1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
|
"""EGI NetStation Load Function."""
import datetime
import os.path as op
import time
from xml.dom.minidom import parse
import numpy as np
from .events import _read_events, _combine_triggers
from .general import (_get_signalfname, _get_ep_info, _extract, _get_blocks,
_get_gains, _block_r)
from ..base import BaseRaw, _check_update_montage
from ..constants import FIFF
from ..meas_info import _empty_info
from ..utils import _create_chs
from ...utils import verbose, logger, warn
from ...annotations import _sync_onset
def _read_mff_header(filepath):
"""Read mff header.
Parameters
----------
filepath : str
Path to the file.
"""
all_files = _get_signalfname(filepath)
eeg_file = all_files['EEG']['signal']
eeg_info_file = all_files['EEG']['info']
fname = op.join(filepath, eeg_file)
signal_blocks = _get_blocks(fname)
samples_block = np.sum(signal_blocks['samples_block'])
epoch_info = _get_ep_info(filepath)
summaryinfo = dict(eeg_fname=eeg_file,
info_fname=eeg_info_file,
samples_block=samples_block)
summaryinfo.update(signal_blocks)
# Pull header info from the summary info.
categfile = op.join(filepath, 'categories.xml')
if op.isfile(categfile): # epochtype = 'seg'
n_samples = epoch_info[0]['last_samp'] - epoch_info['first_samp']
n_trials = len(epoch_info)
else: # 'cnt'
n_samples = np.sum(summaryinfo['samples_block'])
n_trials = 1
# Add the sensor info.
sensor_layout_file = op.join(filepath, 'sensorLayout.xml')
sensor_layout_obj = parse(sensor_layout_file)
sensors = sensor_layout_obj.getElementsByTagName('sensor')
chan_type = list()
chan_unit = list()
n_chans = 0
numbers = list() # used for identification
for sensor in sensors:
sensortype = int(sensor.getElementsByTagName('type')[0]
.firstChild.data)
if sensortype in [0, 1]:
sn = sensor.getElementsByTagName('number')[0].firstChild.data
sn = sn.encode()
numbers.append(sn)
chan_type.append('eeg')
chan_unit.append('uV')
n_chans = n_chans + 1
if n_chans != summaryinfo['n_channels']:
print("Error. Should never occur.")
# Check presence of PNS data
if 'PNS' in all_files:
pns_fpath = op.join(filepath, all_files['PNS']['signal'])
pns_blocks = _get_blocks(pns_fpath)
pns_file = op.join(filepath, 'pnsSet.xml')
pns_obj = parse(pns_file)
sensors = pns_obj.getElementsByTagName('sensor')
pns_names = []
pns_types = []
pns_units = []
for sensor in sensors:
sn = sensor.getElementsByTagName('number')[0].firstChild.data
name = sensor.getElementsByTagName('name')[0].firstChild.data
unit_elem = sensor.getElementsByTagName('unit')[0].firstChild
unit = ''
if unit_elem is not None:
unit = unit_elem.data
if name == 'ECG':
ch_type = 'ecg'
elif 'EMG' in name:
ch_type = 'emg'
else:
ch_type = 'bio'
pns_types.append(ch_type)
pns_units.append(unit)
pns_names.append(name)
summaryinfo.update(pns_types=pns_types, pns_units=pns_units,
pns_names=pns_names, n_pns_channels=len(pns_names),
pns_fname=all_files['PNS']['signal'],
pns_sample_blocks=pns_blocks)
info_filepath = op.join(filepath, 'info.xml') # add with filepath
tags = ['mffVersion', 'recordTime']
version_and_date = _extract(tags, filepath=info_filepath)
version = ""
if len(version_and_date['mffVersion']):
version = version_and_date['mffVersion'][0]
summaryinfo.update(version=version,
date=version_and_date['recordTime'][0],
n_samples=n_samples, n_trials=n_trials,
chan_type=chan_type, chan_unit=chan_unit,
numbers=numbers)
return summaryinfo
class _FixedOffset(datetime.tzinfo):
"""Fixed offset in minutes east from UTC.
Adapted from the official Python documentation.
"""
def __init__(self, offset):
self._offset = datetime.timedelta(minutes=offset)
def utcoffset(self, dt):
return self._offset
def tzname(self, dt):
return 'MFF'
def dst(self, dt):
return datetime.timedelta(0)
def _read_header(input_fname):
"""Obtain the headers from the file package mff.
Parameters
----------
input_fname : str
Path for the file
Returns
-------
info : dict
Main headers set.
"""
mff_hdr = _read_mff_header(input_fname)
with open(input_fname + '/signal1.bin', 'rb') as fid:
version = np.fromfile(fid, np.int32, 1)[0]
# This should be equivalent to the following, but no need for external dep:
# import dateutil.parser
# time_n = dateutil.parser.parse(mff_hdr['date'])
dt = mff_hdr['date'][:26]
assert mff_hdr['date'][-6] in ('+', '-')
sn = -1 if mff_hdr['date'][-6] == '-' else 1 # +
tz = [sn * int(t) for t in (mff_hdr['date'][-5:-3], mff_hdr['date'][-2:])]
time_n = datetime.datetime.strptime(dt, '%Y-%m-%dT%H:%M:%S.%f')
time_n = time_n.replace(tzinfo=_FixedOffset(60 * tz[0] + tz[1]))
info = dict(
version=version,
year=int(time_n.strftime('%Y')),
month=int(time_n.strftime('%m')),
day=int(time_n.strftime('%d')),
hour=int(time_n.strftime('%H')),
minute=int(time_n.strftime('%M')),
second=int(time_n.strftime('%S')),
millisecond=int(time_n.strftime('%f')),
gain=0,
bits=0,
value_range=0)
unsegmented = 1 if mff_hdr['n_trials'] == 1 else 0
if unsegmented:
info.update(dict(n_categories=0,
n_segments=1,
n_events=0,
event_codes=[],
category_names=[],
category_lengths=[],
pre_baseline=0))
else:
raise NotImplementedError('Only continuos files are supported')
info['unsegmented'] = unsegmented
info.update(mff_hdr)
return info
def _read_locs(filepath, chs, egi_info):
"""Read channel locations."""
fname = op.join(filepath, 'coordinates.xml')
if not op.exists(fname):
return chs
numbers = np.array(egi_info['numbers'])
coordinates = parse(fname)
sensors = coordinates.getElementsByTagName('sensor')
for sensor in sensors:
nr = sensor.getElementsByTagName('number')[0].firstChild.data.encode()
id = np.where(numbers == nr)[0]
if len(id) == 0:
continue
loc = chs[id[0]]['loc']
loc[0] = sensor.getElementsByTagName('x')[0].firstChild.data
loc[1] = sensor.getElementsByTagName('y')[0].firstChild.data
loc[2] = sensor.getElementsByTagName('z')[0].firstChild.data
loc /= 100. # cm -> m
return chs
@verbose
def _read_raw_egi_mff(input_fname, montage=None, eog=None, misc=None,
include=None, exclude=None, preload=False,
channel_naming='E%d', verbose=None):
"""Read EGI mff binary as raw object.
.. note:: This function attempts to create a synthetic trigger channel.
See notes below.
Parameters
----------
input_fname : str
Path to the raw file.
montage : str | None | instance of montage
Path or instance of montage containing electrode positions.
If None, sensor locations are (0,0,0). See the documentation of
:func:`mne.channels.read_montage` for more information.
eog : list or tuple
Names of channels or list of indices that should be designated
EOG channels. Default is None.
misc : list or tuple
Names of channels or list of indices that should be designated
MISC channels. Default is None.
include : None | list
The event channels to be ignored when creating the synthetic
trigger. Defaults to None.
Note. Overrides `exclude` parameter.
exclude : None | list
The event channels to be ignored when creating the synthetic
trigger. Defaults to None. If None, channels that have more than
one event and the ``sync`` and ``TREV`` channels will be
ignored.
preload : bool or str (default False)
Preload data into memory for data manipulation and faster indexing.
If True, the data will be preloaded into memory (fast, requires
large amount of memory). If preload is a string, preload is the
file name of a memory-mapped file which is used to store the data
on the hard drive (slower, requires less memory).
channel_naming : str
Channel naming convention for the data channels. Defaults to 'E%d'
(resulting in channel names 'E1', 'E2', 'E3'...). The effective default
prior to 0.14.0 was 'EEG %03d'.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
raw : Instance of RawMff
A Raw object containing EGI mff data.
Notes
-----
The trigger channel names are based on the arbitrary user dependent event
codes used. However this function will attempt to generate a synthetic
trigger channel named ``STI 014`` in accordance with the general
Neuromag / MNE naming pattern.
The event_id assignment equals ``np.arange(n_events) + 1``. The resulting
``event_id`` mapping is stored as attribute to the resulting raw object but
will be ignored when saving to a fiff. Note. The trigger channel is
artificially constructed based on timestamps received by the Netstation.
As a consequence, triggers have only short durations.
This step will fail if events are not mutually exclusive.
See Also
--------
mne.io.Raw : Documentation of attribute and methods.
..versionadded:: 0.15.0
"""
return RawMff(input_fname, montage, eog, misc, include, exclude,
preload, channel_naming, verbose)
class RawMff(BaseRaw):
"""RawMff class."""
@verbose
def __init__(self, input_fname, montage=None, eog=None, misc=None,
include=None, exclude=None, preload=False,
channel_naming='E%d', verbose=None):
"""Init the RawMff class."""
logger.info('Reading EGI MFF Header from %s...' % input_fname)
egi_info = _read_header(input_fname)
if eog is None:
eog = []
if misc is None:
misc = np.where(np.array(
egi_info['chan_type']) != 'eeg')[0].tolist()
logger.info(' Reading events ...')
egi_events, egi_info = _read_events(input_fname, egi_info)
gains = _get_gains(op.join(input_fname, egi_info['info_fname']))
if egi_info['value_range'] != 0 and egi_info['bits'] != 0:
cals = [egi_info['value_range'] / 2 ** egi_info['bits'] for i
in range(len(egi_info['chan_type']))]
else:
cal_scales = {'uV': 1e-6, 'V': 1}
cals = [cal_scales[t] for t in egi_info['chan_unit']]
if 'gcal' in gains:
cals *= gains['gcal']
if 'ical' in gains:
pass # XXX: currently not used
logger.info(' Assembling measurement info ...')
if egi_info['n_events'] > 0:
event_codes = list(egi_info['event_codes'])
if include is None:
exclude_list = ['sync', 'TREV'] if exclude is None else exclude
exclude_inds = [i for i, k in enumerate(event_codes) if k in
exclude_list]
more_excludes = []
if exclude is None:
for ii, event in enumerate(egi_events):
if event.sum() <= 1 and event_codes[ii]:
more_excludes.append(ii)
if len(exclude_inds) + len(more_excludes) == len(event_codes):
warn('Did not find any event code with more than one '
'event.', RuntimeWarning)
else:
exclude_inds.extend(more_excludes)
exclude_inds.sort()
include_ = [i for i in np.arange(egi_info['n_events']) if
i not in exclude_inds]
include_names = [k for i, k in enumerate(event_codes)
if i in include_]
else:
include_ = [i for i, k in enumerate(event_codes)
if k in include]
include_names = include
for kk, v in [('include', include_names), ('exclude', exclude)]:
if isinstance(v, list):
for k in v:
if k not in event_codes:
raise ValueError('Could find event named "%s"' % k)
elif v is not None:
raise ValueError('`%s` must be None or of type list' % kk)
logger.info(' Synthesizing trigger channel "STI 014" ...')
logger.info(' Excluding events {%s} ...' %
", ".join([k for i, k in enumerate(event_codes)
if i not in include_]))
events_ids = np.arange(len(include_)) + 1
self._new_trigger = _combine_triggers(egi_events[include_],
remapping=events_ids)
self.event_id = dict(zip([e for e in event_codes if e in
include_names], events_ids))
if self._new_trigger is not None:
egi_events = np.vstack([egi_events, self._new_trigger])
else:
# No events
self.event_id = None
event_codes = []
info = _empty_info(egi_info['sfreq'])
my_time = datetime.datetime(
egi_info['year'], egi_info['month'], egi_info['day'],
egi_info['hour'], egi_info['minute'], egi_info['second'])
my_timestamp = time.mktime(my_time.timetuple())
info['meas_date'] = (my_timestamp, 0)
ch_names = [channel_naming % (i + 1) for i in
range(egi_info['n_channels'])]
ch_names.extend(list(egi_info['event_codes']))
if hasattr(self, '_new_trigger') and self._new_trigger is not None:
ch_names.append('STI 014') # channel for combined events
ch_coil = FIFF.FIFFV_COIL_EEG
ch_kind = FIFF.FIFFV_EEG_CH
cals = np.concatenate(
[cals, np.repeat(1, len(event_codes) + 1 + len(misc) + len(eog))])
if 'pns_names' in egi_info:
ch_names.extend(egi_info['pns_names'])
cals = np.concatenate(
[cals, np.repeat(1, len(egi_info['pns_names']))])
chs = _create_chs(ch_names, cals, ch_coil, ch_kind, eog, (), (), misc)
chs = _read_locs(input_fname, chs, egi_info)
sti_ch_idx = [i for i, name in enumerate(ch_names) if
name.startswith('STI') or name in event_codes]
for idx in sti_ch_idx:
chs[idx].update({'unit_mul': 0, 'cal': cals[idx],
'kind': FIFF.FIFFV_STIM_CH,
'coil_type': FIFF.FIFFV_COIL_NONE,
'unit': FIFF.FIFF_UNIT_NONE})
if 'pns_names' in egi_info:
for i_ch, ch_name in enumerate(egi_info['pns_names']):
idx = ch_names.index(ch_name)
ch_type = egi_info['pns_types'][i_ch]
ch_kind = FIFF.FIFFV_BIO_CH
if ch_type == 'ecg':
ch_kind = FIFF.FIFFV_ECG_CH
elif ch_type == 'emg':
ch_kind = FIFF.FIFFV_EMG_CH
ch_unit = FIFF.FIFF_UNIT_V
ch_cal = 1e-6
if egi_info['pns_units'][i_ch] != 'uV':
ch_unit = FIFF.FIFF_UNIT_NONE
ch_cal = 1.0
chs[idx].update({'cal': ch_cal, 'kind': ch_kind,
'coil_type': FIFF.FIFFV_COIL_NONE,
'unit': ch_unit})
info['chs'] = chs
info._update_redundant()
_check_update_montage(info, montage)
file_bin = op.join(input_fname, egi_info['eeg_fname'])
egi_info['egi_events'] = egi_events
if 'pns_names' in egi_info:
egi_info['pns_filepath'] = op.join(
input_fname, egi_info['pns_fname'])
self._filenames = [file_bin]
self._raw_extras = [egi_info]
super(RawMff, self).__init__(
info, preload=preload, orig_format='float', filenames=[file_bin],
last_samps=[egi_info['n_samples'] - 1], raw_extras=[egi_info],
verbose=verbose)
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
"""Read a chunk of data."""
from ..utils import _mult_cal_one
dtype = '<f4' # Data read in four byte floats.
egi_info = self._raw_extras[fi]
# info about the binary file structure
n_channels = egi_info['n_channels']
samples_block = egi_info['samples_block']
# Check how many channels to read are from EEG
if isinstance(idx, slice):
chs_to_read = self.info['chs'][idx]
else:
chs_to_read = [self.info['chs'][x] for x in idx]
eeg_chans = [i for i, x in enumerate(chs_to_read) if x['kind'] in
(FIFF.FIFFV_EEG_CH, FIFF.FIFFV_STIM_CH)]
pns_chans = [i for i, x in enumerate(chs_to_read) if x['kind'] in
(FIFF.FIFFV_ECG_CH, FIFF.FIFFV_EMG_CH, FIFF.FIFFV_BIO_CH)]
eeg_chans = np.array(eeg_chans)
pns_chans = np.array(pns_chans)
if len(pns_chans):
if not np.max(eeg_chans) < np.max(pns_chans):
raise ValueError('Currently interlacing EEG and PNS channels'
'is not supported')
# Number of channels to be read from EEG
n_data1_channels = len(eeg_chans)
# Number of channels expected in the EEG binary file
n_eeg_channels = n_channels
# Get starting/stopping block/samples
block_samples_offset = np.cumsum(samples_block)
offset_blocks = np.sum(block_samples_offset < start)
offset_samples = start - (block_samples_offset[offset_blocks - 1]
if offset_blocks > 0 else 0)
samples_to_read = stop - start
# Now account for events
egi_events = egi_info['egi_events']
if len(egi_events) > 0:
n_eeg_channels += egi_events.shape[0]
if len(pns_chans):
# Split idx slice into EEG and PNS
if isinstance(idx, slice):
if idx.start is not None or idx.stop is not None:
eeg_idx = slice(idx.start, n_data1_channels)
pns_idx = slice(0, idx.stop - n_eeg_channels)
else:
eeg_idx = idx
pns_idx = idx
else:
eeg_idx = idx[eeg_chans]
pns_idx = idx[pns_chans] - n_eeg_channels
else:
eeg_idx = idx
pns_idx = []
with open(self._filenames[fi], 'rb', buffering=0) as fid:
# Go to starting block
current_block = 0
current_block_info = None
current_data_sample = 0
while current_block < offset_blocks:
this_block_info = _block_r(fid)
if this_block_info is not None:
current_block_info = this_block_info
fid.seek(current_block_info['block_size'], 1)
current_block = current_block + 1
# Start reading samples
while samples_to_read > 0:
this_block_info = _block_r(fid)
if this_block_info is not None:
current_block_info = this_block_info
to_read = (current_block_info['nsamples'] *
current_block_info['nc'])
block_data = np.fromfile(fid, dtype, to_read)
block_data = block_data.reshape(n_channels, -1, order='C')
# Compute indexes
samples_read = block_data.shape[1]
if offset_samples > 0:
# First block read, skip to the offset:
block_data = block_data[:, offset_samples:]
samples_read = samples_read - offset_samples
if samples_to_read < samples_read:
# Last block to read, skip the last samples
block_data = block_data[:, :samples_to_read]
samples_read = samples_to_read
s_start = current_data_sample
s_end = s_start + samples_read
# take into account events
if len(egi_events) > 0:
e_chs = egi_events[:, s_start:s_end]
block_data = np.vstack([block_data, e_chs])
data_view = data[:n_data1_channels, s_start:s_end]
_mult_cal_one(data_view, block_data, eeg_idx,
cals[:n_data1_channels], mult)
samples_to_read = samples_to_read - samples_read
current_data_sample = current_data_sample + samples_read
if 'pns_names' in egi_info and len(pns_chans) > 0:
# PNS Data is present and should be read:
pns_filepath = egi_info['pns_filepath']
n_pns_channels = egi_info['n_pns_channels']
pns_info = egi_info['pns_sample_blocks']
n_channels = pns_info['n_channels']
samples_block = pns_info['samples_block']
# Get starting/stopping block/samples
block_samples_offset = np.cumsum(samples_block)
offset_blocks = np.sum(block_samples_offset < start)
offset_samples = start - (block_samples_offset[offset_blocks - 1]
if offset_blocks > 0 else 0)
samples_to_read = stop - start
with open(pns_filepath, 'rb', buffering=0) as fid:
# Check file size
fid.seek(0, 2)
file_size = fid.tell()
fid.seek(0)
# Go to starting block
current_block = 0
current_block_info = None
current_data_sample = 0
while current_block < offset_blocks:
this_block_info = _block_r(fid)
if this_block_info is not None:
current_block_info = this_block_info
fid.seek(current_block_info['block_size'], 1)
current_block = current_block + 1
# Start reading samples
while samples_to_read > 0:
if samples_to_read == 1 and fid.tell() == file_size:
# We are in the presence of the EEG bug
# fill with zeros and break the loop
data_view = data[n_data1_channels:, -1] = 0
warn('This file has the EGI PSG sample bug')
an_start = current_data_sample
# XXX : use of _sync_onset should live in annotations
self.annotations.append(
_sync_onset(self, an_start / self.info['sfreq']),
1 / self.info['sfreq'], 'BAD_EGI_PSG')
break
this_block_info = _block_r(fid)
if this_block_info is not None:
current_block_info = this_block_info
to_read = (current_block_info['nsamples'] *
current_block_info['nc'])
block_data = np.fromfile(fid, dtype, to_read)
block_data = block_data.reshape(n_channels, -1, order='C')
# Compute indexes
samples_read = block_data.shape[1]
if offset_samples > 0:
# First block read, skip to the offset:
block_data = block_data[:, offset_samples:]
samples_read = samples_read - offset_samples
if samples_to_read < samples_read:
# Last block to read, skip the last samples
block_data = block_data[:, :samples_to_read]
samples_read = samples_to_read
s_start = current_data_sample
s_end = s_start + samples_read
data_view = data[n_data1_channels:, s_start:s_end]
_mult_cal_one(data_view, block_data[:n_pns_channels],
pns_idx,
cals[n_data1_channels:], mult)
samples_to_read = samples_to_read - samples_read
current_data_sample = current_data_sample + samples_read
|