1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
|
# -*- coding: utf-8 -*-
# Authors: Teon Brooks <teon.brooks@gmail.com>
# Martin Billinger <martin.billinger@tugraz.at>
# Alan Leggitt <alan.leggitt@ucsf.edu>
# Alexandre Barachant <alexandre.barachant@gmail.com>
# Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#
# License: BSD (3-clause)
import os.path as op
import inspect
import pytest
import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
assert_equal)
from scipy.io import loadmat
from mne import pick_types
from mne.datasets import testing
from mne.externals.six import iterbytes
from mne.utils import run_tests_if_main, requires_pandas, _TempDir
from mne.io import read_raw_edf
from mne.io.base import _RawShell
from mne.io.meas_info import _empty_info
from mne.io.tests.test_raw import _test_raw_reader
from mne.io.pick import channel_type
from mne.io.edf.edf import find_edf_events, _read_annot, _read_annotations_edf
from mne.io.edf.edf import _get_edf_default_event_id
from mne.io.edf.edf import _read_edf_header
from mne.event import find_events
from mne.annotations import events_from_annotations, read_annotations
FILE = inspect.getfile(inspect.currentframe())
data_dir = op.join(op.dirname(op.abspath(FILE)), 'data')
montage_path = op.join(data_dir, 'biosemi.hpts')
bdf_path = op.join(data_dir, 'test.bdf')
edf_path = op.join(data_dir, 'test.edf')
edf_uneven_path = op.join(data_dir, 'test_uneven_samp.edf')
bdf_eeglab_path = op.join(data_dir, 'test_bdf_eeglab.mat')
edf_eeglab_path = op.join(data_dir, 'test_edf_eeglab.mat')
edf_uneven_eeglab_path = op.join(data_dir, 'test_uneven_samp.mat')
edf_stim_channel_path = op.join(data_dir, 'test_edf_stim_channel.edf')
edf_txt_stim_channel_path = op.join(data_dir, 'test_edf_stim_channel.txt')
data_path = testing.data_path(download=False)
edf_stim_resamp_path = op.join(data_path, 'EDF', 'test_edf_stim_resamp.edf')
edf_overlap_annot_path = op.join(data_path, 'EDF',
'test_edf_overlapping_annotations.edf')
edf_reduced = op.join(data_path, 'EDF', 'test_reduced.edf')
bdf_stim_channel_path = op.join(data_path, 'BDF', 'test_bdf_stim_channel.bdf')
eog = ['REOG', 'LEOG', 'IEOG']
misc = ['EXG1', 'EXG5', 'EXG8', 'M1', 'M2']
def test_orig_units():
"""Test exposure of original channel units."""
raw = read_raw_edf(edf_path, stim_channel='auto', preload=True)
# Test original units
orig_units = raw._orig_units
assert len(orig_units) == 140
assert orig_units['A1'] == u'µV' # formerly 'uV' edit by _check_orig_units
def test_bdf_data():
"""Test reading raw bdf files."""
raw_py = _test_raw_reader(read_raw_edf, input_fname=bdf_path,
eog=eog, misc=misc,
exclude=['M2', 'IEOG'], stim_channel=None)
assert len(raw_py.ch_names) == 71
raw_py = _test_raw_reader(read_raw_edf, input_fname=bdf_path,
montage=montage_path, eog=eog, misc=misc,
exclude=['M2', 'IEOG'], stim_channel=-1)
assert len(raw_py.ch_names) == 71
assert 'RawEDF' in repr(raw_py)
picks = pick_types(raw_py.info, meg=False, eeg=True, exclude='bads')
data_py, _ = raw_py[picks]
# this .mat was generated using the EEG Lab Biosemi Reader
raw_eeglab = loadmat(bdf_eeglab_path)
raw_eeglab = raw_eeglab['data'] * 1e-6 # data are stored in microvolts
data_eeglab = raw_eeglab[picks]
# bdf saved as a single, resolution to seven decimal points in matlab
assert_array_almost_equal(data_py, data_eeglab, 8)
# Manually checking that float coordinates are imported
assert (raw_py.info['chs'][0]['loc']).any()
assert (raw_py.info['chs'][25]['loc']).any()
assert (raw_py.info['chs'][63]['loc']).any()
@testing.requires_testing_data
def test_bdf_stim_channel():
"""Test BDF stim channel."""
# test if last channel is detected as STIM by default
raw_py = _test_raw_reader(read_raw_edf, input_fname=bdf_path,
stim_channel='auto')
assert channel_type(raw_py.info, raw_py.info["nchan"] - 1) == 'stim'
# test BDF file with wrong scaling info in header - this should be ignored
# for BDF stim channels
events = [[242, 0, 4],
[310, 0, 2],
[952, 0, 1],
[1606, 0, 1],
[2249, 0, 1],
[2900, 0, 1],
[3537, 0, 1],
[4162, 0, 1],
[4790, 0, 1]]
with pytest.deprecated_call(match='stim_channel'):
raw = read_raw_edf(bdf_stim_channel_path, preload=True)
bdf_events = find_events(raw)
assert_array_equal(events, bdf_events)
raw = read_raw_edf(bdf_stim_channel_path, preload=False,
stim_channel='auto')
bdf_events = find_events(raw)
assert_array_equal(events, bdf_events)
@testing.requires_testing_data
def test_edf_overlapping_annotations():
"""Test EDF with overlapping annotations."""
with pytest.warns(RuntimeWarning, match='overlapping.* not fully support'):
read_raw_edf(edf_overlap_annot_path, preload=True, stim_channel='auto',
verbose=True)
@testing.requires_testing_data
def test_edf_reduced():
"""Test EDF with various sampling rates."""
_test_raw_reader(read_raw_edf, input_fname=edf_reduced, stim_channel=None,
verbose='error')
def test_edf_data():
"""Test edf files."""
raw = _test_raw_reader(read_raw_edf, input_fname=edf_path,
stim_channel=None, exclude=['Ergo-Left', 'H10'],
verbose='error')
raw_py = read_raw_edf(edf_path, stim_channel='auto', preload=True)
assert_equal(len(raw.ch_names) + 2, len(raw_py.ch_names))
# Test saving and loading when annotations were parsed.
edf_events = find_events(raw_py, output='step', shortest_event=0,
stim_channel='STI 014')
# onset, duration, id
events = [[0.1344, 0.2560, 2],
[0.3904, 1.0000, 2],
[2.0000, 0.0000, 3],
[2.5000, 2.5000, 2]]
events = np.array(events)
events[:, :2] *= 512 # convert time to samples
events = np.array(events, dtype=int)
events[:, 1] -= 1
events[events[:, 1] <= 0, 1] = 1
events[:, 1] += events[:, 0]
onsets = events[:, [0, 2]]
offsets = events[:, [1, 2]]
events = np.zeros((2 * events.shape[0], 3), dtype=int)
events[0::2, [0, 2]] = onsets
events[1::2, [0, 1]] = offsets
assert_array_equal(edf_events, events)
# Test with number of records not in header (-1).
tempdir = _TempDir()
broken_fname = op.join(tempdir, 'broken.edf')
with open(edf_path, 'rb') as fid_in:
fid_in.seek(0, 2)
n_bytes = fid_in.tell()
fid_in.seek(0, 0)
rbytes = fid_in.read(int(n_bytes * 0.4))
with open(broken_fname, 'wb') as fid_out:
fid_out.write(rbytes[:236])
fid_out.write(bytes('-1 '.encode()))
fid_out.write(rbytes[244:])
with pytest.warns(RuntimeWarning,
match='records .* not match the file size'):
raw = read_raw_edf(broken_fname, preload=True, stim_channel='auto')
read_raw_edf(broken_fname, exclude=raw.ch_names[:132], preload=True,
stim_channel='auto')
@testing.requires_testing_data
def test_stim_channel():
"""Test reading raw edf files with stim channel."""
raw_py = read_raw_edf(edf_path, misc=range(-4, 0), stim_channel=139,
preload=True)
picks = pick_types(raw_py.info, meg=False, eeg=True,
exclude=['EDF Annotations'])
data_py, _ = raw_py[picks]
print(raw_py) # to test repr
print(raw_py.info) # to test Info repr
# this .mat was generated using the EEG Lab Biosemi Reader
raw_eeglab = loadmat(edf_eeglab_path)
raw_eeglab = raw_eeglab['data'] * 1e-6 # data are stored in microvolts
data_eeglab = raw_eeglab[picks]
assert_array_almost_equal(data_py, data_eeglab, 10)
events = find_edf_events(raw_py)
assert len(events) - 1 == len(find_events(raw_py)) # start not found
# Test uneven sampling
raw_py = read_raw_edf(edf_uneven_path, stim_channel=None)
data_py, _ = raw_py[0]
# this .mat was generated using the EEG Lab Biosemi Reader
raw_eeglab = loadmat(edf_uneven_eeglab_path)
raw_eeglab = raw_eeglab['data']
data_eeglab = raw_eeglab[0]
# match upsampling
upsample = len(data_eeglab) / len(raw_py)
data_py = np.repeat(data_py, repeats=upsample)
assert_array_equal(data_py, data_eeglab)
pytest.raises(RuntimeError, read_raw_edf, edf_path, preload=False,
stim_channel=-1)
with pytest.warns(RuntimeWarning,
match='Interpolating stim .* Events may jitter'):
raw = read_raw_edf(edf_stim_resamp_path, verbose=True, stim_channel=-1)
with pytest.warns(None) as w:
raw[:]
assert len(w) == 0
events = raw_py.find_edf_events()
assert len(events) == 0
def test_parse_annotation():
"""Test parsing the tal channel."""
# test the parser
annot = (b'+180\x14Lights off\x14Close door\x14\x00\x00\x00\x00\x00'
b'+180\x14Lights off\x14\x00\x00\x00\x00\x00\x00\x00\x00'
b'+180\x14Close door\x14\x00\x00\x00\x00\x00\x00\x00\x00'
b'+3.14\x1504.20\x14nothing\x14\x00\x00\x00\x00'
b'+1800.2\x1525.5\x14Apnea\x14\x00\x00\x00\x00\x00\x00\x00'
b'+123\x14\x14\x00\x00\x00\x00\x00\x00\x00')
annot = [a for a in iterbytes(annot)]
annot[1::2] = [a * 256 for a in annot[1::2]]
tal_channel = map(sum, zip(annot[0::2], annot[1::2]))
onset, duration, description = _read_annotations_edf([tal_channel])
assert_equal(np.column_stack((onset, duration, description)),
[[180., 0., 'Lights off'], [180., 0., 'Close door'],
[180., 0., 'Lights off'], [180., 0., 'Close door'],
[3.14, 4.2, 'nothing'], [1800.2, 25.5, 'Apnea']])
def test_edf_annotations():
"""Test if events are detected correctly in a typical MNE workflow."""
# test an actual file
raw = read_raw_edf(edf_path, preload=True, stim_channel='auto')
edf_events = find_events(raw, output='step', shortest_event=0,
stim_channel='STI 014')
# onset, duration, id
events = [[0.1344, 0.2560, 2],
[0.3904, 1.0000, 2],
[2.0000, 0.0000, 3],
[2.5000, 2.5000, 2]]
events = np.array(events)
events[:, :2] *= 512 # convert time to samples
events = np.array(events, dtype=int)
events[:, 1] -= 1
events[events[:, 1] <= 0, 1] = 1
events[:, 1] += events[:, 0]
onsets = events[:, [0, 2]]
offsets = events[:, [1, 2]]
events = np.zeros((2 * events.shape[0], 3), dtype=int)
events[0::2, [0, 2]] = onsets
events[1::2, [0, 1]] = offsets
assert_array_equal(edf_events, events)
def test_edf_stim_channel():
"""Test stim channel for edf file."""
# test if stim channel is automatically detected
raw = read_raw_edf(edf_path, preload=True, stim_channel='auto')
assert channel_type(raw.info, raw.info["nchan"] - 1) == 'stim'
raw = read_raw_edf(edf_stim_channel_path, preload=True,
stim_channel=-1)
true_data = np.loadtxt(edf_txt_stim_channel_path).T
# EDF writer pad data if file to small
_, ns = true_data.shape
edf_data = raw._data[:, :ns]
# assert stim channels are equal
assert_array_equal(true_data[-1], edf_data[-1])
# assert data are equal
assert_array_almost_equal(true_data[0:-1] * 1e-6, edf_data[0:-1])
@requires_pandas
def test_to_data_frame():
"""Test edf Raw Pandas exporter."""
for path in [edf_path, bdf_path]:
raw = read_raw_edf(path, stim_channel=None, preload=True,
verbose='error')
_, times = raw[0, :10]
df = raw.to_data_frame()
assert (df.columns == raw.ch_names).all()
assert_array_equal(np.round(times * 1e3), df.index.values[:10])
df = raw.to_data_frame(index=None, scalings={'eeg': 1e13})
assert 'time' in df.index.names
assert_array_equal(df.values[:, 0], raw._data[0] * 1e13)
def test_read_annot(tmpdir):
"""Test parsing the tal channel."""
EXPECTED_ANNOTATIONS = [[180.0, 0, 'Lights off'], [180.0, 0, 'Close door'],
[180.0, 0, 'Lights off'], [180.0, 0, 'Close door'],
[3.14, 4.2, 'nothing'], [1800.2, 25.5, 'Apnea']]
SFREQ = 100
DATA_LENGTH = int(EXPECTED_ANNOTATIONS[-1][0] * SFREQ) + 1
annot = (b'+180\x14Lights off\x14Close door\x14\x00\x00\x00\x00\x00'
b'+180\x14Lights off\x14\x00\x00\x00\x00\x00\x00\x00\x00'
b'+180\x14Close door\x14\x00\x00\x00\x00\x00\x00\x00\x00'
b'+3.14\x1504.20\x14nothing\x14\x00\x00\x00\x00'
b'+1800.2\x1525.5\x14Apnea\x14\x00\x00\x00\x00\x00\x00\x00'
b'+123\x14\x14\x00\x00\x00\x00\x00\x00\x00')
annot_file = tmpdir.join('annotations.txt')
annot_file.write(annot)
annotmap_file = tmpdir.join('annotations_map.txt')
annotmap_file.write('Lights off:1,nothing:2,Apnea:3,Close door:4')
stim_ch = _read_annot(annot=str(annot_file), annotmap=str(annotmap_file),
sfreq=SFREQ, data_length=DATA_LENGTH)
assert stim_ch.shape == (DATA_LENGTH,)
assert_array_equal(np.bincount(stim_ch), [180018, 0, 1, 1, 1])
def test_read_raw_edf_deprecation_of_annot_annotmap(tmpdir):
"""Test deprecation of annot and annotmap."""
annot = (b'+0.1344\x150.2560\x14two\x14\x00\x00\x00\x00'
b'+0.3904\x151.0\x14two\x14\x00\x00\x00\x00'
b'+2.0\x14three\x14\x00\x00\x00\x00\x00\x00\x00\x00'
b'+2.5\x152.5\x14two\x14\x00\x00\x00\x00')
annot_file = tmpdir.join('annotations.txt')
annot_file.write(annot)
annotmap_file = tmpdir.join('annotations_map.txt')
annotmap_file.write('two:2,three:3')
with pytest.warns(DeprecationWarning, match="annot.*annotmap.*"):
read_raw_edf(input_fname=edf_path, annot=str(annot_file),
annotmap=str(annotmap_file), preload=True)
def _compute_sfreq_from_edf_info(edf_info):
# Compute sfreq from edf_info
sel = edf_info['sel']
n_samps = edf_info['n_samps'][sel]
sfreq = n_samps.max() * \
edf_info['record_length'][1] / edf_info['record_length'][0]
return sfreq
def _get_empty_raw_with_valid_annot(fname):
raw = _RawShell()
raw.first_samp = 0
edf_info, orig_units = _read_edf_header(fname=fname, annot=None,
annotmap=None, exclude=())
sfreq = _compute_sfreq_from_edf_info(edf_info)
raw.info = _empty_info(sfreq)
raw.info['meas_date'] = edf_info['meas_date']
def _time_as_index(times, use_rounding, origin):
if use_rounding:
return np.round(np.atleast_1d(times) * sfreq)
else:
return np.floor(np.atleast_1d(times) * sfreq)
raw.time_as_index = _time_as_index
return raw
@testing.requires_testing_data
def test_find_events_and_events_from_annot_are_the_same():
"""Test that old behaviour and new produce the same events."""
EXPECTED_EVENTS = [[68, 0, 2],
[199, 0, 2],
[1024, 0, 3],
[1280, 0, 2]]
raw = read_raw_edf(edf_path, preload=True, stim_channel='auto')
raw_shell = _get_empty_raw_with_valid_annot(edf_path)
assert raw_shell.info['meas_date'] == raw.info['meas_date']
assert raw_shell.info['sfreq'] == raw.info['sfreq']
assert raw_shell.first_samp == raw.first_samp
events_from_find_events = find_events(raw)
assert_array_equal(events_from_find_events, EXPECTED_EVENTS)
annot = read_annotations(edf_path)
raw_shell.set_annotations(annot)
event_id = _get_edf_default_event_id(annot.description)
event_id.pop('start')
events_from_EFA, _ = events_from_annotations(raw_shell, event_id=event_id,
use_rounding=False)
assert_array_equal(events_from_EFA, events_from_find_events)
run_tests_if_main()
|