1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Denis Engemann <denis.engemann@gmail.com>
# Teon Brooks <teon.brooks@gmail.com>
#
# License: BSD (3-clause)
import copy
import os
import os.path as op
import numpy as np
from ..constants import FIFF
from ..open import fiff_open, _fiff_get_fid, _get_next_fname
from ..meas_info import read_meas_info
from ..tree import dir_tree_find
from ..tag import read_tag, read_tag_info
from ..base import (BaseRaw, _RawShell, _check_raw_compatibility,
_check_maxshield)
from ..utils import _mult_cal_one
from ...annotations import (Annotations, _combine_annotations,
_read_annotations_fif)
from ...event import AcqParserFIF
from ...utils import check_fname, logger, verbose, warn
class Raw(BaseRaw):
"""Raw data in FIF format.
Parameters
----------
fname : str
The raw file to load. For files that have automatically been split,
the split part will be automatically loaded. Filenames should end
with raw.fif, raw.fif.gz, raw_sss.fif, raw_sss.fif.gz,
raw_tsss.fif or raw_tsss.fif.gz.
allow_maxshield : bool | str (default False)
If True, allow loading of data that has been recorded with internal
active compensation (MaxShield). Data recorded with MaxShield should
generally not be loaded directly, but should first be processed using
SSS/tSSS to remove the compensation signals that may also affect brain
activity. Can also be "yes" to load without eliciting a warning.
preload : bool or str (default False)
Preload data into memory for data manipulation and faster indexing.
If True, the data will be preloaded into memory (fast, requires
large amount of memory). If preload is a string, preload is the
file name of a memory-mapped file which is used to store the data
on the hard drive (slower, requires less memory).
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Attributes
----------
info : dict
:class:`Measurement info <mne.Info>`.
ch_names : list of string
List of channels' names.
n_times : int
Total number of time points in the raw file.
times : ndarray
Time vector in seconds. Starts from 0, independently of `first_samp`
value. Time interval between consecutive time samples is equal to the
inverse of the sampling frequency.
preload : bool
Indicates whether raw data are in memory.
verbose : bool, str, int, or None
See above.
"""
@verbose
def __init__(self, fname, allow_maxshield=False, preload=False,
verbose=None): # noqa: D102
fnames = [op.realpath(fname)]
del fname
split_fnames = []
raws = []
for ii, fname in enumerate(fnames):
do_check_fname = fname not in split_fnames
raw, next_fname, buffer_size_sec = \
self._read_raw_file(fname, allow_maxshield,
preload, do_check_fname)
raws.append(raw)
if next_fname is not None:
if not op.exists(next_fname):
warn('Split raw file detected but next file %s does not '
'exist.' % next_fname)
continue
# process this file next
fnames.insert(ii + 1, next_fname)
split_fnames.append(next_fname)
_check_raw_compatibility(raws)
super(Raw, self).__init__(
copy.deepcopy(raws[0].info), False,
[r.first_samp for r in raws], [r.last_samp for r in raws],
[r.filename for r in raws], [r._raw_extras for r in raws],
raws[0].orig_format, None, buffer_size_sec=buffer_size_sec,
verbose=verbose)
# combine annotations
self.set_annotations(raws[0].annotations, False)
if any([r.annotations for r in raws[1:]]):
n_samples = np.sum(self._last_samps - self._first_samps + 1)
for r in raws:
annotations = _combine_annotations(
self.annotations, r.annotations,
n_samples, self.first_samp, r.first_samp,
r.info['sfreq'], self.info['meas_date'])
self.set_annotations(annotations, False)
n_samples += r.last_samp - r.first_samp + 1
# Add annotations for in-data skips
for extra in self._raw_extras:
start = np.array([e['first'] for e in extra if e['ent'] is None])
stop = np.array([e['last'] for e in extra if e['ent'] is None])
duration = (stop - start + 1.) / self.info['sfreq']
annot = Annotations(onset=(start / self.info['sfreq']),
duration=duration,
description='BAD_ACQ_SKIP',
orig_time=self.info['meas_date'])
self._annotations += annot
if preload:
self._preload_data(preload)
else:
self.preload = False
@verbose
def _read_raw_file(self, fname, allow_maxshield, preload,
do_check_fname=True, verbose=None):
"""Read in header information from a raw file."""
logger.info('Opening raw data file %s...' % fname)
if do_check_fname:
check_fname(fname, 'raw', ('raw.fif', 'raw_sss.fif',
'raw_tsss.fif', 'raw.fif.gz',
'raw_sss.fif.gz', 'raw_tsss.fif.gz'))
# Read in the whole file if preload is on and .fif.gz (saves time)
ext = os.path.splitext(fname)[1].lower()
whole_file = preload if '.gz' in ext else False
ff, tree, _ = fiff_open(fname, preload=whole_file)
with ff as fid:
# Read the measurement info
info, meas = read_meas_info(fid, tree, clean_bads=True)
annotations = _read_annotations_fif(fid, tree)
# Locate the data of interest
raw_node = dir_tree_find(meas, FIFF.FIFFB_RAW_DATA)
if len(raw_node) == 0:
raw_node = dir_tree_find(meas, FIFF.FIFFB_CONTINUOUS_DATA)
if (len(raw_node) == 0):
raw_node = dir_tree_find(meas, FIFF.FIFFB_SMSH_RAW_DATA)
if (len(raw_node) == 0):
raise ValueError('No raw data in %s' % fname)
_check_maxshield(allow_maxshield)
info['maxshield'] = True
if len(raw_node) == 1:
raw_node = raw_node[0]
# Process the directory
directory = raw_node['directory']
nent = raw_node['nent']
nchan = int(info['nchan'])
first = 0
first_samp = 0
first_skip = 0
# Get first sample tag if it is there
if directory[first].kind == FIFF.FIFF_FIRST_SAMPLE:
tag = read_tag(fid, directory[first].pos)
first_samp = int(tag.data)
first += 1
_check_entry(first, nent)
# Omit initial skip
if directory[first].kind == FIFF.FIFF_DATA_SKIP:
# This first skip can be applied only after we know the bufsize
tag = read_tag(fid, directory[first].pos)
first_skip = int(tag.data)
first += 1
_check_entry(first, nent)
raw = _RawShell()
raw.filename = fname
raw.first_samp = first_samp
raw.set_annotations(annotations)
# Go through the remaining tags in the directory
raw_extras = list()
nskip = 0
orig_format = None
for k in range(first, nent):
ent = directory[k]
# There can be skips in the data (e.g., if the user unclicked)
# an re-clicked the button
if ent.kind == FIFF.FIFF_DATA_SKIP:
tag = read_tag(fid, ent.pos)
nskip = int(tag.data)
elif ent.kind == FIFF.FIFF_DATA_BUFFER:
# Figure out the number of samples in this buffer
if ent.type == FIFF.FIFFT_DAU_PACK16:
nsamp = ent.size // (2 * nchan)
elif ent.type == FIFF.FIFFT_SHORT:
nsamp = ent.size // (2 * nchan)
elif ent.type == FIFF.FIFFT_FLOAT:
nsamp = ent.size // (4 * nchan)
elif ent.type == FIFF.FIFFT_DOUBLE:
nsamp = ent.size // (8 * nchan)
elif ent.type == FIFF.FIFFT_INT:
nsamp = ent.size // (4 * nchan)
elif ent.type == FIFF.FIFFT_COMPLEX_FLOAT:
nsamp = ent.size // (8 * nchan)
elif ent.type == FIFF.FIFFT_COMPLEX_DOUBLE:
nsamp = ent.size // (16 * nchan)
else:
raise ValueError('Cannot handle data buffers of type '
'%d' % ent.type)
if orig_format is None:
if ent.type == FIFF.FIFFT_DAU_PACK16:
orig_format = 'short'
elif ent.type == FIFF.FIFFT_SHORT:
orig_format = 'short'
elif ent.type == FIFF.FIFFT_FLOAT:
orig_format = 'single'
elif ent.type == FIFF.FIFFT_DOUBLE:
orig_format = 'double'
elif ent.type == FIFF.FIFFT_INT:
orig_format = 'int'
elif ent.type == FIFF.FIFFT_COMPLEX_FLOAT:
orig_format = 'single'
elif ent.type == FIFF.FIFFT_COMPLEX_DOUBLE:
orig_format = 'double'
# Do we have an initial skip pending?
if first_skip > 0:
first_samp += nsamp * first_skip
raw.first_samp = first_samp
first_skip = 0
# Do we have a skip pending?
if nskip > 0:
raw_extras.append(dict(
ent=None, first=first_samp, nsamp=nskip * nsamp,
last=first_samp + nskip * nsamp - 1))
first_samp += nskip * nsamp
nskip = 0
# Add a data buffer
raw_extras.append(dict(ent=ent, first=first_samp,
last=first_samp + nsamp - 1,
nsamp=nsamp))
first_samp += nsamp
next_fname = _get_next_fname(fid, fname, tree)
raw.last_samp = first_samp - 1
raw.orig_format = orig_format
# Add the calibration factors
cals = np.zeros(info['nchan'])
for k in range(info['nchan']):
cals[k] = info['chs'][k]['range'] * info['chs'][k]['cal']
raw._cals = cals
raw._raw_extras = raw_extras
logger.info(' Range : %d ... %d = %9.3f ... %9.3f secs' % (
raw.first_samp, raw.last_samp,
float(raw.first_samp) / info['sfreq'],
float(raw.last_samp) / info['sfreq']))
# store the original buffer size
buffer_size_sec = np.median(
[r['nsamp'] for r in raw_extras]) / info['sfreq']
raw.info = info
raw.verbose = verbose
logger.info('Ready.')
return raw, next_fname, buffer_size_sec
@property
def _dtype(self):
"""Get the dtype to use to store data from disk."""
if self._dtype_ is not None:
return self._dtype_
dtype = None
for raw_extra, filename in zip(self._raw_extras, self._filenames):
for this in raw_extra:
if this['ent'] is not None:
with _fiff_get_fid(filename) as fid:
fid.seek(this['ent'].pos, 0)
tag = read_tag_info(fid)
if tag is not None:
if tag.type in (FIFF.FIFFT_COMPLEX_FLOAT,
FIFF.FIFFT_COMPLEX_DOUBLE):
dtype = np.complex128
else:
dtype = np.float64
if dtype is not None:
break
if dtype is not None:
break
if dtype is None:
raise RuntimeError('bug in reading')
self._dtype_ = dtype
return dtype
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
"""Read a segment of data from a file."""
stop -= 1
offset = 0
with _fiff_get_fid(self._filenames[fi]) as fid:
for this in self._raw_extras[fi]:
# Do we need this buffer
if this['last'] >= start:
# The picking logic is a bit complicated
if stop > this['last'] and start < this['first']:
# We need the whole buffer
first_pick = 0
last_pick = this['nsamp']
logger.debug('W')
elif start >= this['first']:
first_pick = start - this['first']
if stop <= this['last']:
# Something from the middle
last_pick = this['nsamp'] + stop - this['last']
logger.debug('M')
else:
# From the middle to the end
last_pick = this['nsamp']
logger.debug('E')
else:
# From the beginning to the middle
first_pick = 0
last_pick = stop - this['first'] + 1
logger.debug('B')
# Now we are ready to pick
picksamp = last_pick - first_pick
if picksamp > 0:
# only read data if it exists
if this['ent'] is not None:
one = read_tag(fid, this['ent'].pos,
shape=(this['nsamp'],
self.info['nchan']),
rlims=(first_pick, last_pick)).data
one.shape = (picksamp, self.info['nchan'])
_mult_cal_one(data[:, offset:(offset + picksamp)],
one.T, idx, cals, mult)
offset += picksamp
# Done?
if this['last'] >= stop:
break
def fix_mag_coil_types(self):
"""Fix Elekta magnetometer coil types.
Returns
-------
raw : instance of Raw
The raw object. Operates in place.
Notes
-----
This function changes magnetometer coil types 3022 (T1: SQ20483N) and
3023 (T2: SQ20483-A) to 3024 (T3: SQ20950N) in the channel definition
records in the info structure.
Neuromag Vectorview systems can contain magnetometers with two
different coil sizes (3022 and 3023 vs. 3024). The systems
incorporating coils of type 3024 were introduced last and are used at
the majority of MEG sites. At some sites with 3024 magnetometers,
the data files have still defined the magnetometers to be of type
3022 to ensure compatibility with older versions of Neuromag software.
In the MNE software as well as in the present version of Neuromag
software coil type 3024 is fully supported. Therefore, it is now safe
to upgrade the data files to use the true coil type.
.. note:: The effect of the difference between the coil sizes on the
current estimates computed by the MNE software is very small.
Therefore the use of mne_fix_mag_coil_types is not mandatory.
"""
from ...channels import fix_mag_coil_types
fix_mag_coil_types(self.info)
return self
@property
def acqparser(self):
"""The AcqParserFIF for the measurement info.
See Also
--------
mne.AcqParserFIF
"""
if getattr(self, '_acqparser', None) is None:
self._acqparser = AcqParserFIF(self.info)
return self._acqparser
def _check_entry(first, nent):
"""Sanity check entries."""
if first >= nent:
raise IOError('Could not read data, perhaps this is a corrupt file')
def read_raw_fif(fname, allow_maxshield=False, preload=False, verbose=None):
"""Reader function for Raw FIF data.
Parameters
----------
fname : str
The raw file to load. For files that have automatically been split,
the split part will be automatically loaded. Filenames should end
with raw.fif, raw.fif.gz, raw_sss.fif, raw_sss.fif.gz,
raw_tsss.fif or raw_tsss.fif.gz.
allow_maxshield : bool | str (default False)
If True, allow loading of data that has been recorded with internal
active compensation (MaxShield). Data recorded with MaxShield should
generally not be loaded directly, but should first be processed using
SSS/tSSS to remove the compensation signals that may also affect brain
activity. Can also be "yes" to load without eliciting a warning.
preload : bool or str (default False)
Preload data into memory for data manipulation and faster indexing.
If True, the data will be preloaded into memory (fast, requires
large amount of memory). If preload is a string, preload is the
file name of a memory-mapped file which is used to store the data
on the hard drive (slower, requires less memory).
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
raw : instance of Raw
A Raw object containing FIF data.
Notes
-----
.. versionadded:: 0.9.0
"""
return Raw(fname=fname, allow_maxshield=allow_maxshield,
preload=preload, verbose=verbose)
|