1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
|
# -*- coding: utf-8 -*-
# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD (3-clause)
from copy import deepcopy
from functools import partial
import itertools as itt
import os.path as op
import sys
import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
assert_allclose, assert_equal)
import pytest
from mne.datasets import testing
from mne.filter import filter_data
from mne.io.constants import FIFF
from mne.io import RawArray, concatenate_raws, read_raw_fif
from mne.io.tests.test_raw import _test_concat, _test_raw_reader
from mne import (concatenate_events, find_events, equalize_channels,
compute_proj_raw, pick_types, pick_channels, create_info,
pick_info)
from mne.utils import (_TempDir, requires_pandas, object_diff,
requires_mne, run_subprocess, run_tests_if_main)
from mne.externals.six.moves import zip, cPickle as pickle
from mne.io.proc_history import _get_rank_sss
from mne.io.pick import _picks_by_type
from mne.annotations import Annotations
testing_path = testing.data_path(download=False)
data_dir = op.join(testing_path, 'MEG', 'sample')
fif_fname = op.join(data_dir, 'sample_audvis_trunc_raw.fif')
ms_fname = op.join(testing_path, 'SSS', 'test_move_anon_raw.fif')
skip_fname = op.join(testing_path, 'misc', 'intervalrecording_raw.fif')
base_dir = op.join(op.dirname(__file__), '..', '..', 'tests', 'data')
test_fif_fname = op.join(base_dir, 'test_raw.fif')
test_fif_gz_fname = op.join(base_dir, 'test_raw.fif.gz')
ctf_fname = op.join(base_dir, 'test_ctf_raw.fif')
ctf_comp_fname = op.join(base_dir, 'test_ctf_comp_raw.fif')
fif_bad_marked_fname = op.join(base_dir, 'test_withbads_raw.fif')
bad_file_works = op.join(base_dir, 'test_bads.txt')
bad_file_wrong = op.join(base_dir, 'test_wrong_bads.txt')
hp_fname = op.join(base_dir, 'test_chpi_raw_hp.txt')
hp_fif_fname = op.join(base_dir, 'test_chpi_raw_sss.fif')
@testing.requires_testing_data
def test_acq_skip():
"""Test treatment of acquisition skips."""
raw = read_raw_fif(skip_fname, preload=True)
picks = [1, 2, 10]
assert_equal(len(raw.times), 17000)
annotations = raw.annotations
assert_equal(len(annotations), 3) # there are 3 skips
assert_allclose(annotations.onset, [14, 19, 23])
assert_allclose(annotations.duration, [2., 2., 3.]) # inclusive!
data, times = raw.get_data(
picks, reject_by_annotation='omit', return_times=True)
expected_data, expected_times = zip(raw[picks, :2000],
raw[picks, 4000:7000],
raw[picks, 9000:11000],
raw[picks, 14000:17000])
expected_times = np.concatenate(list(expected_times), axis=-1)
assert_allclose(times, expected_times)
expected_data = list(expected_data)
assert_allclose(data, np.concatenate(expected_data, axis=-1), atol=1e-22)
# Check that acquisition skips are handled properly in filtering
kwargs = dict(l_freq=None, h_freq=50., fir_design='firwin')
raw_filt = raw.copy().filter(picks=picks, **kwargs)
for data in expected_data:
filter_data(data, raw.info['sfreq'], copy=False, **kwargs)
data = raw_filt.get_data(picks, reject_by_annotation='omit')
assert_allclose(data, np.concatenate(expected_data, axis=-1), atol=1e-22)
# Check that acquisition skips are handled properly during I/O
tempdir = _TempDir()
fname = op.join(tempdir, 'test_raw.fif')
raw.save(fname, fmt=raw.orig_format)
# first: file size should not increase much (orig data is missing
# 7 of 17 buffers, so if we write them out it should increase the file
# size quite a bit.
orig_size = op.getsize(skip_fname)
new_size = op.getsize(fname)
max_size = int(1.05 * orig_size) # almost the same + annotations
assert new_size < max_size, (new_size, max_size)
raw_read = read_raw_fif(fname)
assert raw_read.annotations is not None
assert_allclose(raw.times, raw_read.times)
assert_allclose(raw_read[:][0], raw[:][0], atol=1e-17)
# Saving with a bad buffer length emits warning
raw.pick_channels(raw.ch_names[:2])
with pytest.warns(None) as w:
raw.save(fname, buffer_size_sec=0.5, overwrite=True)
assert len(w) == 0
with pytest.warns(RuntimeWarning, match='did not fit evenly'):
raw.save(fname, buffer_size_sec=2., overwrite=True)
def test_fix_types():
"""Test fixing of channel types."""
for fname, change in ((hp_fif_fname, True), (test_fif_fname, False),
(ctf_fname, False)):
raw = read_raw_fif(fname)
mag_picks = pick_types(raw.info, meg='mag')
other_picks = np.setdiff1d(np.arange(len(raw.ch_names)), mag_picks)
# we don't actually have any files suffering from this problem, so
# fake it
if change:
for ii in mag_picks:
raw.info['chs'][ii]['coil_type'] = FIFF.FIFFV_COIL_VV_MAG_T2
orig_types = np.array([ch['coil_type'] for ch in raw.info['chs']])
raw.fix_mag_coil_types()
new_types = np.array([ch['coil_type'] for ch in raw.info['chs']])
if not change:
assert_array_equal(orig_types, new_types)
else:
assert_array_equal(orig_types[other_picks], new_types[other_picks])
assert ((orig_types[mag_picks] != new_types[mag_picks]).all())
assert ((new_types[mag_picks] ==
FIFF.FIFFV_COIL_VV_MAG_T3).all())
def test_concat():
"""Test RawFIF concatenation."""
# we trim the file to save lots of memory and some time
tempdir = _TempDir()
raw = read_raw_fif(test_fif_fname)
raw.crop(0, 2.)
test_name = op.join(tempdir, 'test_raw.fif')
raw.save(test_name)
# now run the standard test
_test_concat(partial(read_raw_fif), test_name)
@testing.requires_testing_data
def test_hash_raw():
"""Test hashing raw objects."""
raw = read_raw_fif(fif_fname)
pytest.raises(RuntimeError, raw.__hash__)
raw = read_raw_fif(fif_fname).crop(0, 0.5)
raw_size = raw._size
raw.load_data()
raw_load_size = raw._size
assert (raw_size < raw_load_size)
raw_2 = read_raw_fif(fif_fname).crop(0, 0.5)
raw_2.load_data()
assert_equal(hash(raw), hash(raw_2))
# do NOT use assert_equal here, failing output is terrible
assert_equal(pickle.dumps(raw), pickle.dumps(raw_2))
raw_2._data[0, 0] -= 1
assert hash(raw) != hash(raw_2)
@testing.requires_testing_data
def test_maxshield():
"""Test maxshield warning."""
with pytest.warns(RuntimeWarning, match='Internal Active Shielding') as w:
read_raw_fif(ms_fname, allow_maxshield=True)
assert ('test_raw_fiff.py' in w[0].filename)
@testing.requires_testing_data
def test_subject_info():
"""Test reading subject information."""
tempdir = _TempDir()
raw = read_raw_fif(fif_fname).crop(0, 1)
assert (raw.info['subject_info'] is None)
# fake some subject data
keys = ['id', 'his_id', 'last_name', 'first_name', 'birthday', 'sex',
'hand']
vals = [1, 'foobar', 'bar', 'foo', (1901, 2, 3), 0, 1]
subject_info = dict()
for key, val in zip(keys, vals):
subject_info[key] = val
raw.info['subject_info'] = subject_info
out_fname = op.join(tempdir, 'test_subj_info_raw.fif')
raw.save(out_fname, overwrite=True)
raw_read = read_raw_fif(out_fname)
for key in keys:
assert_equal(subject_info[key], raw_read.info['subject_info'][key])
assert_equal(raw.info['meas_date'], raw_read.info['meas_date'])
for key in ['secs', 'usecs', 'version']:
assert_equal(raw.info['meas_id'][key], raw_read.info['meas_id'][key])
assert_array_equal(raw.info['meas_id']['machid'],
raw_read.info['meas_id']['machid'])
@testing.requires_testing_data
def test_copy_append():
"""Test raw copying and appending combinations."""
raw = read_raw_fif(fif_fname, preload=True).copy()
raw_full = read_raw_fif(fif_fname)
raw_full.append(raw)
data = raw_full[:, :][0]
assert_equal(data.shape[1], 2 * raw._data.shape[1])
@pytest.mark.slowtest
@testing.requires_testing_data
def test_rank_estimation():
"""Test raw rank estimation."""
iter_tests = itt.product(
[fif_fname, hp_fif_fname], # sss
['norm', dict(mag=1e11, grad=1e9, eeg=1e5)]
)
for fname, scalings in iter_tests:
raw = read_raw_fif(fname).crop(0, 4.).load_data()
(_, picks_meg), (_, picks_eeg) = _picks_by_type(raw.info,
meg_combined=True)
n_meg = len(picks_meg)
n_eeg = len(picks_eeg)
if len(raw.info['proc_history']) == 0:
expected_rank = n_meg + n_eeg
else:
expected_rank = _get_rank_sss(raw.info) + n_eeg
assert_array_equal(raw.estimate_rank(scalings=scalings), expected_rank)
assert_array_equal(raw.estimate_rank(picks=picks_eeg,
scalings=scalings), n_eeg)
if 'sss' in fname:
raw.add_proj(compute_proj_raw(raw))
raw.apply_proj()
n_proj = len(raw.info['projs'])
assert_array_equal(raw.estimate_rank(tstart=0, tstop=3.,
scalings=scalings),
expected_rank - (0 if 'sss' in fname else n_proj))
@testing.requires_testing_data
def test_output_formats():
"""Test saving and loading raw data using multiple formats."""
tempdir = _TempDir()
formats = ['short', 'int', 'single', 'double']
tols = [1e-4, 1e-7, 1e-7, 1e-15]
# let's fake a raw file with different formats
raw = read_raw_fif(test_fif_fname).crop(0, 1)
temp_file = op.join(tempdir, 'raw.fif')
for ii, (fmt, tol) in enumerate(zip(formats, tols)):
# Let's test the overwriting error throwing while we're at it
if ii > 0:
pytest.raises(IOError, raw.save, temp_file, fmt=fmt)
raw.save(temp_file, fmt=fmt, overwrite=True)
raw2 = read_raw_fif(temp_file)
raw2_data = raw2[:, :][0]
assert_allclose(raw2_data, raw[:, :][0], rtol=tol, atol=1e-25)
assert_equal(raw2.orig_format, fmt)
def _compare_combo(raw, new, times, n_times):
"""Compare data."""
for ti in times: # let's do a subset of points for speed
orig = raw[:, ti % n_times][0]
# these are almost_equals because of possible dtype differences
assert_allclose(orig, new[:, ti][0])
@pytest.mark.slowtest
@testing.requires_testing_data
def test_multiple_files():
"""Test loading multiple files simultaneously."""
# split file
tempdir = _TempDir()
raw = read_raw_fif(fif_fname).crop(0, 10)
raw.load_data()
raw.load_data() # test no operation
split_size = 3. # in seconds
sfreq = raw.info['sfreq']
nsamp = (raw.last_samp - raw.first_samp)
tmins = np.round(np.arange(0., nsamp, split_size * sfreq))
tmaxs = np.concatenate((tmins[1:] - 1, [nsamp]))
tmaxs /= sfreq
tmins /= sfreq
assert_equal(raw.n_times, len(raw.times))
# going in reverse order so the last fname is the first file (need later)
raws = [None] * len(tmins)
for ri in range(len(tmins) - 1, -1, -1):
fname = op.join(tempdir, 'test_raw_split-%d_raw.fif' % ri)
raw.save(fname, tmin=tmins[ri], tmax=tmaxs[ri])
raws[ri] = read_raw_fif(fname)
assert_equal(len(raws[ri].times),
int(round((tmaxs[ri] - tmins[ri]) *
raw.info['sfreq'])) + 1) # + 1 b/c inclusive
events = [find_events(r, stim_channel='STI 014') for r in raws]
last_samps = [r.last_samp for r in raws]
first_samps = [r.first_samp for r in raws]
# test concatenation of split file
pytest.raises(ValueError, concatenate_raws, raws, True, events[1:])
all_raw_1, events1 = concatenate_raws(raws, preload=False,
events_list=events)
assert_allclose(all_raw_1.times, raw.times)
assert_equal(raw.first_samp, all_raw_1.first_samp)
assert_equal(raw.last_samp, all_raw_1.last_samp)
assert_allclose(raw[:, :][0], all_raw_1[:, :][0])
raws[0] = read_raw_fif(fname)
all_raw_2 = concatenate_raws(raws, preload=True)
assert_allclose(raw[:, :][0], all_raw_2[:, :][0])
# test proper event treatment for split files
events2 = concatenate_events(events, first_samps, last_samps)
events3 = find_events(all_raw_2, stim_channel='STI 014')
assert_array_equal(events1, events2)
assert_array_equal(events1, events3)
# test various methods of combining files
raw = read_raw_fif(fif_fname, preload=True)
n_times = raw.n_times
# make sure that all our data match
times = list(range(0, 2 * n_times, 999))
# add potentially problematic points
times.extend([n_times - 1, n_times, 2 * n_times - 1])
raw_combo0 = concatenate_raws([read_raw_fif(f)
for f in [fif_fname, fif_fname]],
preload=True)
_compare_combo(raw, raw_combo0, times, n_times)
raw_combo = concatenate_raws([read_raw_fif(f)
for f in [fif_fname, fif_fname]],
preload=False)
_compare_combo(raw, raw_combo, times, n_times)
raw_combo = concatenate_raws([read_raw_fif(f)
for f in [fif_fname, fif_fname]],
preload='memmap8.dat')
_compare_combo(raw, raw_combo, times, n_times)
assert_equal(raw[:, :][0].shape[1] * 2, raw_combo0[:, :][0].shape[1])
assert_equal(raw_combo0[:, :][0].shape[1], raw_combo0.n_times)
# with all data preloaded, result should be preloaded
raw_combo = read_raw_fif(fif_fname, preload=True)
raw_combo.append(read_raw_fif(fif_fname, preload=True))
assert (raw_combo.preload is True)
assert_equal(raw_combo.n_times, raw_combo._data.shape[1])
_compare_combo(raw, raw_combo, times, n_times)
# with any data not preloaded, don't set result as preloaded
raw_combo = concatenate_raws([read_raw_fif(fif_fname, preload=True),
read_raw_fif(fif_fname, preload=False)])
assert (raw_combo.preload is False)
assert_array_equal(find_events(raw_combo, stim_channel='STI 014'),
find_events(raw_combo0, stim_channel='STI 014'))
_compare_combo(raw, raw_combo, times, n_times)
# user should be able to force data to be preloaded upon concat
raw_combo = concatenate_raws([read_raw_fif(fif_fname, preload=False),
read_raw_fif(fif_fname, preload=True)],
preload=True)
assert (raw_combo.preload is True)
_compare_combo(raw, raw_combo, times, n_times)
raw_combo = concatenate_raws([read_raw_fif(fif_fname, preload=False),
read_raw_fif(fif_fname, preload=True)],
preload='memmap3.dat')
_compare_combo(raw, raw_combo, times, n_times)
raw_combo = concatenate_raws([
read_raw_fif(fif_fname, preload=True),
read_raw_fif(fif_fname, preload=True)], preload='memmap4.dat')
_compare_combo(raw, raw_combo, times, n_times)
raw_combo = concatenate_raws([
read_raw_fif(fif_fname, preload=False),
read_raw_fif(fif_fname, preload=False)], preload='memmap5.dat')
_compare_combo(raw, raw_combo, times, n_times)
# verify that combining raws with different projectors throws an exception
raw.add_proj([], remove_existing=True)
pytest.raises(ValueError, raw.append,
read_raw_fif(fif_fname, preload=True))
# now test event treatment for concatenated raw files
events = [find_events(raw, stim_channel='STI 014'),
find_events(raw, stim_channel='STI 014')]
last_samps = [raw.last_samp, raw.last_samp]
first_samps = [raw.first_samp, raw.first_samp]
events = concatenate_events(events, first_samps, last_samps)
events2 = find_events(raw_combo0, stim_channel='STI 014')
assert_array_equal(events, events2)
# check out the len method
assert_equal(len(raw), raw.n_times)
assert_equal(len(raw), raw.last_samp - raw.first_samp + 1)
@testing.requires_testing_data
def test_split_files():
"""Test writing and reading of split raw files."""
tempdir = _TempDir()
raw_1 = read_raw_fif(fif_fname, preload=True)
# Test a very close corner case
raw_crop = raw_1.copy().crop(0, 1.)
assert_allclose(raw_1.buffer_size_sec, 10., atol=1e-2) # samp rate
split_fname = op.join(tempdir, 'split_raw_meg.fif')
# intended filenames
split_fname_elekta_part2 = op.join(tempdir, 'split_raw_meg-1.fif')
split_fname_bids_part1 = op.join(tempdir, 'split_raw_part-01_meg.fif')
split_fname_bids_part2 = op.join(tempdir, 'split_raw_part-02_meg.fif')
raw_1.set_annotations(Annotations([2.], [5.5], 'test'))
with pytest.warns(RuntimeWarning, match='does not conform to MNE'):
raw_1.save(split_fname, buffer_size_sec=1.0, split_size='10MB')
# check that the filenames match the intended pattern
assert op.exists(split_fname_elekta_part2)
# check that filenames are being formatted correctly for BIDS
with pytest.warns(RuntimeWarning, match='does not conform to MNE'):
raw_1.save(split_fname, buffer_size_sec=1.0, split_size='10MB',
split_naming='bids', overwrite=True)
assert op.exists(split_fname_bids_part1)
assert op.exists(split_fname_bids_part2)
split_fname = op.join(tempdir, 'split_raw.fif')
raw_1.save(split_fname, buffer_size_sec=1.0, split_size='10MB')
raw_2 = read_raw_fif(split_fname)
assert_allclose(raw_2.buffer_size_sec, 1., atol=1e-2) # samp rate
assert_array_almost_equal(raw_1.annotations.onset, raw_2.annotations.onset)
assert_array_equal(raw_1.annotations.duration, raw_2.annotations.duration)
assert_array_equal(raw_1.annotations.description,
raw_2.annotations.description)
data_1, times_1 = raw_1[:, :]
data_2, times_2 = raw_2[:, :]
assert_array_equal(data_1, data_2)
assert_array_equal(times_1, times_2)
with pytest.warns(RuntimeWarning, match='does not conform to MNE'):
raw_bids = read_raw_fif(split_fname_bids_part1)
data_bids, times_bids = raw_bids[:, :]
assert_array_equal(data_1, data_bids)
assert_array_equal(times_1, times_bids)
# test the case where we only end up with one buffer to write
# (GH#3210). These tests rely on writing meas info and annotations
# taking up a certain number of bytes, so if we change those functions
# somehow, the numbers below for e.g. split_size might need to be
# adjusted.
raw_crop = raw_1.copy().crop(0, 5)
with pytest.raises(ValueError,
match='after writing measurement information'):
raw_crop.save(split_fname, split_size='1MB', # too small a size
buffer_size_sec=1., overwrite=True)
with pytest.raises(ValueError,
match='too large for the given split size'):
raw_crop.save(split_fname,
split_size=3002276, # still too small, now after Info
buffer_size_sec=1., overwrite=True)
# just barely big enough here; the right size to write exactly one buffer
# at a time so we hit GH#3210 if we aren't careful
raw_crop.save(split_fname, split_size='4.5MB',
buffer_size_sec=1., overwrite=True)
raw_read = read_raw_fif(split_fname)
assert_allclose(raw_crop[:][0], raw_read[:][0], atol=1e-20)
# Check our buffer arithmetic
# 1 buffer required
raw_crop = raw_1.copy().crop(0, 1)
raw_crop.save(split_fname, buffer_size_sec=1., overwrite=True)
raw_read = read_raw_fif(split_fname)
assert_equal(len(raw_read._raw_extras[0]), 1)
assert_equal(raw_read._raw_extras[0][0]['nsamp'], 301)
assert_allclose(raw_crop[:][0], raw_read[:][0])
# 2 buffers required
raw_crop.save(split_fname, buffer_size_sec=0.5, overwrite=True)
raw_read = read_raw_fif(split_fname)
assert_equal(len(raw_read._raw_extras[0]), 2)
assert_equal(raw_read._raw_extras[0][0]['nsamp'], 151)
assert_equal(raw_read._raw_extras[0][1]['nsamp'], 150)
assert_allclose(raw_crop[:][0], raw_read[:][0])
# 2 buffers required
raw_crop.save(split_fname,
buffer_size_sec=1. - 1.01 / raw_crop.info['sfreq'],
overwrite=True)
raw_read = read_raw_fif(split_fname)
assert_equal(len(raw_read._raw_extras[0]), 2)
assert_equal(raw_read._raw_extras[0][0]['nsamp'], 300)
assert_equal(raw_read._raw_extras[0][1]['nsamp'], 1)
assert_allclose(raw_crop[:][0], raw_read[:][0])
raw_crop.save(split_fname,
buffer_size_sec=1. - 2.01 / raw_crop.info['sfreq'],
overwrite=True)
raw_read = read_raw_fif(split_fname)
assert_equal(len(raw_read._raw_extras[0]), 2)
assert_equal(raw_read._raw_extras[0][0]['nsamp'], 299)
assert_equal(raw_read._raw_extras[0][1]['nsamp'], 2)
assert_allclose(raw_crop[:][0], raw_read[:][0])
def test_load_bad_channels():
"""Test reading/writing of bad channels."""
tempdir = _TempDir()
# Load correctly marked file (manually done in mne_process_raw)
raw_marked = read_raw_fif(fif_bad_marked_fname)
correct_bads = raw_marked.info['bads']
raw = read_raw_fif(test_fif_fname)
# Make sure it starts clean
assert_array_equal(raw.info['bads'], [])
# Test normal case
raw.load_bad_channels(bad_file_works)
# Write it out, read it in, and check
raw.save(op.join(tempdir, 'foo_raw.fif'))
raw_new = read_raw_fif(op.join(tempdir, 'foo_raw.fif'))
assert_equal(correct_bads, raw_new.info['bads'])
# Reset it
raw.info['bads'] = []
# Test bad case
pytest.raises(ValueError, raw.load_bad_channels, bad_file_wrong)
# Test forcing the bad case
with pytest.warns(RuntimeWarning, match='1 bad channel'):
raw.load_bad_channels(bad_file_wrong, force=True)
# write it out, read it in, and check
raw.save(op.join(tempdir, 'foo_raw.fif'), overwrite=True)
raw_new = read_raw_fif(op.join(tempdir, 'foo_raw.fif'))
assert correct_bads == raw_new.info['bads']
# Check that bad channels are cleared
raw.load_bad_channels(None)
raw.save(op.join(tempdir, 'foo_raw.fif'), overwrite=True)
raw_new = read_raw_fif(op.join(tempdir, 'foo_raw.fif'))
assert_equal([], raw_new.info['bads'])
@pytest.mark.slowtest
@testing.requires_testing_data
def test_io_raw():
"""Test IO for raw data (Neuromag + CTF + gz)."""
rng = np.random.RandomState(0)
tempdir = _TempDir()
# test unicode io
for chars in [u'äöé', 'a']:
with read_raw_fif(fif_fname) as r:
assert ('Raw' in repr(r))
assert (op.basename(fif_fname) in repr(r))
r.info['description'] = chars
temp_file = op.join(tempdir, 'raw.fif')
r.save(temp_file, overwrite=True)
with read_raw_fif(temp_file) as r2:
desc2 = r2.info['description']
assert desc2 == chars
# Let's construct a simple test for IO first
raw = read_raw_fif(fif_fname).crop(0, 3.5)
raw.load_data()
# put in some data that we know the values of
data = rng.randn(raw._data.shape[0], raw._data.shape[1])
raw._data[:, :] = data
# save it somewhere
fname = op.join(tempdir, 'test_copy_raw.fif')
raw.save(fname, buffer_size_sec=1.0)
# read it in, make sure the whole thing matches
raw = read_raw_fif(fname)
assert_allclose(data, raw[:, :][0], rtol=1e-6, atol=1e-20)
# let's read portions across the 1-sec tag boundary, too
inds = raw.time_as_index([1.75, 2.25])
sl = slice(inds[0], inds[1])
assert_allclose(data[:, sl], raw[:, sl][0], rtol=1e-6, atol=1e-20)
# now let's do some real I/O
fnames_in = [fif_fname, test_fif_gz_fname, ctf_fname]
fnames_out = ['raw.fif', 'raw.fif.gz', 'raw.fif']
for fname_in, fname_out in zip(fnames_in, fnames_out):
fname_out = op.join(tempdir, fname_out)
raw = read_raw_fif(fname_in)
nchan = raw.info['nchan']
ch_names = raw.info['ch_names']
meg_channels_idx = [k for k in range(nchan)
if ch_names[k][0] == 'M']
n_channels = 100
meg_channels_idx = meg_channels_idx[:n_channels]
start, stop = raw.time_as_index([0, 5], use_rounding=True)
data, times = raw[meg_channels_idx, start:(stop + 1)]
meg_ch_names = [ch_names[k] for k in meg_channels_idx]
# Set up pick list: MEG + STI 014 - bad channels
include = ['STI 014']
include += meg_ch_names
picks = pick_types(raw.info, meg=True, eeg=False, stim=True,
misc=True, ref_meg=True, include=include,
exclude='bads')
# Writing with drop_small_buffer True
raw.save(fname_out, picks, tmin=0, tmax=4, buffer_size_sec=3,
drop_small_buffer=True, overwrite=True)
raw2 = read_raw_fif(fname_out)
sel = pick_channels(raw2.ch_names, meg_ch_names)
data2, times2 = raw2[sel, :]
assert (times2.max() <= 3)
# Writing
raw.save(fname_out, picks, tmin=0, tmax=5, overwrite=True)
if fname_in == fif_fname or fname_in == fif_fname + '.gz':
assert_equal(len(raw.info['dig']), 146)
raw2 = read_raw_fif(fname_out)
sel = pick_channels(raw2.ch_names, meg_ch_names)
data2, times2 = raw2[sel, :]
assert_allclose(data, data2, rtol=1e-6, atol=1e-20)
assert_allclose(times, times2)
assert_allclose(raw.info['sfreq'], raw2.info['sfreq'], rtol=1e-5)
# check transformations
for trans in ['dev_head_t', 'dev_ctf_t', 'ctf_head_t']:
if raw.info[trans] is None:
assert (raw2.info[trans] is None)
else:
assert_array_equal(raw.info[trans]['trans'],
raw2.info[trans]['trans'])
# check transformation 'from' and 'to'
if trans.startswith('dev'):
from_id = FIFF.FIFFV_COORD_DEVICE
else:
from_id = FIFF.FIFFV_MNE_COORD_CTF_HEAD
if trans[4:8] == 'head':
to_id = FIFF.FIFFV_COORD_HEAD
else:
to_id = FIFF.FIFFV_MNE_COORD_CTF_HEAD
for raw_ in [raw, raw2]:
assert_equal(raw_.info[trans]['from'], from_id)
assert_equal(raw_.info[trans]['to'], to_id)
if fname_in == fif_fname or fname_in == fif_fname + '.gz':
assert_allclose(raw.info['dig'][0]['r'], raw2.info['dig'][0]['r'])
# test warnings on bad filenames
raw_badname = op.join(tempdir, 'test-bad-name.fif.gz')
with pytest.warns(RuntimeWarning, match='raw.fif'):
raw.save(raw_badname)
with pytest.warns(RuntimeWarning, match='raw.fif'):
read_raw_fif(raw_badname)
@testing.requires_testing_data
def test_io_complex():
"""Test IO with complex data types."""
rng = np.random.RandomState(0)
tempdir = _TempDir()
dtypes = [np.complex64, np.complex128]
raw = _test_raw_reader(partial(read_raw_fif),
fname=fif_fname)
picks = np.arange(5)
start, stop = raw.time_as_index([0, 5])
data_orig, _ = raw[picks, start:stop]
for di, dtype in enumerate(dtypes):
imag_rand = np.array(1j * rng.randn(data_orig.shape[0],
data_orig.shape[1]), dtype)
raw_cp = raw.copy()
raw_cp._data = np.array(raw_cp._data, dtype)
raw_cp._data[picks, start:stop] += imag_rand
with pytest.warns(RuntimeWarning, match='Saving .* complex data.'):
raw_cp.save(op.join(tempdir, 'raw.fif'), picks, tmin=0, tmax=5,
overwrite=True)
raw2 = read_raw_fif(op.join(tempdir, 'raw.fif'))
raw2_data, _ = raw2[picks, :]
n_samp = raw2_data.shape[1]
assert_allclose(raw2_data[:, :n_samp], raw_cp._data[picks, :n_samp])
# with preloading
raw2 = read_raw_fif(op.join(tempdir, 'raw.fif'), preload=True)
raw2_data, _ = raw2[picks, :]
n_samp = raw2_data.shape[1]
assert_allclose(raw2_data[:, :n_samp], raw_cp._data[picks, :n_samp])
@testing.requires_testing_data
def test_getitem():
"""Test getitem/indexing of Raw."""
for preload in [False, True, 'memmap.dat']:
raw = read_raw_fif(fif_fname, preload=preload)
data, times = raw[0, :]
data1, times1 = raw[0]
assert_array_equal(data, data1)
assert_array_equal(times, times1)
data, times = raw[0:2, :]
data1, times1 = raw[0:2]
assert_array_equal(data, data1)
assert_array_equal(times, times1)
data1, times1 = raw[[0, 1]]
assert_array_equal(data, data1)
assert_array_equal(times, times1)
assert_array_equal(
raw[-10:-1, :][0],
raw[len(raw.ch_names) - 10:len(raw.ch_names) - 1, :][0])
pytest.raises(ValueError, raw.__getitem__,
(slice(-len(raw.ch_names) - 1), slice(None)))
with pytest.raises(ValueError, match='start must be'):
raw[-1000:]
with pytest.raises(ValueError, match='stop must be'):
raw[:-1000]
@testing.requires_testing_data
def test_proj():
"""Test SSP proj operations."""
tempdir = _TempDir()
for proj in [True, False]:
raw = read_raw_fif(fif_fname, preload=False)
if proj:
raw.apply_proj()
assert (all(p['active'] == proj for p in raw.info['projs']))
data, times = raw[0:2, :]
data1, times1 = raw[0:2]
assert_array_equal(data, data1)
assert_array_equal(times, times1)
# test adding / deleting proj
if proj:
pytest.raises(ValueError, raw.add_proj, [],
{'remove_existing': True})
pytest.raises(ValueError, raw.del_proj, 0)
else:
projs = deepcopy(raw.info['projs'])
n_proj = len(raw.info['projs'])
raw.del_proj(0)
assert_equal(len(raw.info['projs']), n_proj - 1)
raw.add_proj(projs, remove_existing=False)
# Test that already existing projections are not added.
assert_equal(len(raw.info['projs']), n_proj)
raw.add_proj(projs[:-1], remove_existing=True)
assert_equal(len(raw.info['projs']), n_proj - 1)
# test apply_proj() with and without preload
for preload in [True, False]:
raw = read_raw_fif(fif_fname, preload=preload)
data, times = raw[:, 0:2]
raw.apply_proj()
data_proj_1 = np.dot(raw._projector, data)
# load the file again without proj
raw = read_raw_fif(fif_fname, preload=preload)
# write the file with proj. activated, make sure proj has been applied
raw.save(op.join(tempdir, 'raw.fif'), proj=True, overwrite=True)
raw2 = read_raw_fif(op.join(tempdir, 'raw.fif'))
data_proj_2, _ = raw2[:, 0:2]
assert_allclose(data_proj_1, data_proj_2)
assert (all(p['active'] for p in raw2.info['projs']))
# read orig file with proj. active
raw2 = read_raw_fif(fif_fname, preload=preload)
raw2.apply_proj()
data_proj_2, _ = raw2[:, 0:2]
assert_allclose(data_proj_1, data_proj_2)
assert (all(p['active'] for p in raw2.info['projs']))
# test that apply_proj works
raw.apply_proj()
data_proj_2, _ = raw[:, 0:2]
assert_allclose(data_proj_1, data_proj_2)
assert_allclose(data_proj_2, np.dot(raw._projector, data_proj_2))
tempdir = _TempDir()
out_fname = op.join(tempdir, 'test_raw.fif')
raw = read_raw_fif(test_fif_fname, preload=True).crop(0, 0.002)
raw.pick_types(meg=False, eeg=True)
raw.info['projs'] = [raw.info['projs'][-1]]
raw._data.fill(0)
raw._data[-1] = 1.
raw.save(out_fname)
raw = read_raw_fif(out_fname, preload=False)
raw.apply_proj()
assert_allclose(raw[:, :][0][:1], raw[0, :][0])
@testing.requires_testing_data
def test_preload_modify():
"""Test preloading and modifying data."""
tempdir = _TempDir()
rng = np.random.RandomState(0)
for preload in [False, True, 'memmap.dat']:
raw = read_raw_fif(fif_fname, preload=preload)
nsamp = raw.last_samp - raw.first_samp + 1
picks = pick_types(raw.info, meg='grad', exclude='bads')
data = rng.randn(len(picks), nsamp // 2)
try:
raw[picks, :nsamp // 2] = data
except RuntimeError:
if not preload:
continue
else:
raise
tmp_fname = op.join(tempdir, 'raw.fif')
raw.save(tmp_fname, overwrite=True)
raw_new = read_raw_fif(tmp_fname)
data_new, _ = raw_new[picks, :nsamp // 2]
assert_allclose(data, data_new)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_filter():
"""Test filtering (FIR and IIR) and Raw.apply_function interface."""
raw = read_raw_fif(fif_fname).crop(0, 7)
raw.load_data()
sig_dec_notch = 12
sig_dec_notch_fit = 12
picks_meg = pick_types(raw.info, meg=True, exclude='bads')
picks = picks_meg[:4]
trans = 2.0
filter_params = dict(picks=picks, filter_length='auto',
h_trans_bandwidth=trans, l_trans_bandwidth=trans,
fir_design='firwin')
raw_lp = raw.copy().filter(None, 8.0, **filter_params)
raw_hp = raw.copy().filter(16.0, None, **filter_params)
raw_bp = raw.copy().filter(8.0 + trans, 16.0 - trans, **filter_params)
raw_bs = raw.copy().filter(16.0, 8.0, **filter_params)
data, _ = raw[picks, :]
lp_data, _ = raw_lp[picks, :]
hp_data, _ = raw_hp[picks, :]
bp_data, _ = raw_bp[picks, :]
bs_data, _ = raw_bs[picks, :]
tols = dict(atol=1e-20, rtol=1e-5)
assert_allclose(bs_data, lp_data + hp_data, **tols)
assert_allclose(data, lp_data + bp_data + hp_data, **tols)
assert_allclose(data, bp_data + bs_data, **tols)
filter_params_iir = dict(picks=picks, n_jobs=2, method='iir',
iir_params=dict(output='ba'))
raw_lp_iir = raw.copy().filter(None, 4.0, **filter_params_iir)
raw_hp_iir = raw.copy().filter(8.0, None, **filter_params_iir)
raw_bp_iir = raw.copy().filter(4.0, 8.0, **filter_params_iir)
del filter_params_iir
lp_data_iir, _ = raw_lp_iir[picks, :]
hp_data_iir, _ = raw_hp_iir[picks, :]
bp_data_iir, _ = raw_bp_iir[picks, :]
summation = lp_data_iir + hp_data_iir + bp_data_iir
assert_array_almost_equal(data[:, 100:-100], summation[:, 100:-100], 11)
# make sure we didn't touch other channels
data, _ = raw[picks_meg[4:], :]
bp_data, _ = raw_bp[picks_meg[4:], :]
assert_array_equal(data, bp_data)
bp_data_iir, _ = raw_bp_iir[picks_meg[4:], :]
assert_array_equal(data, bp_data_iir)
# ... and that inplace changes are inplace
raw_copy = raw.copy()
assert np.may_share_memory(raw._data, raw._data)
assert not np.may_share_memory(raw_copy._data, raw._data)
# this could be assert_array_equal but we do this to mirror the call below
assert (raw._data[0] == raw_copy._data[0]).all()
raw_copy.filter(None, 20., n_jobs=2, **filter_params)
assert not (raw._data[0] == raw_copy._data[0]).all()
assert_equal(raw.copy().filter(None, 20., **filter_params)._data,
raw_copy._data)
# do a very simple check on line filtering
raw_bs = raw.copy().filter(60.0 + trans, 60.0 - trans, **filter_params)
data_bs, _ = raw_bs[picks, :]
raw_notch = raw.copy().notch_filter(
60.0, picks=picks, n_jobs=2, method='fir',
trans_bandwidth=2 * trans)
data_notch, _ = raw_notch[picks, :]
assert_array_almost_equal(data_bs, data_notch, sig_dec_notch)
# now use the sinusoidal fitting
raw_notch = raw.copy().notch_filter(
None, picks=picks, n_jobs=2, method='spectrum_fit')
data_notch, _ = raw_notch[picks, :]
data, _ = raw[picks, :]
assert_array_almost_equal(data, data_notch, sig_dec_notch_fit)
# filter should set the "lowpass" and "highpass" parameters
raw = RawArray(np.random.randn(3, 1000),
create_info(3, 1000., ['eeg'] * 2 + ['stim']))
raw.info['lowpass'] = raw.info['highpass'] = None
for kind in ('none', 'lowpass', 'highpass', 'bandpass', 'bandstop'):
print(kind)
h_freq = l_freq = None
if kind in ('lowpass', 'bandpass'):
h_freq = 70
if kind in ('highpass', 'bandpass'):
l_freq = 30
if kind == 'bandstop':
l_freq, h_freq = 70, 30
assert (raw.info['lowpass'] is None)
assert (raw.info['highpass'] is None)
kwargs = dict(l_trans_bandwidth=20, h_trans_bandwidth=20,
filter_length='auto', phase='zero', fir_design='firwin')
raw_filt = raw.copy().filter(l_freq, h_freq, picks=np.arange(1),
**kwargs)
assert (raw.info['lowpass'] is None)
assert (raw.info['highpass'] is None)
raw_filt = raw.copy().filter(l_freq, h_freq, **kwargs)
wanted_h = h_freq if kind != 'bandstop' else None
wanted_l = l_freq if kind != 'bandstop' else None
assert_equal(raw_filt.info['lowpass'], wanted_h)
assert_equal(raw_filt.info['highpass'], wanted_l)
# Using all data channels should still set the params (GH#3259)
raw_filt = raw.copy().filter(l_freq, h_freq, picks=np.arange(2),
**kwargs)
assert_equal(raw_filt.info['lowpass'], wanted_h)
assert_equal(raw_filt.info['highpass'], wanted_l)
def test_filter_picks():
"""Test filtering default channel picks."""
ch_types = ['mag', 'grad', 'eeg', 'seeg', 'misc', 'stim', 'ecog', 'hbo',
'hbr']
info = create_info(ch_names=ch_types, ch_types=ch_types, sfreq=256)
raw = RawArray(data=np.zeros((len(ch_types), 1000)), info=info)
# -- Deal with meg mag grad and fnirs exceptions
ch_types = ('misc', 'stim', 'meg', 'eeg', 'seeg', 'ecog')
# -- Filter data channels
for ch_type in ('mag', 'grad', 'eeg', 'seeg', 'ecog', 'hbo', 'hbr'):
picks = dict((ch, ch == ch_type) for ch in ch_types)
picks['meg'] = ch_type if ch_type in ('mag', 'grad') else False
picks['fnirs'] = ch_type if ch_type in ('hbo', 'hbr') else False
raw_ = raw.copy().pick_types(**picks)
raw_.filter(10, 30, fir_design='firwin')
# -- Error if no data channel
for ch_type in ('misc', 'stim'):
picks = dict((ch, ch == ch_type) for ch in ch_types)
raw_ = raw.copy().pick_types(**picks)
pytest.raises(RuntimeError, raw_.filter, 10, 30)
@testing.requires_testing_data
def test_crop():
"""Test cropping raw files."""
# split a concatenated file to test a difficult case
raw = concatenate_raws([read_raw_fif(f)
for f in [fif_fname, fif_fname]])
split_size = 10. # in seconds
sfreq = raw.info['sfreq']
nsamp = (raw.last_samp - raw.first_samp + 1)
# do an annoying case (off-by-one splitting)
tmins = np.r_[1., np.round(np.arange(0., nsamp - 1, split_size * sfreq))]
tmins = np.sort(tmins)
tmaxs = np.concatenate((tmins[1:] - 1, [nsamp - 1]))
tmaxs /= sfreq
tmins /= sfreq
raws = [None] * len(tmins)
for ri, (tmin, tmax) in enumerate(zip(tmins, tmaxs)):
raws[ri] = raw.copy().crop(tmin, tmax)
all_raw_2 = concatenate_raws(raws, preload=False)
assert_equal(raw.first_samp, all_raw_2.first_samp)
assert_equal(raw.last_samp, all_raw_2.last_samp)
assert_array_equal(raw[:, :][0], all_raw_2[:, :][0])
tmins = np.round(np.arange(0., nsamp - 1, split_size * sfreq))
tmaxs = np.concatenate((tmins[1:] - 1, [nsamp - 1]))
tmaxs /= sfreq
tmins /= sfreq
# going in revere order so the last fname is the first file (need it later)
raws = [None] * len(tmins)
for ri, (tmin, tmax) in enumerate(zip(tmins, tmaxs)):
raws[ri] = raw.copy().crop(tmin, tmax)
# test concatenation of split file
all_raw_1 = concatenate_raws(raws, preload=False)
all_raw_2 = raw.copy().crop(0, None)
for ar in [all_raw_1, all_raw_2]:
assert_equal(raw.first_samp, ar.first_samp)
assert_equal(raw.last_samp, ar.last_samp)
assert_array_equal(raw[:, :][0], ar[:, :][0])
# test shape consistency of cropped raw
data = np.zeros((1, 1002001))
info = create_info(1, 1000)
raw = RawArray(data, info)
for tmin in range(0, 1001, 100):
raw1 = raw.copy().crop(tmin=tmin, tmax=tmin + 2)
assert_equal(raw1[:][0].shape, (1, 2001))
@testing.requires_testing_data
def test_resample():
"""Test resample (with I/O and multiple files)."""
tempdir = _TempDir()
raw = read_raw_fif(fif_fname).crop(0, 3)
raw.load_data()
raw_resamp = raw.copy()
sfreq = raw.info['sfreq']
# test parallel on upsample
raw_resamp.resample(sfreq * 2, n_jobs=2, npad='auto')
assert_equal(raw_resamp.n_times, len(raw_resamp.times))
raw_resamp.save(op.join(tempdir, 'raw_resamp-raw.fif'))
raw_resamp = read_raw_fif(op.join(tempdir, 'raw_resamp-raw.fif'),
preload=True)
assert_equal(sfreq, raw_resamp.info['sfreq'] / 2)
assert_equal(raw.n_times, raw_resamp.n_times / 2)
assert_equal(raw_resamp._data.shape[1], raw_resamp.n_times)
assert_equal(raw._data.shape[0], raw_resamp._data.shape[0])
# test non-parallel on downsample
raw_resamp.resample(sfreq, n_jobs=1, npad='auto')
assert_equal(raw_resamp.info['sfreq'], sfreq)
assert_equal(raw._data.shape, raw_resamp._data.shape)
assert_equal(raw.first_samp, raw_resamp.first_samp)
assert_equal(raw.last_samp, raw.last_samp)
# upsampling then downsampling doubles resampling error, but this still
# works (hooray). Note that the stim channels had to be sub-sampled
# without filtering to be accurately preserved
# note we have to treat MEG and EEG+STIM channels differently (tols)
assert_allclose(raw._data[:306, 200:-200],
raw_resamp._data[:306, 200:-200],
rtol=1e-2, atol=1e-12)
assert_allclose(raw._data[306:, 200:-200],
raw_resamp._data[306:, 200:-200],
rtol=1e-2, atol=1e-7)
# now check multiple file support w/resampling, as order of operations
# (concat, resample) should not affect our data
raw1 = raw.copy()
raw2 = raw.copy()
raw3 = raw.copy()
raw4 = raw.copy()
raw1 = concatenate_raws([raw1, raw2])
raw1.resample(10., npad='auto')
raw3.resample(10., npad='auto')
raw4.resample(10., npad='auto')
raw3 = concatenate_raws([raw3, raw4])
assert_array_equal(raw1._data, raw3._data)
assert_array_equal(raw1._first_samps, raw3._first_samps)
assert_array_equal(raw1._last_samps, raw3._last_samps)
assert_array_equal(raw1._raw_lengths, raw3._raw_lengths)
assert_equal(raw1.first_samp, raw3.first_samp)
assert_equal(raw1.last_samp, raw3.last_samp)
assert_equal(raw1.info['sfreq'], raw3.info['sfreq'])
# test resampling of stim channel
# basic decimation
stim = [1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0]
raw = RawArray([stim], create_info(1, len(stim), ['stim']))
assert_allclose(raw.resample(8., npad='auto')._data,
[[1, 1, 0, 0, 1, 1, 0, 0]])
# decimation of multiple stim channels
raw = RawArray(2 * [stim], create_info(2, len(stim), 2 * ['stim']))
assert_allclose(raw.resample(8., npad='auto', verbose='error')._data,
[[1, 1, 0, 0, 1, 1, 0, 0],
[1, 1, 0, 0, 1, 1, 0, 0]])
# decimation that could potentially drop events if the decimation is
# done naively
stim = [0, 0, 0, 1, 1, 0, 0, 0]
raw = RawArray([stim], create_info(1, len(stim), ['stim']))
assert_allclose(raw.resample(4., npad='auto')._data,
[[0, 1, 1, 0]])
# two events are merged in this case (warning)
stim = [0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0]
raw = RawArray([stim], create_info(1, len(stim), ['stim']))
with pytest.warns(RuntimeWarning, match='become unreliable'):
raw.resample(8., npad='auto')
# events are dropped in this case (warning)
stim = [0, 1, 1, 0, 0, 1, 1, 0]
raw = RawArray([stim], create_info(1, len(stim), ['stim']))
with pytest.warns(RuntimeWarning, match='become unreliable'):
raw.resample(4., npad='auto')
# test resampling events: this should no longer give a warning
# we often have first_samp != 0, include it here too
stim = [0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0]
# test is on half the sfreq, but should work with trickier ones too
o_sfreq, sfreq_ratio = len(stim), 0.5
n_sfreq = o_sfreq * sfreq_ratio
first_samp = len(stim) // 2
raw = RawArray([stim], create_info(1, o_sfreq, ['stim']),
first_samp=first_samp)
events = find_events(raw)
raw, events = raw.resample(n_sfreq, events=events, npad='auto')
n_fsamp = int(first_samp * sfreq_ratio) # how it's calc'd in base.py
# NB np.round used for rounding event times, which has 0.5 as corner case:
# https://docs.scipy.org/doc/numpy/reference/generated/numpy.around.html
assert_equal(events,
np.array([[np.round(1 * sfreq_ratio) + n_fsamp, 0, 1],
[np.round(10 * sfreq_ratio) + n_fsamp, 0, 1]]))
# test copy flag
stim = [1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0]
raw = RawArray([stim], create_info(1, len(stim), ['stim']))
raw_resampled = raw.copy().resample(4., npad='auto')
assert (raw_resampled is not raw)
raw_resampled = raw.resample(4., npad='auto')
assert (raw_resampled is raw)
# resample should still work even when no stim channel is present
raw = RawArray(np.random.randn(1, 100), create_info(1, 100, ['eeg']))
raw.info['lowpass'] = 50.
raw.resample(10, npad='auto')
assert_equal(raw.info['lowpass'], 5.)
assert_equal(len(raw), 10)
@testing.requires_testing_data
def test_hilbert():
"""Test computation of analytic signal using hilbert."""
raw = read_raw_fif(fif_fname, preload=True)
picks_meg = pick_types(raw.info, meg=True, exclude='bads')
picks = picks_meg[:4]
raw_filt = raw.copy()
raw_filt.filter(10, 20, picks=picks, l_trans_bandwidth='auto',
h_trans_bandwidth='auto', filter_length='auto',
phase='zero', fir_window='blackman', fir_design='firwin')
raw_filt_2 = raw_filt.copy()
raw2 = raw.copy()
raw3 = raw.copy()
raw.apply_hilbert(picks, n_fft='auto')
raw2.apply_hilbert(picks, n_fft='auto', envelope=True)
# Test custom n_fft
raw_filt.apply_hilbert(picks, n_fft='auto')
n_fft = 2 ** int(np.ceil(np.log2(raw_filt_2.n_times + 1000)))
raw_filt_2.apply_hilbert(picks, n_fft=n_fft)
assert_equal(raw_filt._data.shape, raw_filt_2._data.shape)
assert_allclose(raw_filt._data[:, 50:-50], raw_filt_2._data[:, 50:-50],
atol=1e-13, rtol=1e-2)
pytest.raises(ValueError, raw3.apply_hilbert, picks,
n_fft=raw3.n_times - 100)
env = np.abs(raw._data[picks, :])
assert_allclose(env, raw2._data[picks, :], rtol=1e-2, atol=1e-13)
@testing.requires_testing_data
def test_raw_copy():
"""Test Raw copy."""
raw = read_raw_fif(fif_fname, preload=True)
data, _ = raw[:, :]
copied = raw.copy()
copied_data, _ = copied[:, :]
assert_array_equal(data, copied_data)
assert_equal(sorted(raw.__dict__.keys()),
sorted(copied.__dict__.keys()))
raw = read_raw_fif(fif_fname, preload=False)
data, _ = raw[:, :]
copied = raw.copy()
copied_data, _ = copied[:, :]
assert_array_equal(data, copied_data)
assert_equal(sorted(raw.__dict__.keys()),
sorted(copied.__dict__.keys()))
@requires_pandas
def test_to_data_frame():
"""Test raw Pandas exporter."""
raw = read_raw_fif(test_fif_fname, preload=True)
_, times = raw[0, :10]
df = raw.to_data_frame()
assert ((df.columns == raw.ch_names).all())
assert_array_equal(np.round(times * 1e3), df.index.values[:10])
df = raw.to_data_frame(index=None)
assert ('time' in df.index.names)
assert_array_equal(df.values[:, 0], raw._data[0] * 1e13)
assert_array_equal(df.values[:, 2], raw._data[2] * 1e15)
def test_add_channels():
"""Test raw splitting / re-appending channel types."""
rng = np.random.RandomState(0)
raw = read_raw_fif(test_fif_fname).crop(0, 1).load_data()
raw_nopre = read_raw_fif(test_fif_fname, preload=False)
raw_eeg_meg = raw.copy().pick_types(meg=True, eeg=True)
raw_eeg = raw.copy().pick_types(meg=False, eeg=True)
raw_meg = raw.copy().pick_types(meg=True, eeg=False)
raw_stim = raw.copy().pick_types(meg=False, eeg=False, stim=True)
raw_new = raw_meg.copy().add_channels([raw_eeg, raw_stim])
assert (
all(ch in raw_new.ch_names
for ch in list(raw_stim.ch_names) + list(raw_meg.ch_names))
)
raw_new = raw_meg.copy().add_channels([raw_eeg])
assert (ch in raw_new.ch_names for ch in raw.ch_names)
assert_array_equal(raw_new[:, :][0], raw_eeg_meg[:, :][0])
assert_array_equal(raw_new[:, :][1], raw[:, :][1])
assert (all(ch not in raw_new.ch_names for ch in raw_stim.ch_names))
# Testing force updates
raw_arr_info = create_info(['1', '2'], raw_meg.info['sfreq'], 'eeg')
orig_head_t = raw_arr_info['dev_head_t']
raw_arr = rng.randn(2, raw_eeg.n_times)
raw_arr = RawArray(raw_arr, raw_arr_info)
# This should error because of conflicts in Info
pytest.raises(ValueError, raw_meg.copy().add_channels, [raw_arr])
raw_meg.copy().add_channels([raw_arr], force_update_info=True)
# Make sure that values didn't get overwritten
assert_equal(object_diff(raw_arr.info['dev_head_t'], orig_head_t), '')
# Now test errors
raw_badsf = raw_eeg.copy()
raw_badsf.info['sfreq'] = 3.1415927
raw_eeg.crop(.5)
pytest.raises(RuntimeError, raw_meg.add_channels, [raw_nopre])
pytest.raises(RuntimeError, raw_meg.add_channels, [raw_badsf])
pytest.raises(AssertionError, raw_meg.add_channels, [raw_eeg])
pytest.raises(ValueError, raw_meg.add_channels, [raw_meg])
pytest.raises(TypeError, raw_meg.add_channels, raw_badsf)
@testing.requires_testing_data
def test_save():
"""Test saving raw."""
tempdir = _TempDir()
raw = read_raw_fif(fif_fname, preload=False)
# can't write over file being read
pytest.raises(ValueError, raw.save, fif_fname)
raw = read_raw_fif(fif_fname, preload=True)
# can't overwrite file without overwrite=True
pytest.raises(IOError, raw.save, fif_fname)
# test abspath support and annotations
annot = Annotations([10], [5], ['test'],
orig_time=raw.info['meas_date'][0] + raw._first_time)
raw.set_annotations(annot)
annot = raw.annotations
new_fname = op.join(op.abspath(op.curdir), 'break_raw.fif')
raw.save(op.join(tempdir, new_fname), overwrite=True)
new_raw = read_raw_fif(op.join(tempdir, new_fname), preload=False)
pytest.raises(ValueError, new_raw.save, new_fname)
assert_array_almost_equal(annot.onset, new_raw.annotations.onset)
assert_array_equal(annot.duration, new_raw.annotations.duration)
assert_array_equal(annot.description, new_raw.annotations.description)
assert_equal(annot.orig_time, new_raw.annotations.orig_time)
@testing.requires_testing_data
def test_annotation_crop():
"""Test annotation sync after cropping and concatenating."""
tempdir = _TempDir()
new_fname = op.join(op.abspath(op.curdir), 'break_raw.fif')
annot = Annotations([5., 11., 15.], [2., 1., 3.], ['test', 'test', 'test'])
raw = read_raw_fif(fif_fname, preload=False)
raw.set_annotations(annot)
r1 = raw.copy().crop(2.5, 7.5)
r2 = raw.copy().crop(12.5, 17.5)
r3 = raw.copy().crop(10., 12.)
raw = concatenate_raws([r1, r2, r3]) # segments reordered
onsets = raw.annotations.onset
durations = raw.annotations.duration
# 2*5s clips combined with annotations at 2.5s + 2s clip, annotation at 1s
assert_array_almost_equal(onsets[:3], [47.95, 52.95, 56.46], decimal=2)
assert_array_almost_equal([2., 2.5, 1.], durations[:3], decimal=2)
# test annotation clipping
annot = Annotations([0., raw.times[-1]], [2., 2.], 'test',
orig_time=raw.info['meas_date'] + raw._first_time - 1.)
with pytest.warns(RuntimeWarning, match='Limited .* expanding outside'):
raw.set_annotations(annot)
assert_allclose(raw.annotations.duration,
[1., 1. + 1. / raw.info['sfreq']], atol=1e-3)
# make sure we can overwrite the file we loaded when preload=True
new_raw = read_raw_fif(op.join(tempdir, new_fname), preload=True)
new_raw.save(op.join(tempdir, new_fname), overwrite=True)
@testing.requires_testing_data
def test_with_statement():
"""Test with statement."""
for preload in [True, False]:
with read_raw_fif(fif_fname, preload=preload) as raw_:
print(raw_)
def test_compensation_raw():
"""Test Raw compensation."""
tempdir = _TempDir()
raw_3 = read_raw_fif(ctf_comp_fname)
assert_equal(raw_3.compensation_grade, 3)
data_3, times = raw_3[:, :]
# data come with grade 3
for ii in range(2):
raw_3_new = raw_3.copy()
if ii == 0:
raw_3_new.load_data()
raw_3_new.apply_gradient_compensation(3)
assert_equal(raw_3_new.compensation_grade, 3)
data_new, times_new = raw_3_new[:, :]
assert_array_equal(times, times_new)
assert_array_equal(data_3, data_new)
# change to grade 0
raw_0 = raw_3.copy().apply_gradient_compensation(0)
assert_equal(raw_0.compensation_grade, 0)
data_0, times_new = raw_0[:, :]
assert_array_equal(times, times_new)
assert (np.mean(np.abs(data_0 - data_3)) > 1e-12)
# change to grade 1
raw_1 = raw_0.copy().apply_gradient_compensation(1)
assert_equal(raw_1.compensation_grade, 1)
data_1, times_new = raw_1[:, :]
assert_array_equal(times, times_new)
assert (np.mean(np.abs(data_1 - data_3)) > 1e-12)
pytest.raises(ValueError, raw_1.apply_gradient_compensation, 33)
raw_bad = raw_0.copy()
raw_bad.add_proj(compute_proj_raw(raw_0, duration=0.5, verbose='error'))
raw_bad.apply_proj()
pytest.raises(RuntimeError, raw_bad.apply_gradient_compensation, 1)
# with preload
tols = dict(rtol=1e-12, atol=1e-25)
raw_1_new = raw_3.copy().load_data().apply_gradient_compensation(1)
assert_equal(raw_1_new.compensation_grade, 1)
data_1_new, times_new = raw_1_new[:, :]
assert_array_equal(times, times_new)
assert (np.mean(np.abs(data_1_new - data_3)) > 1e-12)
assert_allclose(data_1, data_1_new, **tols)
# change back
raw_3_new = raw_1.copy().apply_gradient_compensation(3)
data_3_new, times_new = raw_3_new[:, :]
assert_allclose(data_3, data_3_new, **tols)
raw_3_new = raw_1.copy().load_data().apply_gradient_compensation(3)
data_3_new, times_new = raw_3_new[:, :]
assert_allclose(data_3, data_3_new, **tols)
for load in (False, True):
for raw in (raw_0, raw_1):
raw_3_new = raw.copy()
if load:
raw_3_new.load_data()
raw_3_new.apply_gradient_compensation(3)
assert_equal(raw_3_new.compensation_grade, 3)
data_3_new, times_new = raw_3_new[:, :]
assert_array_equal(times, times_new)
assert (np.mean(np.abs(data_3_new - data_1)) > 1e-12)
assert_allclose(data_3, data_3_new, **tols)
# Try IO with compensation
temp_file = op.join(tempdir, 'raw.fif')
raw_3.save(temp_file, overwrite=True)
for preload in (True, False):
raw_read = read_raw_fif(temp_file, preload=preload)
assert_equal(raw_read.compensation_grade, 3)
data_read, times_new = raw_read[:, :]
assert_array_equal(times, times_new)
assert_allclose(data_3, data_read, **tols)
raw_read.apply_gradient_compensation(1)
data_read, times_new = raw_read[:, :]
assert_array_equal(times, times_new)
assert_allclose(data_1, data_read, **tols)
# Now save the file that has modified compensation
# and make sure the compensation is the same as it was,
# but that we can undo it
# These channels have norm 1e-11/1e-12, so atol=1e-18 isn't awesome,
# but it's due to the single precision of the info['comps'] leading
# to inexact inversions with saving/loading (casting back to single)
# in between (e.g., 1->3->1 will degrade like this)
looser_tols = dict(rtol=1e-6, atol=1e-18)
raw_1.save(temp_file, overwrite=True)
for preload in (True, False):
raw_read = read_raw_fif(temp_file, preload=preload, verbose=True)
assert_equal(raw_read.compensation_grade, 1)
data_read, times_new = raw_read[:, :]
assert_array_equal(times, times_new)
assert_allclose(data_1, data_read, **looser_tols)
raw_read.apply_gradient_compensation(3, verbose=True)
data_read, times_new = raw_read[:, :]
assert_array_equal(times, times_new)
assert_allclose(data_3, data_read, **looser_tols)
@requires_mne
def test_compensation_raw_mne():
"""Test Raw compensation by comparing with MNE-C."""
tempdir = _TempDir()
def compensate_mne(fname, grad):
tmp_fname = op.join(tempdir, 'mne_ctf_test_raw.fif')
cmd = ['mne_process_raw', '--raw', fname, '--save', tmp_fname,
'--grad', str(grad), '--projoff', '--filteroff']
run_subprocess(cmd)
return read_raw_fif(tmp_fname, preload=True)
for grad in [0, 2, 3]:
raw_py = read_raw_fif(ctf_comp_fname, preload=True)
raw_py.apply_gradient_compensation(grad)
raw_c = compensate_mne(ctf_comp_fname, grad)
assert_allclose(raw_py._data, raw_c._data, rtol=1e-6, atol=1e-17)
assert_equal(raw_py.info['nchan'], raw_c.info['nchan'])
for ch_py, ch_c in zip(raw_py.info['chs'], raw_c.info['chs']):
for key in ('ch_name', 'coil_type', 'scanno', 'logno', 'unit',
'coord_frame', 'kind'):
assert_equal(ch_py[key], ch_c[key])
for key in ('loc', 'unit_mul', 'range', 'cal'):
assert_allclose(ch_py[key], ch_c[key])
@testing.requires_testing_data
def test_drop_channels_mixin():
"""Test channels-dropping functionality."""
raw = read_raw_fif(fif_fname, preload=True)
drop_ch = raw.ch_names[:3]
ch_names = raw.ch_names[3:]
ch_names_orig = raw.ch_names
dummy = raw.copy().drop_channels(drop_ch)
assert_equal(ch_names, dummy.ch_names)
assert_equal(ch_names_orig, raw.ch_names)
assert_equal(len(ch_names_orig), raw._data.shape[0])
raw.drop_channels(drop_ch)
assert_equal(ch_names, raw.ch_names)
assert_equal(len(ch_names), len(raw._cals))
assert_equal(len(ch_names), raw._data.shape[0])
@testing.requires_testing_data
def test_pick_channels_mixin():
"""Test channel-picking functionality."""
# preload is True
raw = read_raw_fif(fif_fname, preload=True)
ch_names = raw.ch_names[:3]
ch_names_orig = raw.ch_names
dummy = raw.copy().pick_channels(ch_names)
assert_equal(ch_names, dummy.ch_names)
assert_equal(ch_names_orig, raw.ch_names)
assert_equal(len(ch_names_orig), raw._data.shape[0])
raw.pick_channels(ch_names) # copy is False
assert_equal(ch_names, raw.ch_names)
assert_equal(len(ch_names), len(raw._cals))
assert_equal(len(ch_names), raw._data.shape[0])
pytest.raises(ValueError, raw.pick_channels, ch_names[0])
raw = read_raw_fif(fif_fname, preload=False)
pytest.raises(RuntimeError, raw.pick_channels, ch_names)
pytest.raises(RuntimeError, raw.drop_channels, ch_names)
@testing.requires_testing_data
def test_equalize_channels():
"""Test equalization of channels."""
raw1 = read_raw_fif(fif_fname, preload=True)
raw2 = raw1.copy()
ch_names = raw1.ch_names[2:]
raw1.drop_channels(raw1.ch_names[:1])
raw2.drop_channels(raw2.ch_names[1:2])
my_comparison = [raw1, raw2]
equalize_channels(my_comparison)
for e in my_comparison:
assert_equal(ch_names, e.ch_names)
def test_memmap(tmpdir):
"""Test some interesting memmapping cases."""
# concatenate_raw
memmaps = [op.join(str(tmpdir), str(ii)) for ii in range(3)]
raw_0 = read_raw_fif(test_fif_fname, preload=memmaps[0])
assert raw_0._data.filename == memmaps[0]
raw_1 = read_raw_fif(test_fif_fname, preload=memmaps[1])
assert raw_1._data.filename == memmaps[1]
raw_0.append(raw_1, preload=memmaps[2])
assert raw_0._data.filename == memmaps[2]
# add_channels
orig_data = raw_0[:][0]
new_ch_info = pick_info(raw_0.info, [0])
new_ch_info['chs'][0]['ch_name'] = 'foo'
new_ch_info._update_redundant()
new_data = np.linspace(0, 1, len(raw_0.times))[np.newaxis]
ch = RawArray(new_data, new_ch_info)
raw_0.add_channels([ch])
if sys.platform == 'darwin':
assert not hasattr(raw_0._data, 'filename')
else:
assert raw_0._data.filename == memmaps[2]
assert_allclose(orig_data, raw_0[:-1][0], atol=1e-7)
assert_allclose(new_data, raw_0[-1][0], atol=1e-7)
# now let's see if .copy() actually works; it does, but eventually
# we should make it optionally memmap to a new filename rather than
# create an in-memory version (filename=None)
raw_0 = read_raw_fif(test_fif_fname, preload=memmaps[0])
assert raw_0._data.filename == memmaps[0]
assert raw_0._data[:1, 3:5].all()
raw_1 = raw_0.copy()
assert isinstance(raw_1._data, np.memmap)
assert raw_1._data.filename is None
raw_0._data[:] = 0.
assert not raw_0._data.any()
assert raw_1._data[:1, 3:5].all()
# other things like drop_channels and crop work but do not use memmapping,
# eventually we might want to add support for some of these as users
# require them.
run_tests_if_main()
|