1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
|
# Authors: Mainak Jas <mainak.jas@telecom-paristech.fr>
# Jona Sassenhagen <jona.sassenhagen@gmail.com>
# Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#
# License: BSD (3-clause)
import os.path as op
import numpy as np
from functools import partial
from ..utils import (_read_segments_file, _find_channels,
_synthesize_stim_channel, _deprecate_stim_channel)
from ...utils import deprecated
from ..constants import FIFF, Bunch
from ..meas_info import _empty_info, create_info
from ..base import BaseRaw, _check_update_montage
from ...utils import logger, verbose, warn
from ...channels.montage import Montage
from ...epochs import BaseEpochs
from ...event import read_events
from ...externals.six import string_types
from ...annotations import (Annotations, events_from_annotations,
read_annotations)
# just fix the scaling for now, EEGLAB doesn't seem to provide this info
CAL = 1e-6
def _check_fname(fname):
"""Check if the file extension is valid."""
fmt = str(op.splitext(fname)[-1])
if fmt == '.dat':
raise NotImplementedError(
'Old data format .dat detected. Please update your EEGLAB '
'version and resave the data in .fdt format')
elif fmt != '.fdt':
raise IOError('Expected .fdt file format. Found %s format' % fmt)
def _check_load_mat(fname, uint16_codec):
"""Check if the mat struct contains 'EEG'."""
from ...externals.pymatreader import read_mat
eeg = read_mat(fname, uint16_codec=uint16_codec)
if 'ALLEEG' in eeg:
raise NotImplementedError(
'Loading an ALLEEG array is not supported. Please contact'
'mne-python developers for more information.')
if 'EEG' not in eeg:
raise ValueError('Could not find EEG array in the .set file.')
eeg = Bunch(**eeg['EEG'])
eeg.trials = int(eeg.trials)
eeg.nbchan = int(eeg.nbchan)
eeg.pnts = int(eeg.pnts)
return eeg
def _to_loc(ll):
"""Check if location exists."""
if isinstance(ll, (int, float)) or len(ll) > 0:
return ll
else:
return np.nan
def _get_info(eeg, montage, eog=()):
"""Get measurement info."""
from scipy import io
info = _empty_info(sfreq=eeg.srate)
update_ch_names = True
# add the ch_names and info['chs'][idx]['loc']
path = None
if not isinstance(eeg.chanlocs, np.ndarray) and eeg.nbchan == 1:
eeg.chanlocs = [eeg.chanlocs]
if isinstance(eeg.chanlocs, dict):
eeg.chanlocs = _dol_to_lod(eeg.chanlocs)
good = len(eeg.chanlocs) > 0
if good:
pos_fields = ['X', 'Y', 'Z']
if isinstance(eeg.chanlocs[0], io.matlab.mio5_params.mat_struct):
has_pos = all(hasattr(eeg.chanlocs[0], fld)
for fld in pos_fields)
elif isinstance(eeg.chanlocs[0], np.ndarray):
# Old files
has_pos = all(fld in eeg.chanlocs[0].dtype.names
for fld in pos_fields)
elif isinstance(eeg.chanlocs[0], dict):
# new files
has_pos = all(fld in eeg.chanlocs[0] for fld in pos_fields)
else:
good = False
has_pos = False # unknown (sometimes we get [0, 0])
if good:
get_pos = has_pos and montage is None
pos_ch_names, ch_names, pos = list(), list(), list()
kind = 'user_defined'
update_ch_names = False
for chanloc in eeg.chanlocs:
ch_names.append(chanloc['labels'])
if get_pos:
loc_x = _to_loc(chanloc['X'])
loc_y = _to_loc(chanloc['Y'])
loc_z = _to_loc(chanloc['Z'])
locs = np.r_[-loc_y, loc_x, loc_z]
if not np.any(np.isnan(locs)):
pos_ch_names.append(chanloc['labels'])
pos.append(locs)
n_channels_with_pos = len(pos_ch_names)
info = create_info(ch_names, eeg.srate, ch_types='eeg')
if n_channels_with_pos > 0:
selection = np.arange(n_channels_with_pos)
montage = Montage(np.array(pos), pos_ch_names, kind, selection)
elif isinstance(montage, string_types):
path = op.dirname(montage)
else: # if eeg.chanlocs is empty, we still need default chan names
ch_names = ["EEG %03d" % ii for ii in range(eeg.nbchan)]
if montage is None:
info = create_info(ch_names, eeg.srate, ch_types='eeg')
else:
_check_update_montage(
info, montage, path=path, update_ch_names=update_ch_names,
raise_missing=False)
if eog == 'auto':
eog = _find_channels(ch_names)
for idx, ch in enumerate(info['chs']):
ch['cal'] = CAL
if ch['ch_name'] in eog or idx in eog:
ch['coil_type'] = FIFF.FIFFV_COIL_NONE
ch['kind'] = FIFF.FIFFV_EOG_CH
return info
def read_raw_eeglab(input_fname, montage=None, eog=(), event_id=None,
event_id_func='strip_to_integer', preload=False,
uint16_codec=None, stim_channel=None, verbose=None):
r"""Read an EEGLAB .set file.
Parameters
----------
input_fname : str
Path to the .set file. If the data is stored in a separate .fdt file,
it is expected to be in the same folder as the .set file.
montage : str | None | instance of montage
Path or instance of montage containing electrode positions.
If None, sensor locations are (0,0,0). See the documentation of
:func:`mne.channels.read_montage` for more information.
eog : list | tuple | 'auto'
Names or indices of channels that should be designated EOG channels.
If 'auto', the channel names containing ``EOG`` or ``EYE`` are used.
Defaults to empty tuple.
event_id : dict | None
The ids of the events to consider. If None (default), an empty dict is
used and ``event_id_func`` (see below) is called on every event value.
If dict, the keys will be mapped to trigger values on the stimulus
channel and only keys not in ``event_id`` will be handled by
``event_id_func``. Keys are case-sensitive.
Example::
{'SyncStatus': 1; 'Pulse Artifact': 3}
This was deprecated in 0.17 and will be removed in 0.18.
event_id_func : None | str | callable
What to do for events not found in ``event_id``. Must take one ``str``
argument and return an ``int``. If string, must be 'strip-to-integer',
in which case it defaults to stripping event codes such as "D128" or
"S 1" of their non-integer parts and returns the integer.
If the event is not in the ``event_id`` and calling ``event_id_func``
on it results in a ``TypeError`` (e.g. if ``event_id_func`` is
``None``) or a ``ValueError``, the event is dropped.
This was deprecated in 0.17 and will be removed in 0.18.
preload : bool or str (default False)
Preload data into memory for data manipulation and faster indexing.
If True, the data will be preloaded into memory (fast, requires
large amount of memory). If preload is a string, preload is the
file name of a memory-mapped file which is used to store the data
on the hard drive (slower, requires less memory). Note that
preload=False will be effective only if the data is stored in a
separate binary file.
uint16_codec : str | None
If your \*.set file contains non-ascii characters, sometimes reading
it may fail and give rise to error message stating that "buffer is
too small". ``uint16_codec`` allows to specify what codec (for example:
'latin1' or 'utf-8') should be used when reading character arrays and
can therefore help you solve this problem.
stim_channel : bool (default True)
Add a stim channel from the events.
.. warning:: This defaults to True in 0.17 but will change to False in
0.18 (when no stim channel synthesis will be allowed)
and be removed in 0.19; migrate code to use
:func:`mne.events_from_annotations` instead.
.. versionadded:: 0.17
verbose : bool | str | int | None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
raw : Instance of RawEEGLAB
A Raw object containing EEGLAB .set data.
Notes
-----
.. versionadded:: 0.11.0
See Also
--------
mne.io.Raw : Documentation of attribute and methods.
"""
return RawEEGLAB(input_fname=input_fname, montage=montage, preload=preload,
eog=eog, event_id=event_id, event_id_func=event_id_func,
verbose=verbose, uint16_codec=uint16_codec,
stim_channel=stim_channel)
def read_epochs_eeglab(input_fname, events=None, event_id=None, montage=None,
eog=(), verbose=None, uint16_codec=None):
r"""Reader function for EEGLAB epochs files.
Parameters
----------
input_fname : str
Path to the .set file. If the data is stored in a separate .fdt file,
it is expected to be in the same folder as the .set file.
events : str | array, shape (n_events, 3) | None
Path to events file. If array, it is the events typically returned
by the read_events function. If some events don't match the events
of interest as specified by event_id, they will be marked as 'IGNORED'
in the drop log. If None, it is constructed from the EEGLAB (.set) file
with each unique event encoded with a different integer.
event_id : int | list of int | dict | None
The id of the event to consider. If dict, the keys can later be used
to access associated events.
Example::
{"auditory":1, "visual":3}
If int, a dict will be created with
the id as string. If a list, all events with the IDs specified
in the list are used. If None, the event_id is constructed from the
EEGLAB (.set) file with each descriptions copied from `eventtype`.
montage : str | None | instance of montage
Path or instance of montage containing electrode positions.
If None, sensor locations are (0,0,0). See the documentation of
:func:`mne.channels.read_montage` for more information.
eog : list | tuple | 'auto'
Names or indices of channels that should be designated EOG channels.
If 'auto', the channel names containing ``EOG`` or ``EYE`` are used.
Defaults to empty tuple.
verbose : bool | str | int | None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
uint16_codec : str | None
If your \*.set file contains non-ascii characters, sometimes reading
it may fail and give rise to error message stating that "buffer is
too small". ``uint16_codec`` allows to specify what codec (for example:
'latin1' or 'utf-8') should be used when reading character arrays and
can therefore help you solve this problem.
Returns
-------
epochs : instance of Epochs
The epochs.
Notes
-----
.. versionadded:: 0.11.0
See Also
--------
mne.Epochs : Documentation of attribute and methods.
"""
epochs = EpochsEEGLAB(input_fname=input_fname, events=events, eog=eog,
event_id=event_id, montage=montage, verbose=verbose,
uint16_codec=uint16_codec)
return epochs
class RawEEGLAB(BaseRaw):
r"""Raw object from EEGLAB .set file.
Parameters
----------
input_fname : str
Path to the .set file. If the data is stored in a separate .fdt file,
it is expected to be in the same folder as the .set file.
montage : str | None | instance of montage
Path or instance of montage containing electrode positions. If None,
sensor locations are (0,0,0). See the documentation of
:func:`mne.channels.read_montage` for more information.
eog : list | tuple | 'auto'
Names or indices of channels that should be designated EOG channels.
If 'auto', the channel names containing ``EOG`` or ``EYE`` are used.
Defaults to empty tuple.
event_id : dict | None
The ids of the events to consider. If None (default), an empty dict is
used and ``event_id_func`` (see below) is called on every event value.
If dict, the keys will be mapped to trigger values on the stimulus
channel and only keys not in ``event_id`` will be handled by
``event_id_func``. Keys are case-sensitive.
Example::
{'SyncStatus': 1; 'Pulse Artifact': 3}
This was deprecated in 0.17 and will be removed in 0.18.
event_id_func : None | str | callable
What to do for events not found in ``event_id``. Must take one ``str``
argument and return an ``int``. If string, must be 'strip-to-integer',
in which case it defaults to stripping event codes such as "D128" or
"S 1" of their non-integer parts and returns the integer.
If the event is not in the ``event_id`` and calling ``event_id_func``
on it results in a ``TypeError`` (e.g. if ``event_id_func`` is
``None``) or a ``ValueError``, the event is dropped.
This was deprecated in 0.17 and will be removed in 0.18.
preload : bool or str (default False)
Preload data into memory for data manipulation and faster indexing.
If True, the data will be preloaded into memory (fast, requires large
amount of memory). If preload is a string, preload is the file name of
a memory-mapped file which is used to store the data on the hard
drive (slower, requires less memory).
uint16_codec : str | None
If your \*.set file contains non-ascii characters, sometimes reading
it may fail and give rise to error message stating that "buffer is
too small". ``uint16_codec`` allows to specify what codec (for example:
'latin1' or 'utf-8') should be used when reading character arrays and
can therefore help you solve this problem.
stim_channel : bool (default True)
Add a stim channel from the events.
.. warning:: This defaults to True in 0.17 but will change to False in
0.18 (when no stim channel synthesis will be allowed)
and be removed in 0.19; migrate code to use
:func:`mne.events_from_annotations` instead.
.. versionadded:: 0.17
verbose : bool | str | int | None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
raw : Instance of RawEEGLAB
A Raw object containing EEGLAB .set data.
Notes
-----
.. versionadded:: 0.11.0
See Also
--------
mne.io.Raw : Documentation of attribute and methods.
"""
@verbose
def __init__(self, input_fname, montage, eog=(), event_id=None,
event_id_func='strip_to_integer', preload=False,
uint16_codec=None, stim_channel=None,
verbose=None): # noqa: D102
stim_channel = _deprecate_stim_channel(stim_channel)
basedir = op.dirname(input_fname)
eeg = _check_load_mat(input_fname, uint16_codec)
if eeg.trials != 1:
raise TypeError('The number of trials is %d. It must be 1 for raw'
' files. Please use `mne.io.read_epochs_eeglab` if'
' the .set file contains epochs.' % eeg.trials)
last_samps = [eeg.pnts - 1]
info = _get_info(eeg, montage, eog=eog)
if stim_channel:
stim_chan = dict(ch_name='STI 014', coil_type=FIFF.FIFFV_COIL_NONE,
kind=FIFF.FIFFV_STIM_CH,
logno=len(info["chs"]) + 1,
scanno=len(info["chs"]) + 1, cal=1., range=1.,
loc=np.full(12, np.nan), unit=FIFF.FIFF_UNIT_NONE,
unit_mul=0., coord_frame=FIFF.FIFFV_COORD_UNKNOWN)
info['chs'].append(stim_chan)
info._update_redundant()
# dummy event channel to be populated from annotations later on
self._create_event_ch(np.empty((0, 3)), n_samples=eeg.pnts)
else:
self._event_ch = None
# read the data
if isinstance(eeg.data, string_types):
data_fname = op.join(basedir, eeg.data)
_check_fname(data_fname)
logger.info('Reading %s' % data_fname)
super(RawEEGLAB, self).__init__(
info, preload, filenames=[data_fname], last_samps=last_samps,
orig_format='double', verbose=verbose)
else:
if preload is False or isinstance(preload, string_types):
warn('Data will be preloaded. preload=False or a string '
'preload is not supported when the data is stored in '
'the .set file')
# can't be done in standard way with preload=True because of
# different reading path (.set file)
if eeg.nbchan == 1 and len(eeg.data.shape) == 1:
n_chan, n_times = [1, eeg.data.shape[0]]
else:
n_chan, n_times = eeg.data.shape
data = np.empty((n_chan + int(stim_channel), n_times), dtype=float)
data[:n_chan] = eeg.data
data *= CAL
if stim_channel:
data[-1] = self._event_ch
super(RawEEGLAB, self).__init__(
info, data, filenames=[input_fname], last_samps=last_samps,
orig_format='double', verbose=verbose)
# create event_ch from annotations
annot = read_annotations(input_fname)
self.set_annotations(annot)
_check_boundary(annot, event_id)
latencies = np.round(annot.onset * self.info['sfreq'])
_check_latencies(latencies)
if stim_channel:
dropped_desc = [] # use to collect dropped descriptions
event_id_ = partial(_event_id_func,
event_id=event_id,
event_id_func=event_id_func,
dropped=dropped_desc)
events, _ = events_from_annotations(self, event_id=event_id_)
annot_length = self.annotations.onset.size
if events.shape[0] < annot_length:
msg = (
"{0}/{1} event codes could not be mapped to integers. Use "
"the 'event_id' parameter to map such events manually.")
warn(msg.format(annot_length - events.shape[0], annot_length))
if not events.size and len(annot): # only if some evs were in file
logger.info(
'Returning empty stim channel. Some annotations were'
'found but dropped during build of the raw.'
'Please use `event_id` and `event_id_func` to drive'
'the selection/rejection of events')
self._create_event_ch(events, n_samples=eeg.pnts)
if getattr(self, 'preload', False):
self._data[-1] = self._event_ch
if len(dropped_desc) > 0:
dropped = list(set(dropped_desc))
logger.info("{0} annotation(s) will be dropped, such as {1}. "
.format(len(dropped), dropped[:5]))
warn('Events like the following will be dropped entirely: {1},'
' {0} in total'.format(len(dropped), dropped[:5]),
RuntimeWarning)
def _create_event_ch(self, events, n_samples=None):
"""Create the event channel."""
n_dropped = len(events[:, 0]) - len(set(events[:, 0]))
if n_dropped > 0:
warn(str(n_dropped) + " events will be dropped because they "
"occur on the same time sample as another event. "
"`mne.io.Raw` objects store events on an event channel, "
"which cannot represent two events on the same sample. "
"Please use `read_annotations_eeglab` and create events "
"using `events_from_annotations` to extract the original "
"event structure. Then, you can e.g. "
"subset the extracted events for constructing epochs.")
if n_samples is None:
n_samples = self.last_samp - self.first_samp + 1
events = np.array(events, int)
if events.ndim != 2 or events.shape[1] != 3:
raise ValueError("[n_events x 3] shaped array required")
# update events
self._event_ch = _synthesize_stim_channel(events, n_samples)
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
"""Read a chunk of raw data."""
n_channels = self.info['nchan'] - (self._event_ch is not None)
_read_segments_file(self, data, idx, fi, start, stop, cals, mult,
dtype=np.float32, trigger_ch=self._event_ch,
n_channels=n_channels)
class EpochsEEGLAB(BaseEpochs):
r"""Epochs from EEGLAB .set file.
Parameters
----------
input_fname : str
Path to the .set file. If the data is stored in a separate .fdt file,
it is expected to be in the same folder as the .set file.
events : str | array, shape (n_events, 3) | None
Path to events file. If array, it is the events typically returned
by the read_events function. If some events don't match the events
of interest as specified by event_id, they will be marked as 'IGNORED'
in the drop log. If None, it is constructed from the EEGLAB (.set) file
with each unique event encoded with a different integer.
event_id : int | list of int | dict | None
The id of the event to consider. If dict,
the keys can later be used to access associated events. Example:
dict(auditory=1, visual=3). If int, a dict will be created with
the id as string. If a list, all events with the IDs specified
in the list are used. If None, the event_id is constructed from the
EEGLAB (.set) file with each descriptions copied from ``eventtype``.
tmin : float
Start time before event.
baseline : None or tuple of length 2 (default (None, 0))
The time interval to apply baseline correction.
If None do not apply it. If baseline is (a, b)
the interval is between "a (s)" and "b (s)".
If a is None the beginning of the data is used
and if b is None then b is set to the end of the interval.
If baseline is equal to (None, None) all the time
interval is used.
The baseline (a, b) includes both endpoints, i.e. all
timepoints t such that a <= t <= b.
reject : dict | None
Rejection parameters based on peak-to-peak amplitude.
Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg'.
If reject is None then no rejection is done. Example::
reject = dict(grad=4000e-13, # T / m (gradiometers)
mag=4e-12, # T (magnetometers)
eeg=40e-6, # V (EEG channels)
eog=250e-6 # V (EOG channels)
)
flat : dict | None
Rejection parameters based on flatness of signal.
Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg', and values
are floats that set the minimum acceptable peak-to-peak amplitude.
If flat is None then no rejection is done.
reject_tmin : scalar | None
Start of the time window used to reject epochs (with the default None,
the window will start with tmin).
reject_tmax : scalar | None
End of the time window used to reject epochs (with the default None,
the window will end with tmax).
montage : str | None | instance of montage
Path or instance of montage containing electrode positions.
If None, sensor locations are (0,0,0). See the documentation of
:func:`mne.channels.read_montage` for more information.
eog : list | tuple | 'auto'
Names or indices of channels that should be designated EOG channels.
If 'auto', the channel names containing ``EOG`` or ``EYE`` are used.
Defaults to empty tuple.
verbose : bool | str | int | None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
uint16_codec : str | None
If your \*.set file contains non-ascii characters, sometimes reading
it may fail and give rise to error message stating that "buffer is
too small". ``uint16_codec`` allows to specify what codec (for example:
'latin1' or 'utf-8') should be used when reading character arrays and
can therefore help you solve this problem.
Notes
-----
.. versionadded:: 0.11.0
See Also
--------
mne.Epochs : Documentation of attribute and methods.
"""
@verbose
def __init__(self, input_fname, events=None, event_id=None, tmin=0,
baseline=None, reject=None, flat=None, reject_tmin=None,
reject_tmax=None, montage=None, eog=(), verbose=None,
uint16_codec=None): # noqa: D102
eeg = _check_load_mat(input_fname, uint16_codec)
if not ((events is None and event_id is None) or
(events is not None and event_id is not None)):
raise ValueError('Both `events` and `event_id` must be '
'None or not None')
if events is None and eeg.trials > 1:
# first extract the events and construct an event_id dict
event_name, event_latencies, unique_ev = list(), list(), list()
ev_idx = 0
warn_multiple_events = False
epochs = _bunchify(eeg.epoch)
events = _bunchify(eeg.event)
for ep in epochs:
if isinstance(ep.eventtype, int):
ep.eventtype = str(ep.eventtype)
if not isinstance(ep.eventtype, string_types):
event_type = '/'.join([str(et) for et in ep.eventtype])
event_name.append(event_type)
# store latency of only first event
event_latencies.append(events[ev_idx].latency)
ev_idx += len(ep.eventtype)
warn_multiple_events = True
else:
event_type = ep.eventtype
event_name.append(ep.eventtype)
event_latencies.append(events[ev_idx].latency)
ev_idx += 1
if event_type not in unique_ev:
unique_ev.append(event_type)
# invent event dict but use id > 0 so you know its a trigger
event_id = dict((ev, idx + 1) for idx, ev
in enumerate(unique_ev))
# warn about multiple events in epoch if necessary
if warn_multiple_events:
warn('At least one epoch has multiple events. Only the latency'
' of the first event will be retained.')
# now fill up the event array
events = np.zeros((eeg.trials, 3), dtype=int)
for idx in range(0, eeg.trials):
if idx == 0:
prev_stim = 0
elif (idx > 0 and
event_latencies[idx] - event_latencies[idx - 1] == 1):
prev_stim = event_id[event_name[idx - 1]]
events[idx, 0] = event_latencies[idx]
events[idx, 1] = prev_stim
events[idx, 2] = event_id[event_name[idx]]
elif isinstance(events, string_types):
events = read_events(events)
logger.info('Extracting parameters from %s...' % input_fname)
input_fname = op.abspath(input_fname)
info = _get_info(eeg, montage, eog=eog)
for key, val in event_id.items():
if val not in events[:, 2]:
raise ValueError('No matching events found for %s '
'(event id %i)' % (key, val))
if isinstance(eeg.data, string_types):
basedir = op.dirname(input_fname)
data_fname = op.join(basedir, eeg.data)
_check_fname(data_fname)
with open(data_fname, 'rb') as data_fid:
data = np.fromfile(data_fid, dtype=np.float32)
data = data.reshape((eeg.nbchan, eeg.pnts, eeg.trials),
order="F")
else:
data = eeg.data
if eeg.nbchan == 1 and len(data.shape) == 2:
data = data[np.newaxis, :]
data = data.transpose((2, 0, 1)).astype('double')
data *= CAL
assert data.shape == (eeg.trials, eeg.nbchan, eeg.pnts)
tmin, tmax = eeg.xmin, eeg.xmax
super(EpochsEEGLAB, self).__init__(
info, data, events, event_id, tmin, tmax, baseline,
reject=reject, flat=flat, reject_tmin=reject_tmin,
reject_tmax=reject_tmax, filename=input_fname, verbose=verbose)
# data are preloaded but _bad_dropped is not set so we do it here:
self._bad_dropped = True
logger.info('Ready.')
def _check_boundary(annot, event_id):
if event_id is None:
event_id = dict()
if "boundary" in annot.description and "boundary" not in event_id:
warn("The data contains 'boundary' events, indicating data "
"discontinuities. Be cautious of filtering and epoching around "
"these events.")
def _check_latencies(latencies):
if (latencies < -1).any():
raise ValueError('At least one event sample index is negative. Please'
' check if EEG.event.sample values are correct.')
if (latencies == -1).any():
warn("At least one event has a sample index of -1. This usually is "
"a consequence of how eeglab handles event latency after "
"resampling - especially when you had a boundary event at the "
"beginning of the file. Please make sure that the events at "
"the very beginning of your EEGLAB file can be safely dropped "
"(e.g., because they are boundary events).")
@deprecated('read_events_eeglab is deprecated from 0.17 and will be removed'
' in 0.18. Please use read_annotations and create events using'
' events_from_annotations.')
def read_events_eeglab(eeg, event_id=None, event_id_func='strip_to_integer',
uint16_codec=None):
r"""Create events array from EEGLAB structure.
An event array is constructed by looking up events in the
event_id, trying to reduce them to their integer part otherwise, and
entirely dropping them (with a warning) if this is impossible.
Returns a 1x3 array of zeros if no events are found.
Usually, the EEGLAB readers will automatically construct event information
for you. However, the reader for continuous data stores event information
in the stimulus channel, which can only code one event per time sample.
Use this function if your EEGLAB file has events happening at the
same time (sample) point to manually create an events array.
Parameters
----------
eeg : str | object
The EEGLAB object from which events are read in.
If str, path to the (EEGLAB) .set file.
Else, the "EEG" field of a MATLAB EEGLAB structure as read in by
scipy.io.loadmat.
event_id : dict | None
The ids of the events to consider. If None (default), an empty dict is
used and ``event_id_func`` (see below) is called on every event value.
If dict, the keys will be mapped to trigger values on the stimulus
channel and only keys not in ``event_id`` will be handled by
``event_id_func``. Keys are case-sensitive.
Example::
{'SyncStatus': 1; 'Pulse Artifact': 3}
event_id_func : None | str | callable
What to do for events not found in ``event_id``. Must take one ``str``
argument and return an ``int``. If string, must be 'strip-to-integer',
in which case it defaults to stripping event codes such as "D128" or
"S 1" of their non-integer parts and returns the integer.
If the event is not in the ``event_id`` and calling ``event_id_func``
on it results in a ``TypeError`` (e.g. if ``event_id_func`` is
``None``) or a ``ValueError``, the event is dropped.
uint16_codec : str | None
If your \*.set file contains non-ascii characters, sometimes reading
it may fail and give rise to error message stating that "buffer is
too small". ``uint16_codec`` allows to specify what codec (for example:
'latin1' or 'utf-8') should be used when reading character arrays and
can therefore help you solve this problem.
Returns
-------
events : array, shape = (n_events, 3)
All events that were found. The first column contains the event time
in samples and the third column contains the event id. The center
column is zero.
See Also
--------
mne.find_events : Extract events from a stim channel. Note that stim
channels can only code for one event per time point.
"""
if event_id_func == 'strip_to_integer':
event_id_func = _strip_to_integer
if event_id is None:
event_id = dict()
if isinstance(eeg, string_types):
from scipy import io
eeg = io.loadmat(eeg, struct_as_record=False, squeeze_me=True,
uint16_codec=uint16_codec)['EEG']
annotations = _read_annotations_eeglab(eeg)
types = annotations.description
latencies = annotations.onset * eeg.srate
_check_boundary(annotations, event_id)
if len(types) < 1: # if there are 0 events, we can exit here
logger.info('No events found, returning empty stim channel ...')
return np.zeros((0, 3), dtype=int)
_check_latencies(latencies)
not_in_event_id = set(x for x in types if x not in event_id)
not_purely_numeric = set(x for x in not_in_event_id if not x.isdigit())
no_numbers = set([x for x in not_purely_numeric
if not any([d.isdigit() for d in x])])
have_integers = set([x for x in not_purely_numeric
if x not in no_numbers])
if len(not_purely_numeric) > 0:
basewarn = "Events like the following will be dropped"
n_no_numbers, n_have_integers = len(no_numbers), len(have_integers)
if n_no_numbers > 0:
no_num_warm = " entirely: {0}, {1} in total"
warn(basewarn + no_num_warm.format(list(no_numbers)[:5],
n_no_numbers))
if n_have_integers > 0 and event_id_func is None:
intwarn = (", but could be reduced to their integer part "
"instead with the default `event_id_func`: "
"{0}, {1} in total")
warn(basewarn + intwarn.format(list(have_integers)[:5],
n_have_integers))
events = list()
for tt, latency in zip(types, latencies):
try: # look up the event in event_id and if not, try event_id_func
event_code = event_id[tt] if tt in event_id else event_id_func(tt)
events.append([int(round(latency)), 0, event_code])
except (ValueError, TypeError): # if event_id_func fails
pass # We're already raising warnings above, so we just drop
if len(events) < len(types):
missing = len(types) - len(events)
msg = ("{0}/{1} event codes could not be mapped to integers. Use "
"the 'event_id' parameter to map such events manually.")
warn(msg.format(missing, len(types)))
if len(events) < 1:
warn("As is, the trigger channel will consist entirely of zeros.")
return np.zeros((0, 3), dtype=int)
return np.asarray(events)
def _bunchify(items):
if isinstance(items, dict):
items = _dol_to_lod(items)
if len(items) > 0 and isinstance(items[0], dict):
items = [Bunch(**item) for item in items]
return items
def _read_annotations_eeglab(eeg, uint16_codec=None):
r"""Create Annotations from EEGLAB file.
This function reads the event attribute from the EEGLAB
structure and makes an :class:`mne.Annotations` object.
Parameters
----------
eeg : object | str
'EEG' struct or the path to the (EEGLAB) .set file.
uint16_codec : str | None
If your \*.set file contains non-ascii characters, sometimes reading
it may fail and give rise to error message stating that "buffer is
too small". ``uint16_codec`` allows to specify what codec (for example:
'latin1' or 'utf-8') should be used when reading character arrays and
can therefore help you solve this problem.
Returns
-------
annotations : instance of Annotations
The annotations present in the file.
"""
if isinstance(eeg, string_types):
eeg = _check_load_mat(eeg, uint16_codec=uint16_codec)
if not hasattr(eeg, 'event'):
events = []
elif isinstance(eeg.event, dict) and \
np.array(eeg.event['latency']).ndim > 0:
events = _dol_to_lod(eeg.event)
elif not isinstance(eeg.event, (np.ndarray, list)):
events = [eeg.event]
else:
events = eeg.event
events = _bunchify(events)
description = [str(event.type) for event in events]
onset = [event.latency - 1 for event in events]
duration = np.zeros(len(onset))
if len(events) > 0 and hasattr(events[0], 'duration'):
duration[:] = [event.duration for event in events]
return Annotations(onset=np.array(onset) / eeg.srate,
duration=duration,
description=description,
orig_time=None)
def _dol_to_lod(dol):
"""Convert a dict of lists to a list of dicts."""
return [dict((key, dol[key][ii]) for key in dol.keys())
for ii in range(len(dol[list(dol.keys())[0]]))]
@deprecated('read_annotations_eeglab is deprecated from 0.17 and will be'
' removed in 0.18. Please use mne.read_annotations')
def read_annotations_eeglab(fname, uint16_codec=None):
r"""Create Annotations from EEGLAB file.
This function reads the event attribute from the EEGLAB
structure and makes an :class:`mne.Annotations` object.
Parameters
----------
fname : str | object
The path to the (EEGLAB) .set file.
uint16_codec : str | None
If your \*.set file contains non-ascii characters, sometimes reading
it may fail and give rise to error message stating that "buffer is
too small". ``uint16_codec`` allows to specify what codec (for example:
'latin1' or 'utf-8') should be used when reading character arrays and
can therefore help you solve this problem.
Returns
-------
annotations : instance of Annotations
The annotations present in the file.
"""
eeg = _check_load_mat(fname, uint16_codec=uint16_codec)
return _read_annotations_eeglab(eeg)
def _strip_to_integer(trigger):
"""Return only the integer part of a string."""
return int("".join([x for x in trigger if x.isdigit()]))
def _event_id_func(trigger, event_id, event_id_func, dropped):
"""Mimic old behavior to be used with events_from_annotations."""
if event_id is not None and trigger in event_id:
return event_id[trigger]
if event_id_func == 'strip_to_integer':
trigger_new = "".join([x for x in trigger if x.isdigit()])
if trigger_new.isdigit():
return int(trigger_new)
else:
dropped.append(trigger)
return None
elif event_id_func is not None:
return event_id_func(trigger)
|