chn The associated channels (0 for all) array
dur The durations of the events array
======== =================================== =======
For EDF+, the values are returned in form
n_events * [onset, dur, desc]
where:
======== =================================== =======
name description type
======== =================================== =======
onset Onset of the event in seconds float
dur Duration of the event in seconds float
desc Description of the event str
======== =================================== =======
Parameters
----------
raw : Instance of RawEDF
The raw object for finding the events.
Returns
-------
events : ndarray
The events as they are in the file header.
"""
return raw.find_edf_events()
def _edf_events_from_annotations(raw, event_id):
"""Modify events_from_annotaitons for EDF specifics.
Modify events_from_annotaitons so that events[:,1] corresponds to
the duration of the events instead of the id of the previous event.
"""
events, event_id_ = events_from_annotations(raw, event_id=event_id,
use_rounding=False)
durations = raw.annotations.duration
durations = np.array(durations * raw.info['sfreq'], int)
# XXX see discussion gh-5574, this is necessary due to the fact
# that stim channel cannot two consecutive events unless they are
# at least one sample apart (so that stim_ch can go from evnt_id to 0
# and back to evnt_id).
durations[durations != 0] -= 1
events[:, 1] = durations
return events, event_id_
class RawEDF(BaseRaw):
"""Raw object from EDF, EDF+, BDF file.
Parameters
----------
input_fname : str
Path to the EDF+,BDF file.
montage : str | None | instance of Montage
Path or instance of montage containing electrode positions.
If None, sensor locations are (0,0,0). See the documentation of
:func:`mne.channels.read_montage` for more information.
eog : list or tuple
Names of channels or list of indices that should be designated
EOG channels. Values should correspond to the electrodes in the
edf file. Default is None.
misc : list or tuple
Names of channels or list of indices that should be designated
MISC channels. Values should correspond to the electrodes in the
edf file. Default is None.
stim_channel : str | int | 'auto' | False
The channel name or channel index (starting at 0). -1 corresponds to
the last channel. If False, there will be no stim channel added. If
'auto' (default), the stim channel will be added as the last channel if
the header contains ``'EDF Annotations'`` or GDF events (otherwise stim
channel will not be added). None is accepted as an alias for False.
.. warning:: This defaults to 'auto' in 0.17 but will default to False
in 0.18 (when no stim channel synthesis will be allowed)
and will be removed in 0.19; migrate code to use
:func:`mne.events_from_annotations` instead.
annot : str | None
Path to annotation file.
If None, no derived stim channel will be added (for files requiring
annotation file to interpret stim channel).
This was deprecated in 0.17 and will be removed in 0.18.
annotmap : str | None
Path to annotation map file containing mapping from label to trigger.
Must be specified if annot is not None.
This was deprecated in 0.17 and will be removed in 0.18.
exclude : list of str
Channel names to exclude. This can help when reading data with
different sampling rates to avoid unnecessary resampling.
preload : bool or str (default False)
Preload data into memory for data manipulation and faster indexing.
If True, the data will be preloaded into memory (fast, requires
large amount of memory). If preload is a string, preload is the
file name of a memory-mapped file which is used to store the data
on the hard drive (slower, requires less memory).
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Notes
-----
Biosemi devices trigger codes are encoded in 16-bit format, whereas system
codes (CMS in/out-of range, battery low, etc.) are coded in bits 16-23 of
the status channel (see http://www.biosemi.com/faq/trigger_signals.htm).
To retrieve correct event values (bits 1-16), one could do:
>>> events = mne.find_events(...) # doctest:+SKIP
>>> events[:, 2] &= (2**16 - 1) # doctest:+SKIP
The above operation can be carried out directly in :func:`mne.find_events`
using the ``mask`` and ``mask_type`` parameters
(see :func:`mne.find_events` for more details).
It is also possible to retrieve system codes, but no particular effort has
been made to decode these in MNE. In case it is necessary, for instance to
check the CMS bit, the following operation can be carried out:
>>> cms_bit = 20 # doctest:+SKIP
>>> cms_high = (events[:, 2] & (1 << cms_bit)) != 0 # doctest:+SKIP
It is worth noting that in some special cases, it may be necessary to
shift the event values in order to retrieve correct event triggers. This
depends on the triggering device used to perform the synchronization.
For instance, some GDF files need a 8 bits shift:
>>> events[:, 2] >>= 8 # doctest:+SKIP
In addition, for GDF files, the stimulus channel is constructed from the
events in the header. The id numbers of overlapping events are simply
combined through addition. To get the original events from the header,
use function :func:`mne.io.find_edf_events`.
See Also
--------
mne.io.Raw : Documentation of attribute and methods.
"""
@verbose
def __init__(self, input_fname, montage, eog=None, misc=None,
stim_channel='', annot=None, annotmap=None, exclude=(),
preload=False, verbose=None): # noqa: D102
logger.info('Extracting EDF parameters from %s...' % input_fname)
input_fname = os.path.abspath(input_fname)
info, edf_info, orig_units = _get_info(input_fname, stim_channel,
annot, annotmap, eog, misc,
exclude, preload)
logger.info('Creating raw.info structure...')
_check_update_montage(info, montage)
if bool(annot) != bool(annotmap):
warn("Stimulus channel will not be annotated. Both 'annot' and "
"'annotmap' must be specified.")
if annot or annotmap:
warn("'annot' and 'annotmap' parameters are deprecated and will be"
" removed in 0.18", DeprecationWarning)
# Raw attributes
last_samps = [edf_info['nsamples'] - 1]
super(RawEDF, self).__init__(
info, preload, filenames=[input_fname], raw_extras=[edf_info],
last_samps=last_samps, orig_format='int', orig_units=orig_units,
verbose=verbose)
@verbose
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
"""Read a chunk of raw data."""
from scipy.interpolate import interp1d
if mult is not None:
# XXX "cals" here does not function the same way as in RawFIF,
# and for efficiency we want to be able to combine mult and cals
# so proj support will have to wait until this is resolved
raise NotImplementedError('mult is not supported yet')
n_samps = self._raw_extras[fi]['n_samps']
buf_len = int(self._raw_extras[fi]['max_samp'])
sfreq = self.info['sfreq']
dtype = self._raw_extras[fi]['dtype_np']
dtype_byte = self._raw_extras[fi]['dtype_byte']
data_offset = self._raw_extras[fi]['data_offset']
stim_channel = self._raw_extras[fi]['stim_channel']
tal_sel = self._raw_extras[fi]['tal_sel']
orig_sel = self._raw_extras[fi]['sel']
annot = self._raw_extras[fi]['annot']
annotmap = self._raw_extras[fi]['annotmap']
subtype = self._raw_extras[fi]['subtype']
stim_data = self._raw_extras[fi].get('stim_data', None) # for GDF
if np.size(dtype_byte) > 1:
if len(np.unique(dtype_byte)) > 1:
warn("Multiple data type not supported")
dtype = dtype[0]
dtype_byte = dtype_byte[0]
# gain constructor
physical_range = np.array([ch['range'] for ch in self.info['chs']])
cal = np.array([ch['cal'] for ch in self.info['chs']])
assert cal.shape == (len(self.info['chs']),)
cal = np.atleast_2d(physical_range / cal) # physical / digital
gains = np.atleast_2d(self._raw_extras[fi]['units'])
# physical dimension in uV
physical_min = self._raw_extras[fi]['physical_min']
digital_min = self._raw_extras[fi]['digital_min']
offsets = np.atleast_2d(physical_min - (digital_min * cal)).T
offsets[np.in1d(orig_sel, tal_sel)] = 0
this_sel = orig_sel[idx]
# We could read this one EDF block at a time, which would be this:
ch_offsets = np.cumsum(np.concatenate([[0], n_samps]), dtype=np.int64)
block_start_idx, r_lims, d_lims = _blk_read_lims(start, stop, buf_len)
# But to speed it up, we really need to read multiple blocks at once,
# Otherwise we can end up with e.g. 18,181 chunks for a 20 MB file!
# Let's do ~10 MB chunks:
n_per = max(10 * 1024 * 1024 // (ch_offsets[-1] * dtype_byte), 1)
with open(self._filenames[fi], 'rb', buffering=0) as fid:
# Extract data
start_offset = (data_offset +
block_start_idx * ch_offsets[-1] * dtype_byte)
for ai in range(0, len(r_lims), n_per):
block_offset = ai * ch_offsets[-1] * dtype_byte
n_read = min(len(r_lims) - ai, n_per)
fid.seek(start_offset + block_offset, 0)
# Read and reshape to (n_chunks_read, ch0_ch1_ch2_ch3...)
many_chunk = _read_ch(fid, subtype, ch_offsets[-1] * n_read,
dtype_byte, dtype).reshape(n_read, -1)
for ii, ci in enumerate(this_sel):
# This now has size (n_chunks_read, n_samp[ci])
ch_data = many_chunk[:, ch_offsets[ci]:ch_offsets[ci + 1]]
r_sidx = r_lims[ai][0]
r_eidx = (buf_len * (n_read - 1) +
r_lims[ai + n_read - 1][1])
d_sidx = d_lims[ai][0]
d_eidx = d_lims[ai + n_read - 1][1]
if n_samps[ci] != buf_len:
if ci in tal_sel:
# don't resample tal_channels, zero-pad instead.
if n_samps[ci] < buf_len:
z = np.zeros((len(ch_data),
buf_len - n_samps[ci]))
ch_data = np.append(ch_data, z, -1)
else:
ch_data = ch_data[:, :buf_len]
elif ci == stim_channel:
if (annot and annotmap or stim_data is not None or
len(tal_sel) > 0):
# don't resample, it gets overwritten later
ch_data = np.zeros((len(ch_data), buf_len))
else:
# Stim channel will be interpolated
old = np.linspace(0, 1, n_samps[ci] + 1, True)
new = np.linspace(0, 1, buf_len, False)
ch_data = np.append(
ch_data, np.zeros((len(ch_data), 1)), -1)
ch_data = interp1d(old, ch_data,
kind='zero', axis=-1)(new)
else:
# XXX resampling each chunk isn't great,
# it forces edge artifacts to appear at
# each buffer boundary :(
# it can also be very slow...
ch_data = resample(ch_data, buf_len, n_samps[ci],
npad=0, axis=-1)
assert ch_data.shape == (len(ch_data), buf_len)
data[ii, d_sidx:d_eidx] = ch_data.ravel()[r_sidx:r_eidx]
# only try to read the stim channel if it's not None and it's
# actually one of the requested channels
idx = np.arange(self.info['nchan'])[idx] # slice -> ints
read_size = len(r_lims) * buf_len
stim_channel_idx = np.where(idx == stim_channel)[0]
if subtype == 'bdf':
# do not scale stim channel (see gh-5160)
stim_idx = np.where(np.arange(self.info['nchan']) == stim_channel)
cal[0, stim_idx[0]] = 1
offsets[stim_idx[0], 0] = 0
gains[0, stim_idx[0]] = 1
data *= cal.T[idx]
data += offsets[idx]
data *= gains.T[idx]
if stim_channel is not None and len(stim_channel_idx) > 0:
if annot and annotmap:
evts = _read_annot(annot, annotmap, sfreq,
self._last_samps[fi] + 1)
data[stim_channel_idx, :] = evts[start:stop]
elif len(tal_sel) > 0:
tal_channel_idx = np.in1d(orig_sel[idx], tal_sel)
annotations_data = np.atleast_2d(data[tal_channel_idx])
onset, duration, desc = _read_annotations_edf(annotations_data)
evts = (onset, duration, desc)
self._raw_extras[fi]['events'] = np.column_stack(evts)
self.set_annotations(Annotations(onset=onset,
duration=duration,
description=desc,
orig_time=None))
event_id = _get_edf_default_event_id(desc)
events, _ = _edf_events_from_annotations(self,
event_id=event_id)
self._check_events(events, read_size)
stim = self._create_event_ch(events, read_size)
data[stim_channel_idx, :] = stim[start:stop]
elif stim_data is not None: # GDF events
data[stim_channel_idx, :] = stim_data[start:stop]
else:
stim = np.bitwise_and(data[stim_channel_idx].astype(int),
2**17 - 1)
data[stim_channel_idx, :] = stim
@copy_function_doc_to_method_doc(find_edf_events)
def find_edf_events(self):
return self._raw_extras[0]['events']
def _create_event_ch(self, events, n_samples=None):
"""Create the event channel."""
if n_samples is None:
n_samples = self.last_samp - self.first_samp + 1
events = np.array(events, int)
if events.ndim != 2 or events.shape[1] != 3:
raise ValueError("[n_events x 3] shaped array required")
# update events
self._event_ch = _synthesize_stim_channel(events, n_samples)
return self._event_ch
def _check_events(self, events, read_size):
"""Emit warnings based on events.
Check for:
- Overlapping events
- Events that expand over the read buffer
XXX: This can be vectorized
"""
stim = np.zeros(read_size)
for n_start, n_duration, description in events:
n_stop = n_duration + n_start
# make sure events without duration get one sample
n_stop = n_stop if n_stop > n_start else n_start + 1
if any(stim[n_start:n_stop]):
warn('EDF+ with overlapping events are not fully supported')
if n_start >= read_size: # event out of bounds
warn('Event "{}" (with onset {}) is out of'
' bounds, it cannot be added to the stim channel.'
' Use find_edf_events to get a list of all EDF '
'events as stored in the '
'file.'.format(description, n_start))
stim[n_start:n_stop] += 1
def _read_ch(fid, subtype, samp, dtype_byte, dtype=None):
"""Read a number of samples for a single channel."""
# BDF
if subtype == 'bdf':
ch_data = np.fromfile(fid, dtype=dtype, count=samp * dtype_byte)
ch_data = ch_data.reshape(-1, 3).astype(np.int32)
ch_data = ((ch_data[:, 0]) +
(ch_data[:, 1] << 8) +
(ch_data[:, 2] << 16))
# 24th bit determines the sign
ch_data[ch_data >= (1 << 23)] -= (1 << 24)
# GDF data and EDF data
else:
ch_data = np.fromfile(fid, dtype=dtype, count=samp)
return ch_data
def _get_info(fname, stim_channel, annot, annotmap, eog, misc, exclude,
preload):
"""Extract all the information from the EDF+, BDF or GDF file."""
# backward compat aliasing; code below wants to see None but in 0.18
# we allow/prefer False for consistency with BV/EEGLAB
stim_channel = None if stim_channel is False else stim_channel
if stim_channel == '':
warn('stim_channel will default to "auto" in 0.17 but change to False '
'in 0.18, and will be removed in 0.19', DeprecationWarning)
stim_channel = 'auto'
if eog is None:
eog = []
if misc is None:
misc = []
# Read header from file
ext = os.path.splitext(fname)[1][1:].lower()
logger.info('%s file detected' % ext.upper())
if ext in ('bdf', 'edf'):
edf_info, orig_units = _read_edf_header(fname, annot, annotmap,
exclude)
elif ext in ('gdf'):
if annot is not None:
warn('Annotations not yet supported for GDF files.')
edf_info = _read_gdf_header(fname, stim_channel, exclude)
# orig_units not yet implemented for gdf
orig_units = None
if 'stim_data' not in edf_info and stim_channel == 'auto':
stim_channel = None # Cannot construct stim channel.
else:
raise NotImplementedError(
'Only GDF, EDF, and BDF files are supported, got %s.' % ext)
sel = edf_info['sel']
ch_names = edf_info['ch_names']
n_samps = edf_info['n_samps'][sel]
nchan = edf_info['nchan']
physical_ranges = edf_info['physical_max'] - edf_info['physical_min']
cals = edf_info['digital_max'] - edf_info['digital_min']
bad_idx = np.where((~np.isfinite(cals)) | (cals == 0))[0]
if len(bad_idx) > 0:
warn('Scaling factor is not defined in following channels:\n' +
', '.join(ch_names[i] for i in bad_idx))
cals[bad_idx] = 1
bad_idx = np.where(physical_ranges == 0)[0]
if len(bad_idx) > 0:
warn('Physical range is not defined in following channels:\n' +
', '.join(ch_names[i] for i in bad_idx))
physical_ranges[bad_idx] = 1
if 'stim_data' in edf_info and stim_channel == 'auto': # For GDF events.
cals = np.append(cals, 1)
if stim_channel is not None:
stim_channel = _check_stim_channel(stim_channel, ch_names, sel)
# Annotations
tal_ch_name = 'EDF Annotations'
tal_chs = np.where(np.array(ch_names) == tal_ch_name)[0]
if len(tal_chs) > 0:
logger.info('EDF annotations detected (consider using '
'raw.find_edf_events() to extract them)')
if len(tal_chs) > 1:
warn('Channel names are not unique, found duplicates for: %s. '
'Adding running numbers to duplicate channel names.'
% tal_ch_name)
for idx, tal_ch in enumerate(tal_chs, 1):
ch_names[tal_ch] = ch_names[tal_ch] + '-%s' % idx
tal_sel = edf_info['sel'][tal_chs]
edf_info['tal_sel'] = tal_sel
if len(tal_sel) > 0 and stim_channel is not None and not preload:
raise RuntimeError('%s' % ('EDF+ Annotations (TAL) channel needs to be'
' parsed completely on loading.'
' You must set preload parameter to True.'))
# Creates a list of dicts of eeg channels for raw.info
logger.info('Setting channel info structure...')
chs = list()
pick_mask = np.ones(len(ch_names))
for idx, ch_info in enumerate(zip(ch_names, physical_ranges, cals)):
ch_name, physical_range, cal = ch_info
chan_info = {}
logger.debug(' %s: range=%s cal=%s' % (ch_name, physical_range, cal))
chan_info['cal'] = cal
chan_info['logno'] = idx + 1
chan_info['scanno'] = idx + 1
chan_info['range'] = physical_range
chan_info['unit_mul'] = 0.
chan_info['ch_name'] = ch_name
chan_info['unit'] = FIFF.FIFF_UNIT_V
chan_info['coord_frame'] = FIFF.FIFFV_COORD_HEAD
chan_info['coil_type'] = FIFF.FIFFV_COIL_EEG
chan_info['kind'] = FIFF.FIFFV_EEG_CH
chan_info['loc'] = np.zeros(12)
if ch_name in eog or idx in eog or idx - nchan in eog:
chan_info['coil_type'] = FIFF.FIFFV_COIL_NONE
chan_info['kind'] = FIFF.FIFFV_EOG_CH
pick_mask[idx] = False
if ch_name in misc or idx in misc or idx - nchan in misc:
chan_info['coil_type'] = FIFF.FIFFV_COIL_NONE
chan_info['kind'] = FIFF.FIFFV_MISC_CH
pick_mask[idx] = False
check1 = stim_channel == ch_name
check2 = stim_channel == idx
check3 = nchan > 1
stim_check = np.logical_and(np.logical_or(check1, check2), check3)
if stim_check:
chan_info['coil_type'] = FIFF.FIFFV_COIL_NONE
chan_info['unit'] = FIFF.FIFF_UNIT_NONE
chan_info['kind'] = FIFF.FIFFV_STIM_CH
pick_mask[idx] = False
chan_info['ch_name'] = 'STI 014'
ch_names[idx] = chan_info['ch_name']
edf_info['units'][idx] = 1
if isinstance(stim_channel, str):
stim_channel = idx
if edf_info['sel'][idx] in tal_sel:
chan_info['range'] = 1
chan_info['cal'] = 1
chan_info['coil_type'] = FIFF.FIFFV_COIL_NONE
chan_info['unit'] = FIFF.FIFF_UNIT_NONE
chan_info['kind'] = FIFF.FIFFV_STIM_CH
pick_mask[idx] = False
chs.append(chan_info)
edf_info['stim_channel'] = stim_channel
if any(pick_mask):
picks = [item for item, mask in zip(range(nchan), pick_mask) if mask]
edf_info['max_samp'] = max_samp = n_samps[picks].max()
else:
edf_info['max_samp'] = max_samp = n_samps.max()
# Info structure
# -------------------------------------------------------------------------
# sfreq defined as the max sampling rate of eeg (stim_ch not included)
if stim_channel is None:
data_samps = n_samps
else:
data_samps = np.delete(n_samps, slice(stim_channel, stim_channel + 1))
sfreq = data_samps.max() * \
edf_info['record_length'][1] / edf_info['record_length'][0]
info = _empty_info(sfreq)
info['meas_date'] = edf_info['meas_date']
info['chs'] = chs
info['ch_names'] = ch_names
# Filter settings
highpass = edf_info['highpass']
lowpass = edf_info['lowpass']
if highpass.size == 0:
pass
elif all(highpass):
if highpass[0] == 'NaN':
pass # Placeholder for future use. Highpass set in _empty_info.
elif highpass[0] == 'DC':
info['highpass'] = 0.
else:
hp = highpass[0]
try:
hp = float(hp)
except Exception:
hp = 0.
info['highpass'] = hp
else:
info['highpass'] = float(np.max(highpass))
warn('Channels contain different highpass filters. Highest filter '
'setting will be stored.')
if np.isnan(info['highpass']):
info['highpass'] = 0.
if lowpass.size == 0:
pass # Placeholder for future use. Lowpass set in _empty_info.
elif all(lowpass):
if lowpass[0] == 'NaN':
pass # Placeholder for future use. Lowpass set in _empty_info.
else:
info['lowpass'] = float(lowpass[0])
else:
info['lowpass'] = float(np.min(lowpass))
warn('Channels contain different lowpass filters. Lowest filter '
'setting will be stored.')
if np.isnan(info['lowpass']):
info['lowpass'] = info['sfreq'] / 2.
# Some keys to be consistent with FIF measurement info
info['description'] = None
edf_info['nsamples'] = int(edf_info['n_records'] * max_samp)
# These are the conditions under which a stim channel will be interpolated
if stim_channel is not None and not (annot and annotmap) and \
len(tal_sel) == 0 and n_samps[stim_channel] != int(max_samp):
warn('Interpolating stim channel. Events may jitter.')
info._update_redundant()
return info, edf_info, orig_units
def _read_edf_header(fname, annot, annotmap, exclude):
"""Read header information from EDF+ or BDF file."""
edf_info = dict()
edf_info.update(annot=annot, annotmap=annotmap, events=[])
with open(fname, 'rb') as fid:
fid.read(8) # version (unused here)
# patient ID
pid = fid.read(80).decode()
pid = pid.split(' ', 2)
patient = {}
if len(pid) >= 2:
patient['id'] = pid[0]
patient['name'] = pid[1]
# Recording ID
meas_id = {}
meas_id['recording_id'] = fid.read(80).decode().strip(' \x00')
day, month, year = [int(x) for x in
re.findall(r'(\d+)', fid.read(8).decode())]
hour, minute, sec = [int(x) for x in
re.findall(r'(\d+)', fid.read(8).decode())]
century = 2000 if year < 50 else 1900
date = datetime.datetime(year + century, month, day, hour, minute, sec)
meas_date = (calendar.timegm(date.utctimetuple()), 0)
header_nbytes = int(fid.read(8).decode())
# The following 44 bytes sometimes identify the file type, but this is
# not guaranteed. Therefore, we skip this field and use the file
# extension to determine the subtype (EDF or BDF, which differ in the
# number of bytes they use for the data records; EDF uses 2 bytes
# whereas BDF uses 3 bytes).
fid.read(44)
subtype = os.path.splitext(fname)[1][1:].lower()
n_records = int(fid.read(8).decode())
record_length = fid.read(8).decode().strip('\x00').strip()
record_length = np.array([float(record_length), 1.]) # in seconds
if record_length[0] == 0:
record_length = record_length[0] = 1.
warn('Header information is incorrect for record length. Default '
'record length set to 1.')
nchan = int(fid.read(4).decode())
channels = list(range(nchan))
ch_names = [fid.read(16).strip().decode() for ch in channels]
exclude = _find_exclude_idx(ch_names, exclude)
sel = np.setdiff1d(np.arange(len(ch_names)), exclude)
for ch in channels:
fid.read(80) # transducer
units = [fid.read(8).strip().decode() for ch in channels]
orig_units = dict(zip(ch_names, units))
edf_info['units'] = list()
for i, unit in enumerate(units):
if i in exclude:
continue
if unit == 'uV':
edf_info['units'].append(1e-6)
else:
edf_info['units'].append(1)
ch_names = [ch_names[idx] for idx in sel]
physical_min = np.array([float(fid.read(8).decode())
for ch in channels])[sel]
physical_max = np.array([float(fid.read(8).decode())
for ch in channels])[sel]
digital_min = np.array([float(fid.read(8).decode())
for ch in channels])[sel]
digital_max = np.array([float(fid.read(8).decode())
for ch in channels])[sel]
prefiltering = [fid.read(80).decode().strip(' \x00')
for ch in channels][:-1]
highpass = np.ravel([re.findall(r'HP:\s+(\w+)', filt)
for filt in prefiltering])
lowpass = np.ravel([re.findall(r'LP:\s+(\w+)', filt)
for filt in prefiltering])
# number of samples per record
n_samps = np.array([int(fid.read(8).decode()) for ch
in channels])
# Populate edf_info
edf_info.update(
ch_names=ch_names, data_offset=header_nbytes,
digital_max=digital_max, digital_min=digital_min,
highpass=highpass, sel=sel, lowpass=lowpass, meas_date=meas_date,
n_records=n_records, n_samps=n_samps, nchan=nchan,
subject_info=patient, physical_max=physical_max,
physical_min=physical_min, record_length=record_length,
subtype=subtype)
fid.read(32 * nchan).decode() # reserved
assert fid.tell() == header_nbytes
fid.seek(0, 2)
n_bytes = fid.tell()
n_data_bytes = n_bytes - header_nbytes
total_samps = (n_data_bytes // 3 if subtype == 'bdf'
else n_data_bytes // 2)
read_records = total_samps // np.sum(n_samps)
if n_records != read_records:
warn('Number of records from the header does not match the file '
'size (perhaps the recording was not stopped before exiting).'
' Inferring from the file size.')
edf_info['n_records'] = n_records = read_records
if subtype == 'bdf':
edf_info['dtype_byte'] = 3 # 24-bit (3 byte) integers
edf_info['dtype_np'] = np.uint8
else:
edf_info['dtype_byte'] = 2 # 16-bit (2 byte) integers
edf_info['dtype_np'] = np.int16
return edf_info, orig_units
def _read_gdf_header(fname, stim_channel, exclude):
"""Read GDF 1.x and GDF 2.x header info."""
edf_info = dict()
events = []
edf_info['annot'] = None
edf_info['annotmap'] = None
with open(fname, 'rb') as fid:
version = fid.read(8).decode()
gdftype_np = (None, np.int8, np.uint8, np.int16, np.uint16, np.int32,
np.uint32, np.int64, np.uint64, None, None, None, None,
None, None, None, np.float32, np.float64)
gdftype_byte = [np.dtype(x).itemsize if x is not None else 0
for x in gdftype_np]
assert sum(gdftype_byte) == 42
edf_info['type'] = edf_info['subtype'] = version[:3]
edf_info['number'] = float(version[4:])
meas_date = DATE_NONE
# GDF 1.x
# ---------------------------------------------------------------------
if edf_info['number'] < 1.9:
# patient ID
pid = fid.read(80).decode('latin-1')
pid = pid.split(' ', 2)
patient = {}
if len(pid) >= 2:
patient['id'] = pid[0]
patient['name'] = pid[1]
# Recording ID
meas_id = {}
meas_id['recording_id'] = fid.read(80).decode().strip(' \x00')
# date
tm = fid.read(16).decode().strip(' \x00')
try:
if tm[14:16] == ' ':
tm = tm[:14] + '00' + tm[16:]
date = datetime.datetime(int(tm[0:4]), int(tm[4:6]),
int(tm[6:8]), int(tm[8:10]),
int(tm[10:12]), int(tm[12:14]),
int(tm[14:16]) * pow(10, 4))
meas_date = (calendar.timegm(date.utctimetuple()), 0)
except Exception:
pass
header_nbytes = np.fromfile(fid, np.int64, 1)[0]
meas_id['equipment'] = np.fromfile(fid, np.uint8, 8)[0]
meas_id['hospital'] = np.fromfile(fid, np.uint8, 8)[0]
meas_id['technician'] = np.fromfile(fid, np.uint8, 8)[0]
fid.seek(20, 1) # 20bytes reserved
n_records = np.fromfile(fid, np.int64, 1)[0]
# record length in seconds
record_length = np.fromfile(fid, np.uint32, 2)
if record_length[0] == 0:
record_length[0] = 1.
warn('Header information is incorrect for record length. '
'Default record length set to 1.')
nchan = np.fromfile(fid, np.uint32, 1)[0]
channels = list(range(nchan))
ch_names = [fid.read(16).decode('latin-1').strip(' \x00')
for ch in channels]
fid.seek(80 * len(channels), 1) # transducer
units = [fid.read(8).decode('latin-1').strip(' \x00')
for ch in channels]
exclude = _find_exclude_idx(ch_names, exclude)
sel = list()
for i, unit in enumerate(units):
if unit[:2] == 'uV':
units[i] = 1e-6
else:
units[i] = 1
sel.append(i)
ch_names = [ch_names[idx] for idx in sel]
physical_min = np.fromfile(fid, np.float64, len(channels))
physical_max = np.fromfile(fid, np.float64, len(channels))
digital_min = np.fromfile(fid, np.int64, len(channels))
digital_max = np.fromfile(fid, np.int64, len(channels))
prefiltering = [fid.read(80).decode().strip(' \x00')
for ch in channels][:-1]
highpass = np.ravel([re.findall(r'HP:\s+(\w+)', filt)
for filt in prefiltering])
lowpass = np.ravel([re.findall('LP:\\s+(\\w+)', filt)
for filt in prefiltering])
# n samples per record
n_samps = np.fromfile(fid, np.int32, len(channels))
# channel data type
dtype = np.fromfile(fid, np.int32, len(channels))
# total number of bytes for data
bytes_tot = np.sum([gdftype_byte[t] * n_samps[i]
for i, t in enumerate(dtype)])
# Populate edf_info
edf_info.update(
bytes_tot=bytes_tot, ch_names=ch_names,
data_offset=header_nbytes, digital_min=digital_min,
digital_max=digital_max,
dtype_byte=[gdftype_byte[t] for t in dtype],
dtype_np=[gdftype_np[t] for t in dtype], exclude=exclude,
highpass=highpass, sel=sel, lowpass=lowpass,
meas_date=meas_date,
meas_id=meas_id, n_records=n_records, n_samps=n_samps,
nchan=nchan, subject_info=patient, physical_max=physical_max,
physical_min=physical_min, record_length=record_length,
units=units)
fid.seek(32 * edf_info['nchan'], 1) # reserved
assert fid.tell() == header_nbytes
# Event table
# -----------------------------------------------------------------
etp = header_nbytes + n_records * edf_info['bytes_tot']
# skip data to go to event table
fid.seek(etp)
etmode = np.fromfile(fid, np.uint8, 1)[0]
if etmode in (1, 3):
sr = np.fromfile(fid, np.uint8, 3)
event_sr = sr[0]
for i in range(1, len(sr)):
event_sr = event_sr + sr[i] * 2 ** (i * 8)
n_events = np.fromfile(fid, np.uint32, 1)[0]
pos = np.fromfile(fid, np.uint32, n_events) - 1 # 1-based inds
typ = np.fromfile(fid, np.uint16, n_events)
if etmode == 3:
chn = np.fromfile(fid, np.uint16, n_events)
dur = np.fromfile(fid, np.uint32, n_events)
else:
chn = np.zeros(n_events, dtype=np.int32)
dur = np.ones(n_events, dtype=np.uint32)
np.clip(dur, 1, np.inf, out=dur)
events = [n_events, pos, typ, chn, dur]
# GDF 2.x
# ---------------------------------------------------------------------
else:
# FIXED HEADER
handedness = ('Unknown', 'Right', 'Left', 'Equal')
gender = ('Unknown', 'Male', 'Female')
scale = ('Unknown', 'No', 'Yes', 'Corrected')
# date
pid = fid.read(66).decode()
pid = pid.split(' ', 2)
patient = {}
if len(pid) >= 2:
patient['id'] = pid[0]
patient['name'] = pid[1]
fid.seek(10, 1) # 10bytes reserved
# Smoking / Alcohol abuse / drug abuse / medication
sadm = np.fromfile(fid, np.uint8, 1)[0]
patient['smoking'] = scale[sadm % 4]
patient['alcohol_abuse'] = scale[(sadm >> 2) % 4]
patient['drug_abuse'] = scale[(sadm >> 4) % 4]
patient['medication'] = scale[(sadm >> 6) % 4]
patient['weight'] = np.fromfile(fid, np.uint8, 1)[0]
if patient['weight'] == 0 or patient['weight'] == 255:
patient['weight'] = None
patient['height'] = np.fromfile(fid, np.uint8, 1)[0]
if patient['height'] == 0 or patient['height'] == 255:
patient['height'] = None
# Gender / Handedness / Visual Impairment
ghi = np.fromfile(fid, np.uint8, 1)[0]
patient['sex'] = gender[ghi % 4]
patient['handedness'] = handedness[(ghi >> 2) % 4]
patient['visual'] = scale[(ghi >> 4) % 4]
# Recording identification
meas_id = {}
meas_id['recording_id'] = fid.read(64).decode().strip(' \x00')
vhsv = np.fromfile(fid, np.uint8, 4)
loc = {}
if vhsv[3] == 0:
loc['vertpre'] = 10 * int(vhsv[0] >> 4) + int(vhsv[0] % 16)
loc['horzpre'] = 10 * int(vhsv[1] >> 4) + int(vhsv[1] % 16)
loc['size'] = 10 * int(vhsv[2] >> 4) + int(vhsv[2] % 16)
else:
loc['vertpre'] = 29
loc['horzpre'] = 29
loc['size'] = 29
loc['version'] = 0
loc['latitude'] = \
float(np.fromfile(fid, np.uint32, 1)[0]) / 3600000
loc['longitude'] = \
float(np.fromfile(fid, np.uint32, 1)[0]) / 3600000
loc['altitude'] = float(np.fromfile(fid, np.int32, 1)[0]) / 100
meas_id['loc'] = loc
date = np.fromfile(fid, np.uint64, 1)[0]
if date != 0:
date = datetime.datetime(1, 1, 1) + \
datetime.timedelta(date * pow(2, -32) - 367)
meas_date = (calendar.timegm(date.utctimetuple()), 0)
birthday = np.fromfile(fid, np.uint64, 1).tolist()[0]
if birthday == 0:
birthday = datetime.datetime(1, 1, 1)
else:
birthday = (datetime.datetime(1, 1, 1) +
datetime.timedelta(birthday * pow(2, -32) - 367))
patient['birthday'] = birthday
if patient['birthday'] != datetime.datetime(1, 1, 1, 0, 0):
today = datetime.datetime.today()
patient['age'] = today.year - patient['birthday'].year
today = today.replace(year=patient['birthday'].year)
if today < patient['birthday']:
patient['age'] -= 1
else:
patient['age'] = None
header_nbytes = np.fromfile(fid, np.uint16, 1)[0] * 256
fid.seek(6, 1) # 6 bytes reserved
meas_id['equipment'] = np.fromfile(fid, np.uint8, 8)
meas_id['ip'] = np.fromfile(fid, np.uint8, 6)
patient['headsize'] = np.fromfile(fid, np.uint16, 3)
patient['headsize'] = np.asarray(patient['headsize'], np.float32)
patient['headsize'] = np.ma.masked_array(
patient['headsize'],
np.equal(patient['headsize'], 0), None).filled()
ref = np.fromfile(fid, np.float32, 3)
gnd = np.fromfile(fid, np.float32, 3)
n_records = np.fromfile(fid, np.int64, 1)[0]
# record length in seconds
record_length = np.fromfile(fid, np.uint32, 2)
if record_length[0] == 0:
record_length[0] = 1.
warn('Header information is incorrect for record length. '
'Default record length set to 1.')
nchan = np.fromfile(fid, np.uint16, 1)[0]
fid.seek(2, 1) # 2bytes reserved
# Channels (variable header)
channels = list(range(nchan))
ch_names = [fid.read(16).decode().strip(' \x00')
for ch in channels]
exclude = _find_exclude_idx(ch_names, exclude)
fid.seek(80 * len(channels), 1) # reserved space
fid.seek(6 * len(channels), 1) # phys_dim, obsolete
"""The Physical Dimensions are encoded as int16, according to:
- Units codes :
https://sourceforge.net/p/biosig/svn/HEAD/tree/trunk/biosig/doc/units.csv
- Decimal factors codes:
https://sourceforge.net/p/biosig/svn/HEAD/tree/trunk/biosig/doc/DecimalFactors.txt
""" # noqa
units = np.fromfile(fid, np.uint16, len(channels)).tolist()
unitcodes = np.array(units[:])
sel = list()
for i, unit in enumerate(units):
if unit == 4275: # microvolts
units[i] = 1e-6
elif unit == 512: # dimensionless
units[i] = 1
elif unit == 0:
units[i] = 1 # unrecognized
else:
warn('Unsupported physical dimension for channel %d '
'(assuming dimensionless). Please contact the '
'MNE-Python developers for support.' % i)
units[i] = 1
sel.append(i)
ch_names = [ch_names[idx] for idx in sel]
physical_min = np.fromfile(fid, np.float64, len(channels))
physical_max = np.fromfile(fid, np.float64, len(channels))
digital_min = np.fromfile(fid, np.float64, len(channels))
digital_max = np.fromfile(fid, np.float64, len(channels))
fid.seek(68 * len(channels), 1) # obsolete
lowpass = np.fromfile(fid, np.float32, len(channels))
highpass = np.fromfile(fid, np.float32, len(channels))
notch = np.fromfile(fid, np.float32, len(channels))
# number of samples per record
n_samps = np.fromfile(fid, np.int32, len(channels))
# data type
dtype = np.fromfile(fid, np.int32, len(channels))
channel = {}
channel['xyz'] = [np.fromfile(fid, np.float32, 3)[0]
for ch in channels]
if edf_info['number'] < 2.19:
impedance = np.fromfile(fid, np.uint8,
len(channels)).astype(float)
impedance[impedance == 255] = np.nan
channel['impedance'] = pow(2, impedance / 8)
fid.seek(19 * len(channels), 1) # reserved
else:
tmp = np.fromfile(fid, np.float32, 5 * len(channels))
tmp = tmp[::5]
fZ = tmp[:]
impedance = tmp[:]
# channels with no voltage (code 4256) data
ch = [unitcodes & 65504 != 4256][0]
impedance[np.where(ch)] = None
# channel with no impedance (code 4288) data
ch = [unitcodes & 65504 != 4288][0]
fZ[np.where(ch)[0]] = None
assert fid.tell() == header_nbytes
# total number of bytes for data
bytes_tot = np.sum([gdftype_byte[t] * n_samps[i]
for i, t in enumerate(dtype)])
# Populate edf_info
edf_info.update(
bytes_tot=bytes_tot, ch_names=ch_names,
data_offset=header_nbytes,
dtype_byte=[gdftype_byte[t] for t in dtype],
dtype_np=[gdftype_np[t] for t in dtype],
digital_min=digital_min, digital_max=digital_max,
exclude=exclude, gnd=gnd, highpass=highpass, sel=sel,
impedance=impedance, lowpass=lowpass, meas_date=meas_date,
meas_id=meas_id, n_records=n_records, n_samps=n_samps,
nchan=nchan, notch=notch, subject_info=patient,
physical_max=physical_max, physical_min=physical_min,
record_length=record_length, ref=ref, units=units)
# EVENT TABLE
# -----------------------------------------------------------------
etp = edf_info['data_offset'] + edf_info['n_records'] * \
edf_info['bytes_tot']
fid.seek(etp) # skip data to go to event table
etmode = fid.read(1).decode()
if etmode != '':
etmode = np.fromstring(etmode, np.uint8).tolist()[0]
if edf_info['number'] < 1.94:
sr = np.fromfile(fid, np.uint8, 3)
event_sr = sr[0]
for i in range(1, len(sr)):
event_sr = event_sr + sr[i] * 2**(i * 8)
n_events = np.fromfile(fid, np.uint32, 1)[0]
else:
ne = np.fromfile(fid, np.uint8, 3)
n_events = ne[0]
for i in range(1, len(ne)):
n_events = n_events + ne[i] * 2**(i * 8)
event_sr = np.fromfile(fid, np.float32, 1)[0]
pos = np.fromfile(fid, np.uint32, n_events) - 1 # 1-based inds
typ = np.fromfile(fid, np.uint16, n_events)
if etmode == 3:
chn = np.fromfile(fid, np.uint16, n_events)
dur = np.fromfile(fid, np.uint32, n_events)
else:
chn = np.zeros(n_events, dtype=np.uint32)
dur = np.ones(n_events, dtype=np.uint32)
np.clip(dur, 1, np.inf, out=dur)
events = [n_events, pos, typ, chn, dur]
edf_info['event_sfreq'] = event_sr
if stim_channel == 'auto' and edf_info['nchan'] not in exclude:
if len(events) == 0:
warn('No events found. Cannot construct a stimulus channel.')
else:
edf_info['sel'].append(edf_info['nchan'])
edf_info['n_samps'] = np.append(edf_info['n_samps'], 0)
edf_info['units'] = np.append(edf_info['units'], 1)
edf_info['ch_names'] += [u'STI 014']
edf_info['physical_min'] = np.append(edf_info['physical_min'], 0)
edf_info['digital_min'] = np.append(edf_info['digital_min'], 0)
vmax = np.max(events[2])
edf_info['physical_max'] = np.append(edf_info['physical_max'],
vmax)
edf_info['digital_max'] = np.append(edf_info['digital_max'], vmax)
data = np.zeros(np.max(n_samps * n_records))
warn_overlap = False
for samp, id, dur in zip(events[1], events[2], events[4]):
if np.sum(data[samp:samp + dur]) > 0:
warn_overlap = True # Warn only once.
data[samp:samp + dur] += id
if warn_overlap:
warn('Overlapping events detected. Use find_edf_events for '
'the original events.')
edf_info['stim_data'] = data
edf_info.update(events=events, sel=np.arange(len(edf_info['ch_names'])))
return edf_info
def _read_annot(annot, annotmap, sfreq, data_length):
"""Annotation File Reader.
Parameters
----------
annot : str
Path to annotation file.
annotmap : str
Path to annotation map file containing mapping from label to trigger.
sfreq : float
Sampling frequency.
data_length : int
Length of the data file.
Returns
-------
stim_channel : ndarray
An array containing stimulus trigger events.
"""
times, durations, descriptions = _read_annotations_edf(annot)
times = [float(time) * sfreq for time in times]
pat = r'([\w\s]+):(\d+)'
with io_open(annotmap) as annotmap_file:
mappings = re.findall(pat, annotmap_file.read())
maps = {}
for mapping in mappings:
maps[mapping[0]] = mapping[1]
triggers = [int(maps[value]) for value in descriptions]
stim_channel = np.zeros(data_length, dtype=int)
for time, trigger in zip(times, triggers):
stim_channel[int(time)] = int(trigger)
return stim_channel
def _check_stim_channel(stim_channel, ch_names, sel):
"""Check that the stimulus channel exists in the current datafile."""
if isinstance(stim_channel, str):
if stim_channel == 'auto':
if 'auto' in ch_names:
raise ValueError("'auto' exists as a channel name. Change "
"stim_channel parameter!")
stim_channel = len(sel) - 1
elif stim_channel not in ch_names:
err = 'Could not find a channel named "{}" in datafile.' \
.format(stim_channel)
casematch = [ch for ch in ch_names
if stim_channel.lower().replace(' ', '') ==
ch.lower().replace(' ', '')]
if casematch:
err += ' Closest match is "{}".'.format(casematch[0])
raise ValueError(err)
else:
if stim_channel == -1:
stim_channel = len(sel) - 1
elif stim_channel > len(ch_names):
raise ValueError('Requested stim_channel index ({}) exceeds total '
'number of channels in datafile ({})'
.format(stim_channel, len(ch_names)))
return stim_channel
def _find_exclude_idx(ch_names, exclude):
"""Find the index of all channels to exclude.
If there are several channels called "A" and we want to exclude "A",
then add (the index of) all "A" channels to the exclusion list.
"""
return [idx for idx, ch in enumerate(ch_names) if ch in exclude]
def read_raw_edf(input_fname, montage=None, eog=None, misc=None,
stim_channel='', annot=None, annotmap=None, exclude=(),
preload=False, verbose=None):
"""Reader function for EDF+, BDF, GDF conversion to FIF.
Parameters
----------
input_fname : str
Path to the EDF+, BDF, or GDF file.
montage : str | None | instance of Montage
Path or instance of montage containing electrode positions.
If None, sensor locations are (0,0,0). See the documentation of
:func:`mne.channels.read_montage` for more information.
eog : list or tuple
Names of channels or list of indices that should be designated
EOG channels. Values should correspond to the electrodes in the
edf file. Default is None.
misc : list or tuple
Names of channels or list of indices that should be designated
MISC channels. Values should correspond to the electrodes in the
edf file. Default is None.
stim_channel : str | int | 'auto' | False
The channel name or channel index (starting at 0). -1 corresponds to
the last channel. If False, there will be no stim channel added. If
'auto' (default), the stim channel will be added as the last channel if
the header contains ``'EDF Annotations'`` or GDF events (otherwise stim
channel will not be added). None is accepted as an alias for False.
.. warning:: This defaults to 'auto' in 0.17 but will default to False
in 0.18 (when no stim channel synthesis will be allowed)
and will be removed in 0.19; migrate code to use
:func:`mne.events_from_annotations` instead.
annot : str | None
Path to annotation file.
If None, no derived stim channel will be added (for files requiring
annotation file to interpret stim channel).
This was deprecated in 0.17 and will be removed in 0.18.
annotmap : str | None
Path to annotation map file containing mapping from label to trigger.
Must be specified if annot is not None.
This was deprecated in 0.17 and will be removed in 0.18.
exclude : list of str
Channel names to exclude. This can help when reading data with
different sampling rates to avoid unnecessary resampling.
preload : bool or str (default False)
Preload data into memory for data manipulation and faster indexing.
If True, the data will be preloaded into memory (fast, requires
large amount of memory). If preload is a string, preload is the
file name of a memory-mapped file which is used to store the data
on the hard drive (slower, requires less memory).
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
raw : Instance of RawEDF
A Raw object containing EDF data.
Notes
-----
Biosemi devices trigger codes are encoded in bits 1-16 of the status
channel, whereas system codes (CMS in/out-of range, battery low, etc.) are
coded in bits 16-23 (see http://www.biosemi.com/faq/trigger_signals.htm).
To retrieve correct event values (bits 1-16), one could do:
>>> events = mne.find_events(...) # doctest:+SKIP
>>> events[:, 2] >>= 8 # doctest:+SKIP
It is also possible to retrieve system codes, but no particular effort has
been made to decode these in MNE.
For GDF files, the stimulus channel is constructed from the events in the
header. You should use keyword ``stim_channel=-1`` to add it at the end of
the channel list. The id numbers of overlapping events are simply combined
through addition. To get the original events from the header, use method
``raw.find_edf_events``.
See Also
--------
mne.io.Raw : Documentation of attribute and methods.
"""
return RawEDF(input_fname=input_fname, montage=montage, eog=eog, misc=misc,
stim_channel=stim_channel, annot=annot, annotmap=annotmap,
exclude=exclude, preload=preload, verbose=verbose)
def _read_annotations_edf(annotations):
"""Annotation File Reader.
Parameters
----------
annotations : ndarray (n_chans, n_samples) | str
Channel data in EDF+ TAL format or path to annotation file.
Returns
-------
onset : array of float, shape (n_annotations,)
The starting time of annotations in seconds after ``orig_time``.
duration : array of float, shape (n_annotations,)
Durations of the annotations in seconds.
description : array of str, shape (n_annotations,)
Array of strings containing description for each annotation. If a
string, all the annotations are given the same description. To reject
epochs, use description starting with keyword 'bad'. See example above.
"""
pat = '([+-]\\d+\\.?\\d*)(\x15(\\d+\\.?\\d*))?(\x14.*?)\x14\x00'
if isinstance(annotations, str):
with io_open(annotations, encoding='latin-1') as annot_file:
triggers = re.findall(pat, annot_file.read())
else:
tals = bytearray()
for chan in annotations:
for s in chan:
i = int(s)
tals.extend(np.uint8([i % 256, i // 256]))
# use of latin-1 because characters are only encoded for the first 256
# code points and utf-8 can triggers an "invalid continuation byte"
# error
triggers = re.findall(pat, tals.decode('latin-1'))
events = []
for ev in triggers:
onset = float(ev[0])
duration = float(ev[2]) if ev[2] else 0
for description in ev[3].split('\x14')[1:]:
if description:
events.append([onset, duration, description])
return zip(*events) if events else (list(), list(), list())
def _get_edf_default_event_id(descriptions):
mapping = dict((a, n) for n, a in
enumerate(sorted(set(descriptions)), start=1))
return mapping
|