File: test_edf.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (423 lines) | stat: -rw-r--r-- 16,334 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
# -*- coding: utf-8 -*-
# Authors: Teon Brooks <teon.brooks@gmail.com>
#          Martin Billinger <martin.billinger@tugraz.at>
#          Alan Leggitt <alan.leggitt@ucsf.edu>
#          Alexandre Barachant <alexandre.barachant@gmail.com>
#          Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#
# License: BSD (3-clause)

import os.path as op
import inspect

import pytest

import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
                           assert_equal)
from scipy.io import loadmat

from mne import pick_types
from mne.datasets import testing
from mne.externals.six import iterbytes
from mne.utils import run_tests_if_main, requires_pandas, _TempDir
from mne.io import read_raw_edf
from mne.io.base import _RawShell
from mne.io.meas_info import _empty_info
from mne.io.tests.test_raw import _test_raw_reader
from mne.io.pick import channel_type
from mne.io.edf.edf import find_edf_events, _read_annot, _read_annotations_edf
from mne.io.edf.edf import _get_edf_default_event_id
from mne.io.edf.edf import _read_edf_header
from mne.event import find_events
from mne.annotations import events_from_annotations, read_annotations

FILE = inspect.getfile(inspect.currentframe())
data_dir = op.join(op.dirname(op.abspath(FILE)), 'data')
montage_path = op.join(data_dir, 'biosemi.hpts')
bdf_path = op.join(data_dir, 'test.bdf')
edf_path = op.join(data_dir, 'test.edf')
edf_uneven_path = op.join(data_dir, 'test_uneven_samp.edf')
bdf_eeglab_path = op.join(data_dir, 'test_bdf_eeglab.mat')
edf_eeglab_path = op.join(data_dir, 'test_edf_eeglab.mat')
edf_uneven_eeglab_path = op.join(data_dir, 'test_uneven_samp.mat')
edf_stim_channel_path = op.join(data_dir, 'test_edf_stim_channel.edf')
edf_txt_stim_channel_path = op.join(data_dir, 'test_edf_stim_channel.txt')

data_path = testing.data_path(download=False)
edf_stim_resamp_path = op.join(data_path, 'EDF', 'test_edf_stim_resamp.edf')
edf_overlap_annot_path = op.join(data_path, 'EDF',
                                 'test_edf_overlapping_annotations.edf')
edf_reduced = op.join(data_path, 'EDF', 'test_reduced.edf')
bdf_stim_channel_path = op.join(data_path, 'BDF', 'test_bdf_stim_channel.bdf')


eog = ['REOG', 'LEOG', 'IEOG']
misc = ['EXG1', 'EXG5', 'EXG8', 'M1', 'M2']


def test_orig_units():
    """Test exposure of original channel units."""
    raw = read_raw_edf(edf_path, stim_channel='auto', preload=True)

    # Test original units
    orig_units = raw._orig_units
    assert len(orig_units) == 140
    assert orig_units['A1'] == u'µV'  # formerly 'uV' edit by _check_orig_units


def test_bdf_data():
    """Test reading raw bdf files."""
    raw_py = _test_raw_reader(read_raw_edf, input_fname=bdf_path,
                              eog=eog, misc=misc,
                              exclude=['M2', 'IEOG'], stim_channel=None)
    assert len(raw_py.ch_names) == 71
    raw_py = _test_raw_reader(read_raw_edf, input_fname=bdf_path,
                              montage=montage_path, eog=eog, misc=misc,
                              exclude=['M2', 'IEOG'], stim_channel=-1)
    assert len(raw_py.ch_names) == 71
    assert 'RawEDF' in repr(raw_py)
    picks = pick_types(raw_py.info, meg=False, eeg=True, exclude='bads')
    data_py, _ = raw_py[picks]

    # this .mat was generated using the EEG Lab Biosemi Reader
    raw_eeglab = loadmat(bdf_eeglab_path)
    raw_eeglab = raw_eeglab['data'] * 1e-6  # data are stored in microvolts
    data_eeglab = raw_eeglab[picks]
    # bdf saved as a single, resolution to seven decimal points in matlab
    assert_array_almost_equal(data_py, data_eeglab, 8)

    # Manually checking that float coordinates are imported
    assert (raw_py.info['chs'][0]['loc']).any()
    assert (raw_py.info['chs'][25]['loc']).any()
    assert (raw_py.info['chs'][63]['loc']).any()


@testing.requires_testing_data
def test_bdf_stim_channel():
    """Test BDF stim channel."""
    # test if last channel is detected as STIM by default
    raw_py = _test_raw_reader(read_raw_edf, input_fname=bdf_path,
                              stim_channel='auto')
    assert channel_type(raw_py.info, raw_py.info["nchan"] - 1) == 'stim'

    # test BDF file with wrong scaling info in header - this should be ignored
    # for BDF stim channels
    events = [[242, 0, 4],
              [310, 0, 2],
              [952, 0, 1],
              [1606, 0, 1],
              [2249, 0, 1],
              [2900, 0, 1],
              [3537, 0, 1],
              [4162, 0, 1],
              [4790, 0, 1]]
    with pytest.deprecated_call(match='stim_channel'):
        raw = read_raw_edf(bdf_stim_channel_path, preload=True)
    bdf_events = find_events(raw)
    assert_array_equal(events, bdf_events)
    raw = read_raw_edf(bdf_stim_channel_path, preload=False,
                       stim_channel='auto')
    bdf_events = find_events(raw)
    assert_array_equal(events, bdf_events)


@testing.requires_testing_data
def test_edf_overlapping_annotations():
    """Test EDF with overlapping annotations."""
    with pytest.warns(RuntimeWarning, match='overlapping.* not fully support'):
        read_raw_edf(edf_overlap_annot_path, preload=True, stim_channel='auto',
                     verbose=True)


@testing.requires_testing_data
def test_edf_reduced():
    """Test EDF with various sampling rates."""
    _test_raw_reader(read_raw_edf, input_fname=edf_reduced, stim_channel=None,
                     verbose='error')


def test_edf_data():
    """Test edf files."""
    raw = _test_raw_reader(read_raw_edf, input_fname=edf_path,
                           stim_channel=None, exclude=['Ergo-Left', 'H10'],
                           verbose='error')
    raw_py = read_raw_edf(edf_path, stim_channel='auto', preload=True)

    assert_equal(len(raw.ch_names) + 2, len(raw_py.ch_names))
    # Test saving and loading when annotations were parsed.
    edf_events = find_events(raw_py, output='step', shortest_event=0,
                             stim_channel='STI 014')

    # onset, duration, id
    events = [[0.1344, 0.2560, 2],
              [0.3904, 1.0000, 2],
              [2.0000, 0.0000, 3],
              [2.5000, 2.5000, 2]]
    events = np.array(events)
    events[:, :2] *= 512  # convert time to samples
    events = np.array(events, dtype=int)
    events[:, 1] -= 1
    events[events[:, 1] <= 0, 1] = 1
    events[:, 1] += events[:, 0]

    onsets = events[:, [0, 2]]
    offsets = events[:, [1, 2]]

    events = np.zeros((2 * events.shape[0], 3), dtype=int)
    events[0::2, [0, 2]] = onsets
    events[1::2, [0, 1]] = offsets

    assert_array_equal(edf_events, events)

    # Test with number of records not in header (-1).
    tempdir = _TempDir()
    broken_fname = op.join(tempdir, 'broken.edf')
    with open(edf_path, 'rb') as fid_in:
        fid_in.seek(0, 2)
        n_bytes = fid_in.tell()
        fid_in.seek(0, 0)
        rbytes = fid_in.read(int(n_bytes * 0.4))
    with open(broken_fname, 'wb') as fid_out:
        fid_out.write(rbytes[:236])
        fid_out.write(bytes('-1      '.encode()))
        fid_out.write(rbytes[244:])
    with pytest.warns(RuntimeWarning,
                      match='records .* not match the file size'):
        raw = read_raw_edf(broken_fname, preload=True, stim_channel='auto')
        read_raw_edf(broken_fname, exclude=raw.ch_names[:132], preload=True,
                     stim_channel='auto')


@testing.requires_testing_data
def test_stim_channel():
    """Test reading raw edf files with stim channel."""
    raw_py = read_raw_edf(edf_path, misc=range(-4, 0), stim_channel=139,
                          preload=True)

    picks = pick_types(raw_py.info, meg=False, eeg=True,
                       exclude=['EDF Annotations'])
    data_py, _ = raw_py[picks]

    print(raw_py)  # to test repr
    print(raw_py.info)  # to test Info repr

    # this .mat was generated using the EEG Lab Biosemi Reader
    raw_eeglab = loadmat(edf_eeglab_path)
    raw_eeglab = raw_eeglab['data'] * 1e-6  # data are stored in microvolts
    data_eeglab = raw_eeglab[picks]

    assert_array_almost_equal(data_py, data_eeglab, 10)
    events = find_edf_events(raw_py)
    assert len(events) - 1 == len(find_events(raw_py))  # start not found

    # Test uneven sampling
    raw_py = read_raw_edf(edf_uneven_path, stim_channel=None)
    data_py, _ = raw_py[0]
    # this .mat was generated using the EEG Lab Biosemi Reader
    raw_eeglab = loadmat(edf_uneven_eeglab_path)
    raw_eeglab = raw_eeglab['data']
    data_eeglab = raw_eeglab[0]

    # match upsampling
    upsample = len(data_eeglab) / len(raw_py)
    data_py = np.repeat(data_py, repeats=upsample)
    assert_array_equal(data_py, data_eeglab)

    pytest.raises(RuntimeError, read_raw_edf, edf_path, preload=False,
                  stim_channel=-1)

    with pytest.warns(RuntimeWarning,
                      match='Interpolating stim .* Events may jitter'):
        raw = read_raw_edf(edf_stim_resamp_path, verbose=True, stim_channel=-1)
    with pytest.warns(None) as w:
        raw[:]
    assert len(w) == 0

    events = raw_py.find_edf_events()
    assert len(events) == 0


def test_parse_annotation():
    """Test parsing the tal channel."""
    # test the parser
    annot = (b'+180\x14Lights off\x14Close door\x14\x00\x00\x00\x00\x00'
             b'+180\x14Lights off\x14\x00\x00\x00\x00\x00\x00\x00\x00'
             b'+180\x14Close door\x14\x00\x00\x00\x00\x00\x00\x00\x00'
             b'+3.14\x1504.20\x14nothing\x14\x00\x00\x00\x00'
             b'+1800.2\x1525.5\x14Apnea\x14\x00\x00\x00\x00\x00\x00\x00'
             b'+123\x14\x14\x00\x00\x00\x00\x00\x00\x00')
    annot = [a for a in iterbytes(annot)]
    annot[1::2] = [a * 256 for a in annot[1::2]]
    tal_channel = map(sum, zip(annot[0::2], annot[1::2]))

    onset, duration, description = _read_annotations_edf([tal_channel])
    assert_equal(np.column_stack((onset, duration, description)),
                 [[180., 0., 'Lights off'], [180., 0., 'Close door'],
                  [180., 0., 'Lights off'], [180., 0., 'Close door'],
                  [3.14, 4.2, 'nothing'], [1800.2, 25.5, 'Apnea']])


def test_edf_annotations():
    """Test if events are detected correctly in a typical MNE workflow."""
    # test an actual file
    raw = read_raw_edf(edf_path, preload=True, stim_channel='auto')
    edf_events = find_events(raw, output='step', shortest_event=0,
                             stim_channel='STI 014')

    # onset, duration, id
    events = [[0.1344, 0.2560, 2],
              [0.3904, 1.0000, 2],
              [2.0000, 0.0000, 3],
              [2.5000, 2.5000, 2]]
    events = np.array(events)
    events[:, :2] *= 512  # convert time to samples
    events = np.array(events, dtype=int)
    events[:, 1] -= 1
    events[events[:, 1] <= 0, 1] = 1
    events[:, 1] += events[:, 0]

    onsets = events[:, [0, 2]]
    offsets = events[:, [1, 2]]

    events = np.zeros((2 * events.shape[0], 3), dtype=int)
    events[0::2, [0, 2]] = onsets
    events[1::2, [0, 1]] = offsets

    assert_array_equal(edf_events, events)


def test_edf_stim_channel():
    """Test stim channel for edf file."""
    # test if stim channel is automatically detected
    raw = read_raw_edf(edf_path, preload=True, stim_channel='auto')
    assert channel_type(raw.info, raw.info["nchan"] - 1) == 'stim'

    raw = read_raw_edf(edf_stim_channel_path, preload=True,
                       stim_channel=-1)
    true_data = np.loadtxt(edf_txt_stim_channel_path).T

    # EDF writer pad data if file to small
    _, ns = true_data.shape
    edf_data = raw._data[:, :ns]

    # assert stim channels are equal
    assert_array_equal(true_data[-1], edf_data[-1])

    # assert data are equal
    assert_array_almost_equal(true_data[0:-1] * 1e-6, edf_data[0:-1])


@requires_pandas
def test_to_data_frame():
    """Test edf Raw Pandas exporter."""
    for path in [edf_path, bdf_path]:
        raw = read_raw_edf(path, stim_channel=None, preload=True,
                           verbose='error')
        _, times = raw[0, :10]
        df = raw.to_data_frame()
        assert (df.columns == raw.ch_names).all()
        assert_array_equal(np.round(times * 1e3), df.index.values[:10])
        df = raw.to_data_frame(index=None, scalings={'eeg': 1e13})
        assert 'time' in df.index.names
        assert_array_equal(df.values[:, 0], raw._data[0] * 1e13)


def test_read_annot(tmpdir):
    """Test parsing the tal channel."""
    EXPECTED_ANNOTATIONS = [[180.0, 0, 'Lights off'], [180.0, 0, 'Close door'],
                            [180.0, 0, 'Lights off'], [180.0, 0, 'Close door'],
                            [3.14, 4.2, 'nothing'], [1800.2, 25.5, 'Apnea']]
    SFREQ = 100
    DATA_LENGTH = int(EXPECTED_ANNOTATIONS[-1][0] * SFREQ) + 1
    annot = (b'+180\x14Lights off\x14Close door\x14\x00\x00\x00\x00\x00'
             b'+180\x14Lights off\x14\x00\x00\x00\x00\x00\x00\x00\x00'
             b'+180\x14Close door\x14\x00\x00\x00\x00\x00\x00\x00\x00'
             b'+3.14\x1504.20\x14nothing\x14\x00\x00\x00\x00'
             b'+1800.2\x1525.5\x14Apnea\x14\x00\x00\x00\x00\x00\x00\x00'
             b'+123\x14\x14\x00\x00\x00\x00\x00\x00\x00')
    annot_file = tmpdir.join('annotations.txt')
    annot_file.write(annot)
    annotmap_file = tmpdir.join('annotations_map.txt')
    annotmap_file.write('Lights off:1,nothing:2,Apnea:3,Close door:4')

    stim_ch = _read_annot(annot=str(annot_file), annotmap=str(annotmap_file),
                          sfreq=SFREQ, data_length=DATA_LENGTH)

    assert stim_ch.shape == (DATA_LENGTH,)
    assert_array_equal(np.bincount(stim_ch), [180018, 0, 1, 1, 1])


def test_read_raw_edf_deprecation_of_annot_annotmap(tmpdir):
    """Test deprecation of annot and annotmap."""
    annot = (b'+0.1344\x150.2560\x14two\x14\x00\x00\x00\x00'
             b'+0.3904\x151.0\x14two\x14\x00\x00\x00\x00'
             b'+2.0\x14three\x14\x00\x00\x00\x00\x00\x00\x00\x00'
             b'+2.5\x152.5\x14two\x14\x00\x00\x00\x00')
    annot_file = tmpdir.join('annotations.txt')
    annot_file.write(annot)
    annotmap_file = tmpdir.join('annotations_map.txt')
    annotmap_file.write('two:2,three:3')

    with pytest.warns(DeprecationWarning, match="annot.*annotmap.*"):
        read_raw_edf(input_fname=edf_path, annot=str(annot_file),
                     annotmap=str(annotmap_file), preload=True)


def _compute_sfreq_from_edf_info(edf_info):
    # Compute sfreq from edf_info
    sel = edf_info['sel']
    n_samps = edf_info['n_samps'][sel]
    sfreq = n_samps.max() * \
        edf_info['record_length'][1] / edf_info['record_length'][0]

    return sfreq


def _get_empty_raw_with_valid_annot(fname):
    raw = _RawShell()
    raw.first_samp = 0
    edf_info, orig_units = _read_edf_header(fname=fname, annot=None,
                                            annotmap=None, exclude=())

    sfreq = _compute_sfreq_from_edf_info(edf_info)
    raw.info = _empty_info(sfreq)
    raw.info['meas_date'] = edf_info['meas_date']

    def _time_as_index(times, use_rounding, origin):
        if use_rounding:
            return np.round(np.atleast_1d(times) * sfreq)
        else:
            return np.floor(np.atleast_1d(times) * sfreq)

    raw.time_as_index = _time_as_index
    return raw


@testing.requires_testing_data
def test_find_events_and_events_from_annot_are_the_same():
    """Test that old behaviour and new produce the same events."""
    EXPECTED_EVENTS = [[68, 0, 2],
                       [199, 0, 2],
                       [1024, 0, 3],
                       [1280, 0, 2]]
    raw = read_raw_edf(edf_path, preload=True, stim_channel='auto')
    raw_shell = _get_empty_raw_with_valid_annot(edf_path)
    assert raw_shell.info['meas_date'] == raw.info['meas_date']
    assert raw_shell.info['sfreq'] == raw.info['sfreq']
    assert raw_shell.first_samp == raw.first_samp

    events_from_find_events = find_events(raw)
    assert_array_equal(events_from_find_events, EXPECTED_EVENTS)

    annot = read_annotations(edf_path)
    raw_shell.set_annotations(annot)
    event_id = _get_edf_default_event_id(annot.description)
    event_id.pop('start')
    events_from_EFA, _ = events_from_annotations(raw_shell, event_id=event_id,
                                                 use_rounding=False)

    assert_array_equal(events_from_EFA, events_from_find_events)


run_tests_if_main()